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BOUNDARY VALUE PROBLEM FOR
SECOND-ORDER DIFFERENTIAL OPERATORS

WITH NONREGULAR INTEGRAL
BOUNDARY CONDITIONS

M. DENCHE AND A. KOURTA

ABSTRACT. In this paper, we study a nonregular second
order differential operator with weighted integral boundary
conditions. Under certain conditions on the weighting func-
tions which occur in the integral boundary conditions ex-
pressed in terms of the values at the interval endpoints, we
prove that the resolvent has no minimal growth. Further-
more, the studied operator generates an analytic semi-group
with singularities in L1 (0, 1). The obtained results are then
used to show the correct solvability of a mixed problem for a
parabolic partial differential equation with nonregular integral
boundary conditions.

1. Introduction. In space L1(0, 1), we consider the boundary value
problem

(1)

⎧⎨
⎩

L(u) = u′′ (x) = f (x) ,

Bi(u) =
∫ 1

0

Ri(t)u(t) dt +
∫ 1

0

Si(t)u′(t) dt = 0 i = 1, 2,

where functions Ri, Si ∈ C([0, 1] ,C), i = 1, 2. We associate to problem
(1) in space L1(0, 1) the operator

L1(u) = u′′,

with domain D(L1) =
{
u ∈ W 2,1(0, 1) : Bi(u) = 0, i = 1, 2

}
.

Many papers and books give the full spectral theory of Birkhoff regu-
lar differential operators with two point linearly independent boundary
conditions, in terms of coefficients of boundary conditions. The reader
should refer to [7, 11, 21 23, 30, 33, 35] and references therein.
Few works were devoted to the study of a nonregular situation. The
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case of separated nonregular boundary conditions was studied by Eber-
hard, Hopkins, Jakson, Keldysh, Khromov, Seifert, Stone, Ward (see S.
Yakubov and Y. Yakubov [35] for exact references). A situation of non-
regular nonseparated boundary conditions was considered by Benzinger
[2], Denche [4], Eberhard and Freiling [8], Gasumov and Magerramov
[13, 14], Khromov [19], Mamedov [20], Shkalikov [26], Silchenko [27],
Tretter [31], Vagabov [32], S. Yakubov [34] and Y. Yakubov [36]. As
was mentioned in [35], some nonstandard results exist for nonregular
boundary value problems in contrast to the classical regular situation.
The latter motivates more the study of such problems.

A mathematical model with integral boundary conditions was derived
by [9, 24] in the context of optical physics. The importance of this kind
of problems have been also pointed out by Samarskii [25].

In this paper, we study a problem for second order ordinary differen-
tial equations with nonregular integral boundary conditions, the regular
case was studied in [12]. In the case Si (t) = 0 and nonregular bound-
ary conditions, more general problems were studied by Yu. T. Silchenko
[28] and not only in L1 (0, 1) space, but also in Lp (0, 1) space. This
work of Yu. T. Silchenko was published before Gallardo’s work [12]. In
[10, 29], a situation of a variable coefficient of u′′ (x) in the equation
has been treated. The integral boundary conditions are again nonregu-
lar but they assume less restrictions on the functions Ri (t) (here again
Si (t) = 0). In particular the corresponding estimate in L2 (0, 1) has
been established.

Following the technique in [12, 21 23], we should bound the resol-
vent in the space L1 (0, 1) by means of a suitable formula for Green’s
function. We show, in particular, that the resolvent decreases with re-
spect to the spectral parameter, but there is no maximal decreasing at
infinity in contrast to the regular case. Furthermore, the studied opera-
tor generates an analytic semi-group with singularities [27] in L1 (0, 1).
The obtained results are then used to show the correct solvability of
a mixed problem for a parabolic partial differential equation with non
regular integral boundary conditions.

2. Green’s function. Let λ ∈ C, u1(x) = u1(x, λ), and let
u2(x) = u2(x, λ) be a fundamental system of solutions of equation

L (u) − λu = 0.
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Following [21], the Green’s function of problem (1) is given by:

(2) G(x, s, λ) =
N(x, s, λ)

Δ(λ)
,

where Δ(λ) is the characteristic determinant of the considered problem
defined by

(3) Δ(λ) =
∣∣∣∣ B1(u1) B1(u2)
B2(u1) B2(u2)

∣∣∣∣
and

(4) N(x, s, λ) =

∣∣∣∣∣∣
u1(x) u2(x) g(x, s, λ)
B1(u1) B1(u2) B1(g)x

B2(u1) B2(u2) B2(g)x

∣∣∣∣∣∣
for x, s ∈ [0, 1]. The function g(x, s, λ) is defined as follows

(5) g(x, s, λ) = ± 1
2

u1(x)u2(s) − u1(s)u2(x)
u′

1 (s)u2(s) − u1(s)u′
2(s)

where it takes the plus sign for x > s and the minus sign for x < s.

Given an arbitrary δ ∈ (0, (π/2)), we consider the sector∑
δ

=
{
λ ∈ C : |arg(λ)| ≤ π

2
+ δ, λ �= 0

}
.

For λ ∈ ∑
δ, define ρ as the square root of λ with positive real part. For

λ �= 0, we can consider a fundamental system of solutions of equation
u′′ = λu = ρ2u given by u1(t) = e−ρt and u2(t) = eρt.

In the following we are going to deduce adequate formulae for Δ (λ)
and G (x, s; λ). First of all, for i, j = 1, 2, we have

Bi(uj) =
∫ 1

0

Ri(t)e(−1)jρt dt + (−1)jρ

∫ 1

0

Si(t)e(−1)jρt dt,

so we obtain from (3)

(6)

Δ(λ) =
(∫ 1

0

(R1(t) − ρS1(t))e−ρt dt

) (∫ 1

0

(R2(t) + ρS2(t))eρt dt

)

−
(∫ 1

0

(R1(t) + ρS1(t))eρt dt

) (∫ 1

0

(R2(t) − ρS2(t))e−ρt dt

)
,
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and g(x, s; λ) has the form

g(x, s; λ) =
{

1/4 ρ (eρ(x−s) − eρ(s−x)) if x > s,
1/4 ρ (eρ(s−x) − eρ(x−s)) if x < s.

Thus we have

Bi(g)

=
eρs

4ρ

(∫ s

0

(Ri(t) − ρSi(t))e−ρt dt +
∫ 1

s

(−Ri(t) + ρSi(t))e−ρtdt

)

+
e−ρs

4ρ

(
−

∫ s

0

(Ri(t) + ρSi(t))eρt dt +
∫ 1

s

(Ri(t) + ρSi(t))eρt dt

)
.

After a long calculation, formula (4) can be written as

(7) N(x, s; λ) = ϕ(x, s; λ) + ϕi(x, s; λ),

where
(8)

ϕ(x, s; λ)

=
eρ(x+s)

2ρ

[(∫ s

0

(R1(t) − ρS1(t))e−ρt dt

)(∫ 1

s

(R2(t) − ρS2(t))e−ρt dt

)
(∫ s

0

(R2(t) − ρS2(t))e−ρt dt

)(∫ 1

s

(R1(t) − ρS1(t))e−ρtdt

)]

+
e−ρ(x+s)

2ρ

[(∫ s

0

(R1(t)+ ρS1(t))eρt dt

)(∫ 1

s

(R2(t)+ ρS2(t))eρt dt

)

−
(∫ 1

s

(R1(t)+ ρS1(t))eρtdt

)(∫ s

0

(R1(t)+ ρS1(t))eρt dt

)]
,

and the function ϕi(x, s; λ) is given by

(9) ϕi(x, s; λ) =
{

ϕ1(x, s; λ) if x > s,
ϕ2(x, s; λ) if x < s,

,
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with
(10)

ϕ1(x, s; λ)

=
eρ(s−x)

2ρ

[(∫ 1

0

(R1(t) + ρS1(t))eρt dt

)(∫ s

0

(R2(t) − ρS2(t))e−ρt dt

)

−
(∫ 1

0

(R2(t) + ρS2(t))eρt dt

)(∫ s

0

(R1(t) − ρS1(t))e−ρtdt

)]

+
eρ(x−s)

2ρ

[(∫ 1

0

(R1(t)− ρS1(t))e−ρt dt

)(∫ s

0

(R2(t)+ ρS2(t))eρt dt

)

−
(∫ 1

0

(R2(t)− ρS2(t))e−ρt dt

)(∫ s

0

(R1(t)+ ρS1(t))eρt dt

)]
,

and
(11)

ϕ2(x, s; λ)

=
eρ(s−x)

2ρ

[(∫ 1

0

(R2(t) + ρS2(t))eρt dt

)(∫ 1

s

(R1(t) − ρS1(t))e−ρt dt

)

−
(∫ 1

0

(R1(t)+ ρS1(t))eρt dt

)(∫ 1

s

(R2(t)− ρS2(t))e−ρt dt

)]

+
eρ(x−s)

2ρ

[(∫ 1

s

(R1(t)+ ρS1(t))eρt dt

)(∫ 1

0

(R2(t)− ρS2(t))e−ρt dt

)

−
(∫ 1

0

(R1(t)− ρS1(t))e−ρt dt

)(∫ 1

s

(R2(t)+ ρS2(t))eρt dt

)]
.

3. Bounds on the resolvent. Every λ ∈ C such that Δ(λ) �= 0
belongs to ρ(L1), and the associated resolvent operator R(λ, L1) can
be expressed as a Hilbert-Schmidt operator

(12)

(λI − L1)
−1

f = R(λ : L1)f = −
∫ 1

0

G(. , s; λ)f(s) ds, f ∈ L1(0, 1).



898 M. DENCHE AND A. KOURTA

Then, for every f ∈ L1(0, 1) we estimate (12)

(13) ‖R(λ, L1)f‖L1(0,1) ≤
(

sup
0≤s≤1

∫ 1

0

|G(x, s; λ)| dx

)
‖f‖L1(0,1) ,

and so we need to bound

sup
0≤s≤1

∫ 1

0

|G(x, s; λ)| dx =
1

|Δ(λ)| sup
0≤s≤1

∫ 1

0

|N(x, s; λ)| dx.

3.1 Estimation of N (x, s, λ). We will denote by ‖.‖ the supremum
norm. From (7) and (8) it follows

∫ 1

0

|N(x, s; λ)| dx

=
∫ 1

0

|ϕi(x, s; λ)| dx +
eRe(ρ) − 1
|ρ| (Re(ρ))3

(‖R1‖ + |ρ| ‖S1‖)

× (‖R2‖ + |ρ| ‖S2‖)
(
esRe(ρ) − 1

) (
e−sRe(ρ) − e−Re(ρ)

)
+

1 − e−Re(ρ)

|ρ| (Re(ρ))3
(‖R1‖ + |ρ| ‖S1‖)

× (‖R2‖ + |ρ| ‖S2‖)
(
1 − e−sRe(ρ)

)(
eRe(ρ) − esRe(ρ)

)
.

Using (9) we write
∫ 1

0
|ϕi(x, s; λ)| dx as follows

∫ 1

0

|ϕi(x, s; λ)| dx =
∫ s

0

|ϕ2(x, s; λ)| dx +
∫ 1

s

|ϕ1(x, s; λ)| dx,

from (11), we have

∫ s

0

|ϕ2(x, s; λ)| dx

≤ 2
|ρ| (Re(ρ))3

(‖R1‖ + |ρ| ‖S1‖) (‖R2‖ + |ρ| ‖S2‖)

× (eRe(ρ) − e−Re(ρ) − esRe(ρ) + e−sRe(ρ) − e(1−s)Re(ρ) + e(s−1)Re(ρ)),
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and from (10), we have

∫ 1

s

|ϕ1(x, s; λ)| dx

≤ 2
|ρ| (Re(ρ))3

(‖R1‖ + |ρ| ‖S1‖) (‖R2‖ + |ρ| ‖S2‖)

× (eRe(ρ) − e−Re(ρ) − esRe(ρ) + e−sRe(ρ) − e(1−s)Re(ρ) + e(s−1)Re(ρ)).

From the previous inequalities we have

∫ 1

0

|N(x, s; λ)| dx

≤ 6
|ρ| (Re(ρ))3

(‖R1‖ + |ρ| ‖S1‖) (‖R2‖ + |ρ| ‖S2‖)

× (eRe(ρ) − e−Re(ρ) − esRe(ρ) + e−sRe(ρ) − e(1−s)Re(ρ) + e(s−1)Re(ρ)).

Since Re(ρ) > 0, and 0 ≤ s ≤ 1, then

sup
0≤s≤1

∫ 1

0

|N(x, s; λ)| dx

≤ 6eRe(ρ)

|ρ| (Re(ρ))3
(‖R1‖ + |ρ| ‖S1‖) (‖R2‖ + |ρ| ‖S2‖) .

Note that |arg ρ| < (δ/2) + (π/4), so Re(ρ) ≥ |ρ| cos((δ/2) + (π/4))
> 0, and so the following inequality holds

sup
0≤s≤1

∫ 1

0

|N(x, s; λ)| dx

≤ 6eRe(ρ)

|ρ|4 (cos((δ/2) + (π/4)))3
(‖R1‖ + |ρ| ‖S1‖) (‖R2‖ + |ρ| ‖S2‖) .

Then from (13), we obtain the following estimate

(14) ‖R(λ; L1)‖

≤ 6eRe(ρ)

(cos((δ/2)+(π/4)))3 |ρ|4 |Δ(λ)| (‖R1‖+|ρ| ‖S1‖) (‖R2‖+|ρ| ‖S2‖) .
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3.2 Estimation of the characteristic determinant. The next
step is to determine the cases for which |Δ(λ)| remains bounded below.
It will then be necessary to bound |Δ(λ)| appropriately. However,
formula (6) is not useful for this purpose, it will be then necessary to
make some additional regularity hypotheses on the functions Ri and
Si. We note that, in the regular case [12], the functions Ri and Si

are assumed only in C1 ([0, 1] ,C). In our case, we suppose that Ri,
Si ∈ C2 ([0, 1] ,C).

Integrating twice by parts in (6) to get

(15)

Δ(λ) = eρ

[(
S2(0)S1(1) − S1(0)S2(1)

)
+

1
ρ

(
R1(0)S2(1) − R2(0)S1(1)

+ S2(0)R1(1) − S1(0)R2(1) + S1(1)S′
2(0) − S′

1(1)S2(0)

+ S1(0)S′
2(1) − S2(1)S′

1(0)
)
+

1
ρ2

(
R1(0)R2(1)− R1(1)R2(0)

− R2(0)S′
1(1) − S2(0)R′

1(1) − R1(0)S′
2(1) + S1(0)R′

2(1)

− R2(1)S′
1(0) + S2(1)R′

1(0) + R1(1)S
′
2(0) − S1 (1)R′

2 (0)
)

+
1
ρ3

(
R2 (0)R′

1 (1) − R1 (0)R′
2 (1) + R2(1)R′

1(0)

− R1(1)R′
2(0)

)
+

Φ(ρ)
ρ2

]
,

where

Φ(ρ) =
(∫ 1

0

(R′
2(t) − ρS′

2(t))e
−ρ t dt

)(∫ 1

0

(R′
1(t) + ρS′

1(t))e
ρ (t−1) dt

)

−
(∫ 1

0

(R′
1(t) − ρS′

1(t))e
−ρ t dt

)(∫ 1

0

(R′
2(t) + ρS′

2(t))e
ρ (t−1) dt

)

+
1
ρ

{
(R2(0) − ρS2(0))

(∫ 1

0

(R′′
1 (t) + ρS′′

1 (t))eρ (t−1) dt

)

+ (R2(1) − ρS2(1))
(∫ 1

0

(R′′
1(t) + ρS′′

1 (t))eρ (t−2) dt

)

+ (R1(0) − ρS1(0))
(∫ 1

0

(R′′
2(t) + ρS′′

2 (t))eρ (t−1) dt

)



BOUNDARY VALUE PROBLEM 901

− (R1(1) − ρS1(1))
(∫ 1

0

(R′′
2(t) + ρS′′

2 (t))eρ (t−2) dt

)

+ (R2(1) + ρS2(1))
(∫ 1

0

(R′′
1(t) − ρS′′

1 (t))e−ρ t dt

)

− (R1(1) + ρS1(1))
(∫ 1

0

(R′′
2(t) − ρS′′

2 (t))e−ρ t dt

)

+ (R1(0) + ρS1(0))
(∫ 1

0

(R′′
2(t) − ρS′′

2 (t))e−ρ (t+1) dt

)

− (R2(0) + ρS2(0))
(∫ 1

0

(R′′
1(t) − ρS′′

1 (t))e−ρ (t+1) dt

)}

+ 2e−ρ

{
ρ
(
R2(1)S1(1) − R1(1)S2(1) + R1(0)S2(0)

− R2(0)S1(0) + S2(0)S′
1(0) − S1(0)S

′
2(0)

− S1(1)S′
2(1) + S′

1(1)S2(1)
)

+
1
ρ

(− R2(0)R′
1(0)

− R2(1)R
′
1(1) +R1(1)R′

2(1) +R1(0)R′
2(0)

)}

+ e−2ρ

{
1
ρ

[
(−R′

2(0)+ρS′
2(0)) (R1(1)−ρS1(1))+((R2(1)−ρS2(1))

× (R′
1(0)+ ρS′

1(0))+(R2(0)+ ρS2(0)) (R′
1(1)− ρS′

1(1))

− (R1(0) + ρS1(0)) (R′
2(1) − ρS′

2(1))
]

+ (R1(1) − ρS1(1))(R2(0) + ρS2(0))

− (R1(0) + ρS1(0))(R2(1) − ρS2(1))
}

.

After a straightforward calculation, we obtain the following inequality
valid for ρ, where ρ ∈ Σρ = {ρ ∈ C : |arg ρ| ≤ π/4 + δ/2, ρ �= 0},
0 < δ < π/2, with Re(ρ) sufficiently large.

|Φ(ρ)| ≤ 2
(cos((δ/2) + (π/4)))2

(
1
|ρ| ‖R

′
1‖ + ‖S′

1‖
)

×
(

1
|ρ| ‖R

′
2‖ + ‖S′

2‖
)

+
1

cos((δ/2) + (π/4))
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×
[(

1
|ρ| |R2(0)| + |S2(0)|

) (
1
|ρ| ‖R

′′
1‖ + ‖S′′

1 ‖
)(16)

+
(

1
|ρ| |R2(1)| + |S2(1)|

)(
1
|ρ| ‖R

′′
1‖ + ‖S′′

1 ‖
)

+
(

1
|ρ| |R1(0)| + |S1(0)|

)(
1
|ρ| ‖R

′′
2‖ + ‖S′′

2 ‖
)

+
(

1
|ρ| |R1(1)| + |S1(1)|

) (
1
|ρ| ‖R

′′
2‖ + ‖S′′

2 ‖
)]

+
2

(cos((δ/2) + (π/4)))2

[
1
|ρ|

∣∣R2(1)S1(1) − R1(1)S2(1)

+ R1(0)S2(0) − R2(0)S1(0) + S2(0)S′
1(0) − S1(0)S′

2(0)

−S1(1)S′
2(1) + S2(1)S′

1(1)
∣∣ +

1
||ρ|2

∣∣−R2(0)R′
1(0)

−R2(1)R′
1(1) + R1(1)R′

2(1) + R1(0)R′
2(0)

∣∣]

+
1

2(cos((δ/2) + (π/4)))2

×
[(

1
|ρ| ‖R

′
2‖ + ‖S′

2‖
) (

1
|ρ|2 ‖R1‖ +

1
|ρ| ‖S1‖

)

+
(

1
|ρ| ‖R

′
1‖ + ‖S′

1‖
) (

1
|ρ|2 ‖R2‖ +

1
|ρ| ‖S2‖

)

+
(

1
|ρ| ‖R2‖ + ‖S2‖

) (
1
|ρ| ‖R1‖ + ‖S1‖

)]
,

where we have used that Re(ρ) ≥ |ρ| cos((δ/2) + (π/4)), (1− e−2Re(ρ))
≤ 1,

e−Re(ρ) ≤ 2
|ρ|2 (cos((δ/2) + (π/4)))2

and

e−2Re(ρ) ≤ 1
2 |ρ|2 (cos((δ/2) + (π/4)))2

.

Then for |ρ| ≥ r0 we have |Φ(ρ)| ≤ C (r0).
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There are several cases to analyze depending on the functions Ri and
Si.

Case 1. Suppose that ‖S1‖ �= 0, ‖S2‖ �= 0, |S2(0)S1(1) − S1(0)S2(1)|
= 0 and

R1(0)S2(1) − R2(0)S1(1) + S2(0)R1(1) − S1(0)R2(1)
+ S1(1)S′

2(0) − S2(0)S′
1(1) + S1(0)S′

2(1) − S2(1)S′
1(0) = K1 �= 0.

In this from (15), we have for |ρ| sufficiently large

|Δ(λ)| ≥ eRe(ρ)

[
1
|ρ|

∣∣S2(1)R1(0) − S1(1)R2(0)

+ S2(0)R1(1) − S1(0)R2(1) + S1(1)S′
2(0)

−S2(0)S′
1(1) + S1(0)S′

2(1) − S2(1)S′
1(0)

∣∣
− 1

|ρ|2
∣∣R1(0)R2(1) − R2(0)R1(1)

+ R2(0)S′
1(1) − S2(0)R′

1(1) − R1(0)S′
2(1)

+ S1(0)R′
2(1) − R2(1)S′

1(0) + S2(1)R′
1(0)

+ R1(1)S′
2(0) − S1(1)R′

2(0) − S1(0)R′
2(0)

∣∣
− 1

|ρ|3
∣∣R2(0)R′

1(1) − R1(0)R′
2(1)

+ R2(1)R′
1(0) − R1(1)R′

2(0)
∣∣ − |Φ(ρ)|

|ρ|2
]
.

Take Re(ρ) > r0, where r0 > 0, using (16), we get

|Δ(λ)| ≥ eRe(ρ)

|ρ|
[ ∣∣S2(1)R1(0) − S1(1)R2(0) + S2(0)R1(1)

− S1(0)R2(1) + S1(1)S′
2(0) − S2(0)S′

1(1)
+ S1(0)S′

2(1) − S2(1)S′
1(0)

∣∣
− 1

r0

∣∣R1(0)R2(1) − R2(0)R1(1) + R2(0)S′
1(1)

− S2(0)R′
1(1) − R1(0)S′

2(1) + S1(0)R′
2(1)

− R2(1)S′
1(0) + S2(1)R′

1(0) + R1(1)S
′
2(0)

− S1(1)R′
2(0) − S1(0)R′

2(0)
∣∣
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− 1
r2
0

∣∣R2(0)R′
1(1) − R1(0)R′

2(1)

+ R2(1)R′
1(0) − R1(1)R′

2(0)
∣∣ − C (r0)

r0

]
.

We can now choose r0 > 0 such that

1
r0

∣∣R1(0)R2(1) − R2(0)R1(1) + R2(0)S′
1(1) − S2(0)R′

1(1)

− R1(0)S′
2(1) + S1(0)R′

2(1) − S2(0)R′
1(1) − S2(0)R′

1(1)
+ S2(1)R′

1(0) + R1(1)S′
2(0) − S1(1)R′

2(0) − S1(1)R′
2(0)

∣∣
+

1
r2
0

∣∣R2(0)R′
1(1) − R1(0)R′

2(1) + R2(1)R′
1(0) − R1(1)R′

2(0)
∣∣

+
C(r0)

r0
≤ 1

2
|K1|,

then, for Re(ρ) > r0, we have

(17) |Δ(λ)| ≥ eRe(ρ)

2 |ρ| |K1| .

From (14) we deduce the following bound, valid for every Re(ρ) > r0

with |arg ρ| ≤ (π/4) + (δ/2)

‖R(λ, L1)‖
≤ 1

|ρ|
[

12
|K1| (cos((δ/2) + (π/4)))2

(‖R1‖
|ρ| + ‖S1‖

)(‖R2‖
|ρ| + ‖S2‖

)]
.

This proves for |ρ| → ∞, that

‖R(λ, L1)‖ ≤ C

|λ|1/2
.

where C = 12 ‖S1‖ ‖S2‖/|K1| (cos((δ/2) + (π/4)))2.

Case 2. Suppose that ‖S1‖ = 0, ‖S2‖ �= 0 and R1(0)S2(1) +
R1(1)S2(0) = 0 with

R1(0)R2(1) − R2(0)R1(1) − S2(0)R′
1(1)

− R1(0)S′
2(1) + R′

1(0)S2(1) + R1(1)S′
2(0) = K2 �= 0,
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we have the following bound, valid for Re(ρ) > r0 and |arg ρ| ≤
(π/4) + (δ/2)

‖R(λ, L1)‖ ≤ 1
|ρ|

[
12 ‖R1‖

|K2| (cos((δ/2) + (π/4)))2

(‖R2‖
|ρ| + ‖S2‖

)]
.

Then, we have

‖R(λ, L1)‖ ≤ C

|λ|1/2
,

as |ρ| → ∞, where C = 12 ‖R1‖ ‖S2‖/|K2| (cos((δ/2) + (π/4)))2.

Case 3. Suppose that ‖S1‖ �= 0, ‖S2‖ = 0, R2(0)S1(1)+R2(1)S1(0) =
0 and

R1(0)R2(1) − R2(0)R1(1) + R2(0)S′
1(1)

+ S1(0)R′
2(1) − R2(1)S′

1(0) − S1(1)R′
2(0) = K3 �= 0.

Similarly, we get

‖R(λ, L1)‖ ≤ 1
|ρ|

[
12 ‖R2‖

|K3| (cos((δ/2) + (π/4)))2

(‖R1‖
|ρ| + ‖S1‖

)]
,

then, we have

‖R(λ, L1)‖ ≤ C

|λ| 12
,

as |ρ| → ∞, where C = 12 ‖R2‖ ‖S1‖/|K3| (cos((δ/2) + (π/4)))2.

Case 4. ‖S1‖ = ‖S2‖ = 0, ‖R1‖ ‖R2‖ �= 0, R1(0)R2(1)−R1(1)R2(0)
= 0 and

R2(0)R′
1(1) − R1(0)R′

2(1) + R2(1)R′
1(0) − R1(1)R′

2(0) = K4 �= 0.

Again in this case, we have

‖R(λ, L1)‖ ≤ 1
|ρ|

[
12 ‖R2‖ ‖R1‖

|K4| (cos((δ/2) + (π/4)))2

]
,
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then
‖R(λ, L1)‖ ≤ C

|λ|1/2
,

as |ρ| → ∞, where C =
[
12 ‖R2‖ ‖R1‖/|K4| (cos((δ/2) + (π/4)))2

]
.

Definition 1. The boundary value conditions in (1) are called
nonregular if the functions Ri, Si ∈ C2 ([0, 1] ,C), i = 1, 2, and if and
only if one of the following conditions holds:

1. S2(0)S1(1) − S1(0)S2(1) = 0, ‖S1‖ . ‖S2‖ �= 0 and

R1(0)S2(1) − R2(0)S1(1) + S2(0)R1(1) − S1(0)R2(1)
+ S1(1)S′

2(0) − S2(0)S′
1(1) + S1(0)S′

2(1) − S2(1)S′
1(0) �= 0

2. ‖S1‖ = 0, ‖S2‖ �= 0, R1(0)S2(1) + R1(1)S2(0) = 0 with

R1(0)R2(1) − R2(0)R1(1) − S2(0)R′
1(1)

− R1(0)S′
2(1) + R′

1(0)S2(1) + R1(1)S′
2(0) �= 0

3. ‖S2‖ = 0, ‖S1‖ �= 0, R2(0)S1(1) + R2(1)S1(0) = 0 with

R1(0)R2(1) − R2(0)R1(1) + R2(0)S′
1(1)

+ S1(0)R′
2(1) − R2(1)S′

1(0) − S1(1)R′
2(0) �= 0

4. ‖S1‖ . ‖S2‖ = 0, ‖R1‖ . ‖R2‖ �= 0, R1(0)R2(1) − R1(1)R2(0) = 0
with

R2(0)R′
1(1) − R1(0)R′

2(1) + R2(1)R′
1(0) − R1(1)R′

2(0) �= 0.

This proves the following theorem.

Theorem 1. If the boundary value conditions in (1) are nonregular,
then Σδ ⊂ ρ(L1) for sufficiently large |λ|, and there exists C > 0 such
that

‖R(λ, L1)‖ ≤ C

|λ|1/2
, |λ| → ∞.
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Remark 1. From Theorem 1 results that the operator L1 generates
an analytic semi-groups with singularities [27] of type A(1, 3).

3.3 Application. In the following, we apply the above obtained
results to the study of a class of mixed problem for a parabolic equation
with weighted integral boundary conditions of the form
(18)⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u(t, x)
∂t

− a
∂2u(t, x)

∂x2
= f(t, x)

Li(u) =
∫ 1

0

Ri(ξ) u(t, ξ) dξ +
∫ 1

0

Si(ξ) u′(t, ξ) dξ = 0, i = 1, 2,

u(0, x) = u0(x),

where (t, ξ) ∈ [0, T ] × [0, 1].

Boundary value problems for parabolic equations with integral bound-
ary conditions are studied by [1, 3, 5, 6, 15 18, 37] using various
methods. For instance, the potential method in [3] and [18], Fourier
method in [1, 15 17] and the energy inequalities method has been used
in [5, 6, 37]. In our case, we apply the method of operator differential
equation. The study of the problem is then reduced to a Cauchy prob-
lem for a parabolic abstract differential equation, where the operator
coefficients has been previously studied.

For this purpose, let E, E1, and E2 be Banach spaces. Introduce two
Banach spaces

Cμ ((0, T ] , E) =

{
f/f ∈ C ((0, T ] , E) , ‖f‖ = sup

t∈(0,T ]

‖tμf(t)‖ < ∞
}

,

μ ≥ 0;

Cγ
μ ((0, T ] , E) =

{
f/f ∈ C ((0, T ] , E) , ‖f‖ = sup

t∈(0,T ]

‖tμf(t)‖

+ sup
0<t<t+h≤T

‖f(t + h) − f(t)‖h−γtμ < ∞
}

,

μ ≥ 0, γ ∈ (0, 1] ;
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and a linear space

C1 ((0, T ] , E1, E2) =
{
f/f ∈ C ((0, T ] , E1) ∩ C1 ((0, T ] , E2)

}
,

E1 ⊂ E2,

where C ((0, T ] , E) and C1 ((0, T ] , E) are spaces of continuous and
continuously differentiable, respectively, vector-function from (0, T ]
into E. We denote, for a linear operator A in a Banach space E,
by

E(A) =
{

u/u ∈ D(A), ‖u‖E(A) =
(
‖Au‖2 + ‖u‖2

)1/2
}

,

and

C1 ((0, T ] , E(A), E) = {f/f ∈ C ((0, T ] , E(A)) , f ′ ∈ C ((0, T ] , E))} .

Let us derive a theorem which was proved by various methods in [27]
and [33, 34]. Consider, in a Banach space E, the Cauchy problem

(19)
{

u′(t) = Au(t) + f(t) t ∈ [0, T ],
u(0) = u0,

where A is, generally speaking, unbounded linear operator in E, u0

is a given element of E, f(t) is a given vector-function and u(t) is an
unknown vector-function in E.

Theorem 2. Let the following conditions be satisfied:

1. A is a closed linear operator in a Banach space E and for some
β ∈ (0, 1], α > 0

‖R (λ, A)‖ ≤ C |λ|−β
, |arg λ| ≤ π

2
+ α, |λ| → ∞;

2. f ∈ Cγ
μ ((0, T ] , E) for some γ ∈ (1 − β, 1] , μ ∈ [0, β);

3. u0 ∈ D(A).

Then, the Cauchy problem (19) has a unique solution

u ∈ C ([0, T ] , E) ∩ C1 ((0, T ] , E(A), E)



BOUNDARY VALUE PROBLEM 909

and for the solution u the following estimates hold

‖u(t)‖ ≤ C
(
‖Au0‖ + ‖u0‖ + ‖f‖Cμ((0,t],E)

)
, t ∈ (0, T ] ,

‖u′(t)‖ + ‖Au(t)‖ ≤ C
(
tβ−1 (‖Au0‖ + ‖u0‖] + tβ−μ−1 ‖f‖Cγ

μ ((0,t],E)

)
,

t ∈ (0, T ] .

As a result of this, we get the following theorem.

Theorem 3. Let the following conditions be satisfied:

1. a �= 0, |arg a| < π/2,

2. The functions Ri(t), Si(t) ∈ C2 ([0, 1] ,C), i = 1, 2, and one
of the following conditions are satisfied |S2(0)S1(1) − S1(0)S2(1)| = 0,
‖S1‖ . ‖S2‖ �= 0 and

R1(0)S2(1) − R2(0)S1(1) + S2(0)R1(1) − S1(0)R2(1)
+ S1(1)S′

2(0) − S2(0)S′
1(1) + S1(0)S′

2(1) − S2(1)S′
1(0) �= 0,

or R1(0)S2(1) + R1(1)S2(0) = 0 with ‖S1‖ = 0, ‖S2‖ �= 0 and

R1(0)R2(1) − R2(0)R1(1) − S2(0)R′
1(1)

− R1(0)S′
2(1) + R′

1(0)S2(1) + R1(1)S′
2(0) �= 0,

or R2(0)S1(1) + R2(1)S1(0) = 0 with ‖S2‖ = 0, ‖S1‖ �= 0 and

R1(0)R2(1) − R2(0)R1(1) + R2(0)S′
1(1)

+ S1(0)R′
2(1) − R2(1)S′

1(0) − S1(1)R′
2(0) �= 0

or R1(0)R2(1)−R1(1)R2(0) = 0 with ‖S1‖ = ‖S2‖ = 0, ‖R1‖ . ‖R2‖ �=
0 and

R2(0)R′
1(1) − R1(0)R′

2(1) + R2(1)R′
1(0) − R1(1)R′

2(0) �= 0.

3. f ∈ Cγ
μ

(
(0, T ] , L1(0, 1)

)
for some γ ∈ ((1/2), 1] and some

μ ∈ [0, (1/2)),
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4. u0 ∈ W 2
1

(
(0, 1) , Liu = 0, i = 1, 2

)
.

Then, the problem (18) has a unique solution

u ∈ C
(
(0, T ] , L1(0, 1)

) ∩ C1
(
(0, T ] , W 2

1 (0, 1), L1(0, 1)
)

and, for this solution, we have the estimates

(20) ‖u(t, .)‖L1(0,1) ≤ c
(
‖u0‖W 2

1 (0,1) + ‖f‖Cμ((0,t],L1(0,1))

)
,

t ∈ (0, T ] ,

(21) ‖u′′(t, .)‖L1(0,1) + ‖u′(t, .)‖L1(0,1)

≤ c
(
t−1/2 ‖u0‖W 2

1 (0,1) + t−(1/2)−μ ‖f‖Cγ
μ((0,t],L1(0,1))

)
,

t ∈ (0, T ] .

Proof. We consider in the space L1(0, 1), the operator A defined by
A(u) = au′′(x), D(A) =

{
u ∈ W 2

1 (0, 1), Li(u) = 0, i = 1, 2
}
.

Then, problem (18) can be written as

{
u′(t) = Au(t) + f(t)
u(0) = u0,

where u(t) = u(t, .), f(t) = f(t, .) and u0 = u0(.) are functions with
values in the Banach space L1(0, 1). From Theorem 1, we conclude
that

‖R(λ, A)‖ ≤ c |λ|−1/2
, for |arg λ| ≤ π

2
+ α, as |λ| → ∞.

Then, from Theorem 2, the problem (18) has a unique solution
u ∈ C

(
(0, T ] , L1(0, 1)

) ∩ C1
(
(0, T ] , W 2

1 (0, 1), L1(0, 1)
)

and we have
the following estimates

(22)

‖u(t, .)‖L1(0,1) ≤ c
(
‖Au0‖L1(0,1) + ‖u0‖L1(0,1) + ‖f‖Cμ((0,t],L1(0,1))

)
,
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(23)
‖u′(t, .)‖ + ‖Au(t, .)‖ ≤ c

(
t−1/2

( ‖Au0‖L1(0,1) + ‖u0‖L1(0,1)

)
+ t−(1/2)−μ ‖f‖Cγ

μ((0,t],L1(0,1))

)
,

where t ∈ (0, T ]. From (22) we get

‖u(t, .)‖L1(0,1) ≤ c
(
‖u′′

0‖L1(0,1) + ‖u0‖L1(0,1) + ‖f‖Cμ((0,t],L1(0,1))

)
≤ c

(
‖u0‖W 2

1 (0,1) + ‖f‖Cμ((0,t],L1(0,1))

)
, t ∈ (0, T ] ,

and from (23) we get

‖u′′(t, .)‖L1(0,1) + ‖u′(t, .)‖L1(0,1)

≤ c
(
t−1/2

(
‖u′′

0‖L1(0,1) + ‖u0‖L1(0,1)

)
+ t−(1/2)−μ ‖f‖Cγ

μ((0,t],L1(0,1))

)
≤ c

(
t−1/2 ‖u0‖W 2

1 (0,1) + t−(1/2)−μ ‖f‖Cγ
μ((0,t],L1(0,1))

)
, t ∈ (0, T ] ,

which gives the desired result.
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