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ON QUADRATIC SOLUTIONS OF x4 + py4 = z4

ERIC D. MANLEY

ABSTRACT. Consider the diophantine equation x4+py4 =
z4 where p is prime and p ≡ 3 mod 8. It is well known that
this equation has no nonzero integer solutions. This paper
shows that all quadratic solutions are inherited. That is,
all quadratic solutions can be easily obtained from integer
solutions to the simpler equation x4 + py4 = z2.

1. Introduction. One of Fermat’s most well-known results is the
nonexistence of nonzero integer solutions to x4 + y4 = z4. In 1934,
Aigner proved that nonzero quadratic solutions exist though they are
rare [1]. In fact, Q(

√−7) is the only quadratic extension with nonzero
solutions. Observe, (1 +

√−7)4 + (1 − √−7)4 = 24. Faddeev later
classified all solutions in Q(

√−7) [3]. The complexity of Faddeev’s
methods motivated Mordell to supply an alternative argument [5].

We are interested in generalizing Aigner’s results to the family of
equations x4 + Dy4 = z4 with D ∈ Z. We prove that the only
quadratic solutions to x4 + py4 = z4 with p ≡ 3 mod 8 are those that
come from rational solutions of x4 + py4 = z2. For example, since
(1)4 +3(1)4 = (2)2, we find (1, 1,

√
2) ∈ Q(

√
2)3 satisfies x4 +3y4 = z4.

That is, we will prove

Theorem 1. All quadratic solutions to x4+py4 = z4 for p ≡ 3 mod 8
can be written in the form (a, b,

√
c) where (a, b, c) is a rational solution

to x4 + py4 = z2.

Furthermore, we will show

Corollary 2. All quadratic solutions to x4 + py4 = z4 with p ≡
11 mod 16 satisfy xyz = 0.
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The solution (1, 1,
√

2) of x4 + 3y4 = z4 is inherited from a rational
solutions to x4 + 3y4 = z2. This leads to the following definition.

Definition 3. If (a, b, c) is a rational solution to x2 + Dy4 = z4,
x4 +Dy2 = z4, or x4 +Dy4 = z2 then (

√
a, b, c), (a,

√
b, c), or (a, b,

√
c)

respectively is an inherited quadratic solution of x4 + Dy4 = z4.

Then, we find the following more simply stated corollary

Corollary 4. All quadratic solutions to x4 + py4 = z4 with p ≡
3 mod 8 are inherited.

It is worth noting that x4 + y4 = z4 has no inherited quadratic
solutions, so Aigner found nontrivial, noninherited solutions. This
observation makes his result all the more remarkable.

2. On related equations. There are no rational solutions to

(1) x4 + py2 = 1, p ≡ 3 mod 8.

The proof is by descent and can be found in [6, p. 230].

Similarly, there are no rational solutions to

(2) x2 + py4 = 1, p ≡ 3 mod 8.

The proof is also by descent and can be found in [4, p. 23]. Note
also that x2 + py4 = 1 is related to the elliptic curve v2 = u3 + 4pu.
This is because if (u, v) nontrivially solves v2 = u3 + 4pu, then
((8pu − v2)/v2, 2u/v) solves x2 + py4 = 1. So, all rational solutions
to

(3) v2 = u3 + 4pu, p ≡ 3 mod 8

satisfy uv = 0.

Now, for p ≡ 11 mod 16, all rational solutions to

(4) x4 + py4 = z2



ON QUADRATIC SOLUTIONS OF x4 + py4 = z4 1029

satisfy xyz = 0. The proof is by descent and can be found in [4, p. 23].
Now consider (4) with p ≡ 3 mod 16. Note that (4) is related to the
elliptic curve

(5) v2 = u(u2 + p).

Following [2, p. 258], either u or pu must be a square. If pu is a square,
then (pv/u2)2 = (p/u)3 +p(p/u), so we may assume we have a solution
to (5) where u is a square. Then we obtain a solution to (4) by letting
u = x2/y2 and v = xz/y3 with gcd(x, y) = 1. Now according to [7,
Chapter X, Remark 6.4], conjecturally (5) has rank 1 for p ≡ 3 mod 16.
This leads us to observe that, for p ≡ 3 mod 16, (4) may have infinitely
many solutions. For example, when p = 3, (1, 2) solves (5) so (1, 1, 2)
solves (4). When p = 19, (9, 30) solves (5) so (3, 1, 10) solves (4). When
p = 67, ((2401/225), (148274/3375)) solves (5) so (49, 15, 3026) solves
(4).

Finally, we consider an unrelated equation. Note that all rational
solutions to

(6) px4 − 4y4 = z2, p ≡ 3 mod 8

satisfy xyz = 0 because −1 is not a quadratic residue of p.

3. Proof of Theorem 1. The proof of Theorem 1 is based on [5].

Since z �= 0, we focus on solutions of

(7) x4 + py4 = 1

where x, y ∈ K where K is some quadratic extension of Q. Given
any solution to (7) with y �= 0, define t = (1 − x2)/y2. Note that
x2 = −ty2 + 1. Substituting for x2 in (7), we may solve for y2. Then,

(8) x2 =
p − t2

p + t2
, y2 =

2t

p + t2
.

Since x, y ∈ K, t ∈ K. There are two cases to consider. Either t
is rational or t is irrational. In the latter case, we will show there are
no quadratic solutions and only inherited quadratic solutions in the
former.
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Suppose first that t is rational. Then, noting (8), x2 and y2 are
rational. If x is rational and y is irrational, then letting y2 = y1, we get
a rational solution to x4 + py2

1 = 1. If y is rational and x is irrational,
then letting x2 = x1, we get a rational solution to x2

1 + py4 = 1. If
both x and y are irrational then x = x1

√
d and y = y1

√
d for some

d ∈ Q so we get a rational solution to x4
1 + py4

1 = (1/d)2. According to
Definition 3, these quadratic solutions are inherited. However, by (1)
and (2), both x4 + py2 = 1 and x2 + py4 = 1 have no nonzero rational
solutions, so all inherited solutions come from x4 + py4 = z2.

Now suppose that t is irrational. So K = Q(t) and F (t) = t2 +
Bt + C = 0 for some rational constants B and C. We would prefer
polynomials in t to the rational expressions in t for x2 and y2 given
in (8). Let X = (p + t2)xy and Y = (p + t2)y. Note then that
X2 = 2t(p − t2) and Y 2 = 2t(p + t2). Since X, Y ∈ K, there are
a, b, a1, b1 ∈ Q such that X = a + bt and Y = a1 + b1t. Substituting
for X, Y , it is clear that t is a root of the two cubic polynomials
(a+bz)2−2z(p−z2) and (a1 +b1z)2−2z(p+z2). So both polynomials
are divisible by F (z).

We will show that there is no irreducible quadratic that divides both
of these cubics which will prove no such t exists. Let M + Nz and
M1 + N1z denote the two quotients. So

(a + bz)2 − 2z(p − z2) = F (z)(M + Nz),(9)
(a1 + b1z)2 − 2z(p + z2) = F (z)(M1 + N1z),(10)

where M , N , M1, and N1 are rational constants and N, N1 �= 0.

Clearly, −M/N and −M1/N1 are roots of the lefthand sides of (9)
and (10) respectively. So rational solutions exist for the equations
(a + bz)2 = 2z(p − z2) and (a1 + b1z)2 = 2z(p + z2). What are they?

First, note that if we let v = 2(a1 + b1z) and u = 2z, then we get
v2 = u3 + 4pu whose only solution is u = v = 0 (Section 2, equation
(3)), so z = 0 is the only solution to (a1 + b1z)2 = 2z(p + z2). Thus,
we see that 0 = M1/N1. So M1 = 0 and also looking at (10), a1 = 0.
Therefore,

N1F (z) = −2z2 + b2
1z − 2p.

We have a characterization of F (z) and now show that this F (z)
cannot satisfy (9) as well. To do so, substitute F (z) into equation
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(9) and compare the coefficients. Note (a + bz)2 − 2z(p − z2) =
(−2z2 + b2

1z − 2p)(M + Nz)/N1. Expand this equation, and look at
the coefficient of z3. Then we see that N1 = −N . Now look at the
constant term. Thus −M/N = −a2/(2p). Recall that the zero in
the righthand side of equation (9) was −M/N . That is, the zero in
(9) must have the form −a2/(2p) with a ∈ Q, or −u2/(2pv2) with
u, v ∈ Z and gcd(u, v) = 1. So, from the left-hand side of (9) we
see that 2(−u2/(2pv2))(p − (−u2/(2pv2))2) is a square. Therefore,
((u2)(u4 − 4p3v4))/(4(v6)(p3)) is a square, which means p(u4 − 4p3v4)
is a square. We can then obtain a solution to (6) which means no such
a exists.

We have shown that all quadratic solutions to equation (7) are
inherited from x4 + py4 = z2, and the proof of Theorem 1 is complete.
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