UNITARY GROUPS ACTING ON GRASSMANNIANS ASSOCIATED WITH A QUADRATIC EXTENSION OF FIELDS

CLAUDIO G. BARTOLONE AND M. ALESSANDRA VACCARO

Abstract

Let (V, H) be an anisotropic Hermitian space of finite dimension over the algebraic closure of a real closed field K. We determine the orbits of the group of isometries of (V, H) in the set of K-subspaces of V.

Throughout the paper K denotes a real closed field and \bar{K} its algebraic closure. Then it is well known (see, for example, [4, Chapter 2], $[\mathbf{2 3}]$; see also $[\mathbf{8}])$ that $\bar{K}=K(i)$ with $i=\sqrt{-1}$. Also we let (V, H) be an anisotropic Hermitian space (with respect to the involution underlying the quadratic field extension \bar{K} / K) of finite dimension n over \bar{K}. In this context we consider the natural action of the unitary group $U=U(V, H)$ of isometries of (V, H) on the set X_{d} of all d dimensional K-subspaces of V. The analogous problem where (V, H) is a symplectic space was treated in [1] (for arbitrary quadratic field extensions). It turns out that, in contrast with the symplectic case, there are infinitely many orbits for the action of the unitary group U on X_{d}.

In group theoretic language the stated problem turns into the determination of the double coset spaces of the form

$$
\begin{equation*}
G_{W} \backslash G / U \tag{1}
\end{equation*}
$$

where $G=\mathrm{GL}\left(V_{K}\right)$ and G_{W} denotes the parabolic subgroup of G stabilizing a member $W \in X_{d}$ (we write V_{K} to indicate that we are regarding V as a vector space over K). The precise structure of double coset spaces involving classical groups is of great interest in applying the classical Rankin-Selberg method for explicit construction of automorphic L-functions, as Garrett [2] and Piatetski-Shapiro and Rallis [6] worked out.

[^0]Besides $G=\mathrm{GL}\left(V_{K}\right)$, there are further possibilities for the group G in (1), because U embeds into other classical groups over K. For instance, we have

$$
\begin{equation*}
H(x, y)=S(x, y)+i A(x, y) \tag{2}
\end{equation*}
$$

for suitable K-bilinear forms S and A with S (anisotropic) symmetric and A alternating. Moreover, for any $\gamma \in U$ we have

$$
S(\gamma(x), \gamma(y))+i A(\gamma(x), \gamma(y))=S(x, y)+i A(x, y)
$$

which means that U embeds into the orthogonal group $O\left(V_{K}, S\right)$ of isometries of $\left(V_{K}, S\right)$, as well as into the symplectic group $\operatorname{Sp}\left(V_{K}, A\right)$ of isometries of $\left(V_{K}, A\right)$. Therefore in (1) we can take $G=O\left(V_{K}, S\right)$, or $G=\mathrm{Sp}\left(V_{K}, A\right)$. As $O\left(V_{K}, S\right)$ is transitive on X_{d}, double coset spaces (1) with $G=O\left(V_{K}, S\right)$ are essentially the same as with $G=\operatorname{GL}\left(V_{K}\right)$. The situation is different when $G=\operatorname{Sp}\left(V_{K}, A\right)$: if A restricts to $W \in X_{d}$ with rank r, the double coset space $G_{W} \backslash G / U$ corresponds to the action of U on the set $X_{d, r}$ of all d-dimensional K-subspaces on which A induces an alternating form of rank r. In this framework it has to be emphasized the fact that U has infinitely many orbits in $X_{d, r}$ for $r>0$ and it is transitive on $X_{d, 0}$, i.e., on the set of d-dimensional A-totally isotropic K-subspaces of V.
I. The set of anisotropic Hermitian forms on V maps bijectively onto a set of anisotropic bilinear forms on V_{K} via

$$
\begin{align*}
H \longmapsto B & =S+A, \\
B \longmapsto H & =\frac{1}{2}\left[\left(B+{ }^{t} B\right)+i\left(B-{ }^{t} B\right)\right], \tag{3}
\end{align*}
$$

where S and A are defined as in (2) and ${ }^{t} B(x, y)$ means $B(y, x)$.
The bilinear form B associated to H, in the sense of (3), plays a fundamental role in this context. It turns out that the orthogonality in (V, H) is essentially the same as in $\left(V_{K}, B\right)$. Indeed we have

1. Proposition. $H(x, y)=0$ if and only if $B(x, y)=0$ and $B(y, x)=0$.

Proof. Let $H(x, y)=S(x, y)+i A(x, y)=0$. Then

$$
S(x, y)=S(y, x)=0=A(x, y)=A(y, x)
$$

and consequently

$$
B(x, y)=S(x, y)+A(x, y)=0=S(y, x)+A(y, x)=B(y, x)
$$

Conversely, if $B(x, y)=B(y, x)=0$, then $H(x, y)=0$ follows from (3).
\square

Let W be a K-subspace of V, and let $W=W_{1} \oplus W_{2}$ be a decomposition of W into the direct sum of two nontrivial subspaces. We shall write

$$
W=W_{1} \perp_{H} W_{2} \quad\left(\text { resp. } W=W_{1} \perp_{B} W_{2}\right)
$$

if $H\left(W_{1}, W_{2}\right)=0$ (respectively $\left.B\left(W_{1}, W_{2}\right)=B\left(W_{2}, W_{1}\right)=0\right)$. Thanks to Proposition 1, we have then

$$
\begin{equation*}
W=W_{1} \perp_{H} W_{2} \Longleftrightarrow W=W_{1} \perp_{B} W_{2} \tag{4}
\end{equation*}
$$

so it is superfluous to specify the form with respect to which the orthogonality occurs.

As B is anisotropic, B induces on any K-subspace W of V a nondegenerate K-bilinear form B_{W} :

$$
B_{W}(x, y)=B(x, y) \quad \forall x, y \in W
$$

So there exists a (unique) linear mapping $\sigma_{W} \in \mathrm{GL}(W)$ (the asymmetry of $\left.B_{W}\right)$ such that

$$
\left.B_{W}(x, y)=B_{W}\left(y, \sigma_{W}(x)\right)\right) \quad \forall x, y \in W
$$

Then $B_{W}(x, y)=B_{W}\left(\sigma_{W}(x), \sigma_{W}(y)\right), B_{W}\left(\sigma_{W}(x), y\right)=B_{W}\left(x, \sigma_{W}^{-1}(y)\right)$ and, more generally for every polynomial $p \in K[x]$,

$$
\begin{equation*}
B_{W}\left(p\left(\sigma_{W}\right)(x), y\right)=B_{W}\left(x, p\left(\sigma_{W}^{-1}\right)(y)\right)=B_{W}\left(x, \sigma_{W}^{-\operatorname{deg}(p)} p^{*}\left(\sigma_{W}\right)(y)\right) \tag{5}
\end{equation*}
$$

where p^{*} denotes the adjoint polynomial of p, that is, the polynomial

$$
p^{*}(x):=x^{\operatorname{deg}(p)} p\left(x^{-1}\right)
$$

Riehm in [7] pointed out the importance of the asymmetry σ_{W} for the K-bilinear space $\left(W, B_{W}\right)$. In fact, orthogonal decompositions in W correspond to decompositions into $K\left[\sigma_{W}\right]$-submodules, as the following proposition states.
2. Proposition. Let $W=W_{1} \oplus W_{2}$ be a decomposition of the K subspace W into the direct sum of two K-subspaces with $B\left(W_{1}, W_{2}\right)=$ 0 . Then $W=W_{1} \perp W_{2}$ if and only if W_{1}, as well as W_{2}, is a $K\left[\sigma_{W}\right]$ submodule.

> Proof. [7, p. 47].
II. In view of the foregoing section, if we want to determine the U orbit of a given K-subspace W of V, we can apply the Krull-Schmidt theorem to the $K\left[\sigma_{W}\right]$-module W and reduce matters to the case where such a module is indecomposable (see [3, p. 115]). This corresponds to say that $\left(W, B_{W}\right)$ is an indecomposable K-bilinear space, i.e., it has no orthogonal decomposition such as (4).

We have
3. Proposition. Let $\left(W, B_{W}\right)$ be indecomposable. Then, one of the following occurs:
a) W is a \bar{K}-line;
b) W is a K-substructure (i.e., a K-subspace generated by \bar{K}-linearly independent vectors).

Proof. In fact, let C be the largest \bar{K}-subspace of V contained in W (the \bar{K}-component of W), and let C^{\perp} be the subspace of V orthogonal to the whole C. Then $V=C \perp C^{\perp}$ and we have the decomposition $W=C \perp\left(C^{\perp} \cap W\right)$. Hence, either C is trivial, i.e., W is a K substructure, or $C=W$, and we have a line of V because a \bar{K}-subspace of V always possesses an orthogonal basis.

As K is really closed, to be anistropic for the Hermitian form H means that H is either definite positive, i.e., $H(x, x)$ is a nonzero square in K (for any $x \in V, x \neq 0$), or definite negative, i.e., $H(x, x)$ is the opposite
of a nonzero square in K. This implies that in every one-dimensional \bar{K}-subspace, as well as in every one-dimensional K-subspace, there is always a vector v with $H(v, v)=1$ (in the definite positive case), or $H(v, v)=-1$ (in the definite negative case), i.e., there is always a vector of H-norm $\varepsilon= \pm 1$. Therefore we have
4. Proposition. The lines over \bar{K} form a unique orbit for the action of U and the same occurs for the lines over K.

Thus we have reduced matters to the determination of the U-orbit of an indecomposable K-substructure W of dimension >1. The next proposition claims that it is the same if we determine the orbit of W for the action of the group of isometries of $\left(V_{K}, B\right)$.
5. Proposition. Let W and W^{\prime} be K-substructures of V. There exists an element in U mapping W onto W^{\prime} if and only if there exists an isometry of $\left(V_{K}, B\right)$ mapping W onto W^{\prime}.

Proof. Assume there exists an isometry of $\left(V_{K}, B\right)$ mapping the K substructure W onto the K-substructure W^{\prime}. Then there exist bases $\left(e_{1}, \ldots, e_{d}\right)$ of W and $\left(e_{1}^{\prime}, \ldots, e_{d}^{\prime}\right)$ of W^{\prime} with respect to which B has the same representation in both W and W^{\prime}. This means that, with respect to the above bases, the Hermitian form $H\left(=1 / 2\left[\left(B+{ }^{t} B\right)+i\left(B-{ }^{t} B\right)\right]\right)$ has the same representation in both the \bar{K}-vector spaces $\bar{K} W$ and $\bar{K} W^{\prime}$ generated by W and W^{\prime}. Hence,

$$
\sum_{i=1}^{d} \lambda_{i} e_{i} \longmapsto \sum_{i=1}^{d} \lambda_{i} e_{i}^{\prime} \quad\left(\lambda_{i} \in \bar{K}\right)
$$

defines an isometry $(\bar{K} W, H) \rightarrow\left(\bar{K} W^{\prime}, H\right)$ which extends, by Witt's theorem, to an isometry $(V, H) \rightarrow(V, H)$ mapping W onto W^{\prime}.

The converse part follows from the fact that an isometry $\varphi \in U$ satisfies the condition

$$
S(\varphi(x), \varphi(y))+i A(\varphi(x), \varphi(y))=S(x, y)+i A(x, y)
$$

giving in turn $S(\varphi(x), \varphi(y))=S(x, y)$ and $A(\varphi(x), \varphi(y))=A(x, y)$. Hence, φ preserves $B=S+A$, i.e., φ is an isometry of $\left(V_{K}, B\right)$.
III. It turns out from Sections I and II that we have to classify the K-bilinear spaces $\left(W, B_{W}\right)$ with W an indecomposable K-substructure of dimension >1. A fundamental result in this direction is
6. Proposition. The asymmetry σ_{W} of B_{W} has minimal polynomial $x^{2}-2 b x+1$ for a suitable element $b \in K$ such that $1-b^{2} \in K^{2}$, $b \neq \pm 1$.

Proof. By [7 Proposition 3], W decomposes orthogonally if the minimal polynomial of σ_{W} has two distinct prime divisors p and p^{\prime} with p^{\prime} and p^{*} relatively prime. Thus, if for each irreducible monic polynomial $p \in K[x]$ we denote by W_{p} the p-primary component of W, which is the subspace

$$
W_{p}=\left\{w \in W: p^{s}\left(\sigma_{W}\right)(w)=0 \text { for some } s \geq 0\right\}
$$

just two cases can occur [7, p. 48]:
a) $W=W_{p}$ for some irreducible monic $p \in K[x]$ such that $p= \pm p^{*}$, and in such a case the minimal polynomial of σ_{W} is a power p^{r};
b) $W=W_{p} \oplus W_{p^{*}}$ for some irreducible monic $p \in K[x]$ such that $p \neq \pm p^{*}$, and in such a case the minimal polynomial of σ_{W} is a product $c p^{r} p^{* s}$ for a suitable $c \in K, c \neq 0$.
First we shall prove that case b) cannot occur because it requires both W_{p} and $W_{p^{*}}$ to be totally isotropic. This can be shown as follows.

Using (5), for all $x, y \in W$ we infer

$$
\begin{aligned}
B\left(p^{* r}\left(\sigma_{W}\right)(x), p^{* s}\left(\sigma_{W}\right)(y)\right) & =B\left(x, \sigma_{W}^{-r \operatorname{deg}(p)} p^{r} p^{* s}\left(\sigma_{W}\right)(y)\right) \\
& =B\left(x, \sigma_{W}^{-r \operatorname{deg}(p)}(0)\right)=0
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
B\left(p^{* r}\left(\sigma_{W}\right)(x), p^{* s}\left(\sigma_{W}\right)(y)\right) & =B\left(p^{* s}\left(\sigma_{W}\right)(y), \sigma_{W} p^{* r}\left(\sigma_{W}\right)(x)\right) \\
& =B\left(y, \sigma_{W}^{1-s \operatorname{deg}(p)} p^{s} p^{* r}\left(\sigma_{W}\right)(x)\right)
\end{aligned}
$$

Hence, the endomorphism $p^{s} p^{* r}\left(\sigma_{W}\right)$ maps every vector to 0 , which means that $p^{s} p^{* r}$ is the minimal polynomial of σ_{W} and this occurs if
and only if $r=s$. Thus, $W_{p}=p^{* r}\left(\sigma_{W}\right)(W)$ and $W_{p^{*}}=p^{r}\left(\sigma_{W}\right)(W)$. Consequently, for all $x, y \in W$, we have

$$
B\left(p^{* r}\left(\sigma_{W}\right)(x), p^{* r}\left(\sigma_{W}\right)(y)\right)=B\left(x, \sigma_{W}^{-r \operatorname{deg}(p)} p^{r} p^{* r}\left(\sigma_{W}\right)(y)\right)=0
$$

and we see that W_{p} is totally isotropic. Likewise, $B\left(W_{p^{*}}, W_{p^{*}}\right)=0$.
Therefore, we are in case a). Assume now there exists a nonzero vector $w \in W$ such that $\sigma_{W}(w)=\lambda w$ for some $\lambda \in K(\lambda \neq 0$ because $\sigma_{W} \in \mathrm{GL}(W)$) and let $W_{1} \subset W$ with $B\left(W_{1}, w\right)=0$ (hence $W=\langle w\rangle \oplus W_{1}, w$ being anisotropic). Then we have

$$
B\left(w, W_{1}\right)=B\left(W_{1}, \sigma_{W}(w)\right)=\lambda B\left(W_{1}, w\right)=0
$$

i.e., an orthogonal decomposition of W occurs.

Thus, as K is real closed, we have $p^{*}(x)=p(x)=x^{2}-2 b x+1$ for a suitable element $b \in K$ such that $1-b^{2} \in K^{2}, b \neq \pm 1$ [4, p. 337].

Choose now a vector v such that $p^{r-1}\left(\sigma_{W}\right)(v) \neq 0$. Then using (5) we have
$0 \neq B\left(p^{r-1}\left(\sigma_{W}\right)(v), p^{r-1}\left(\sigma_{W}\right)(v)\right)=B\left(v, \sigma_{W}^{(1-r) \operatorname{deg}(p)} p^{2 r-2}\left(\sigma_{W}\right)(v)\right)$,
which means $2 r-2<r$, or $r=1$.

Now we are able to determine definitively the dimension of an indecomposable K-substructure:
7. Proposition. An indecomposable K-substructure has dimension ≤ 2.

Proof. In view of Proposition 2, the claim is an immediate consequence of Proposition 6.

Thanks to Propositions 6 and 7 , if we are given an indecomposable K-bilinear space $\left(W, B_{W}\right)$ with W a K-substructure of dimension >1, then $\operatorname{dim}_{K} W=2$ and the asymmetry σ_{W} of B_{W} has a representation of shape

$$
\left(\begin{array}{cc}
b & \sqrt{1-b^{2}} \\
-\sqrt{1-b^{2}} & b
\end{array}\right)
$$

for a suitable element $b \in K$ such that $1-b^{2} \in K^{2}, b \neq \pm 1$. Let $\left(e_{1}, e_{2}\right)$ be a basis of W giving the above representation of σ_{W} and put

$$
a:=B\left(e_{1}, e_{1}\right)
$$

Then

$$
B\left(e_{1}, e_{1}\right)=B\left(e_{1}, \sigma_{W}\left(e_{1}\right)\right)=b B\left(e_{1}, e_{1}\right)+\sqrt{1-b^{2}} B\left(e_{1}, e_{2}\right)
$$

that is

$$
B\left(e_{1}, e_{2}\right)=a \sqrt{\frac{1-b}{1+b}}
$$

Likewise we find

$$
B\left(e_{2}, e_{1}\right)=-a \sqrt{\frac{1-b}{1+b}} \quad \text { and } \quad B\left(e_{2}, e_{2}\right)=a
$$

Now

$$
\begin{align*}
& b \longmapsto k=\sqrt{\frac{1-b}{1+b}} \tag{6}\\
& k \longmapsto b=\frac{1-k^{2}}{1+k^{2}}
\end{align*}
$$

is a bijective mapping from the set of elements $b \in K$ with $1-b^{2}$ a nonzero square onto the set of nonzero squares $k \in K^{2}$. Thus, with respect to the basis $\left(e_{1}, e_{2}\right), B_{W}$ has the representation

$$
\left(\begin{array}{cc}
a & a k \\
-a k & a
\end{array}\right)
$$

for some $k \in K^{2}, k \neq 0$, and this representation can be turned in a straightforward way into

$$
\left(\begin{array}{cc}
\varepsilon & k \tag{7}\\
-k & \varepsilon
\end{array}\right)
$$

where $\varepsilon=1$ or $\varepsilon=-1$ according to whether H is positive or negative definite. By Theorem 4 in [7], equivalent K-bilinear forms have similar
asymmetries, hence the parameter k in (7), arising via (6) from the minimal polynomial of σ_{W}, distinguishes the isometry class of $\left(W, B_{W}\right)$.

Summing up, the restriction of the Hermitian form H to a twodimensional indecomposable K-substructure has a representation of the shape

$$
\left(\begin{array}{cc}
\varepsilon & i k \tag{8}\\
-i k & \varepsilon
\end{array}\right) \simeq\left(\begin{array}{cc}
\varepsilon k^{-1} & i \\
-i & \varepsilon k^{-1}
\end{array}\right)
$$

for some $k \in K^{2}, k \neq 0$, with ε depending on the signature of H. We shall denote by \mathbf{W}_{k} such a K-substructure of V.
IV. The above arguments say that a K-subspace $W \in X_{d}$ decomposes orthogonally into K-lines, \bar{K}-lines and two-dimensional K substructures such as \mathbf{W}_{k}. Hence there is a decomposition $W=C \perp$ $D \perp E$, where

- C is the largest \bar{K}-subspace contained in W, generated by mutually orthogonal vectors having H-norm ε,
- D is a K-substructure generated by mutually orthogonal vectors having H-norm ε,
- E is a K-substructure splitting into an orthogonal sum $E=\mathbf{W}_{k_{1}} \perp$ $\cdots \perp \mathbf{W}_{k_{q}}$ for nonzero elements $k_{1}, \ldots, k_{q} \in K$,
where $\varepsilon=1$ or $\varepsilon=-1$ according to whether H is positive or negative definite. Let us term the set of parameters

$$
\begin{equation*}
\left(m=\operatorname{dim}_{\bar{K}} C, p=\operatorname{dim}_{K} D, q=\frac{1}{2} \operatorname{dim}_{K} E ; k_{1}, \ldots, k_{q}\right) \tag{9}
\end{equation*}
$$

the U-type of W, where the q-tuple $\left(k_{1}, \ldots, k_{q}\right)$ is ordered and $2 m+$ $p+2 q=d$. Then the Krull-Schmidt theorem allows one to state
8. Theorem. Two K-subspaces $W^{\prime}, W^{\prime \prime} \in X_{d}$ are in the same orbit for the action of U if and only if W^{\prime} and $W^{\prime \prime}$ have the same U-type.

Remarks. i) As there is no unipotent element in U, every orbit in X_{d} for the action of U is negligible in the sense of [5].
ii) As the K-bilinear symmetric form S is always either positive or negative definite (according to H) on any member of X_{d}, the group
$O\left(V_{K}, S\right)$ of isometries of the orthogonal space $\left(V_{K}, S\right)$ acts in X_{d} with the same orbits as the group GL $\left(V_{K}\right)$.
iii) If $W \in X_{d}$ has U-type (9), then the K-bilinear alternating form A restricts to W with rank $r=2(m+q)$. Manifestly the group $\operatorname{Sp}\left(V_{K}, A\right)$ of isometries of the alternating space $\left(V_{K}, A\right)$ acts in X_{d} with orbits $X_{d, r}$ consisting of all d-dimensional K-subspaces on which A induces an alternating form of rank r. Hence, if $r>0$, there are infinitely many orbits for the action of U even in each of $X_{d, r}$, whereas U operates transitively on $X_{d, 0}$, i.e., on the set of A-totally isotropic members of X_{d}.

REFERENCES

1. C.G. Bartolone and M.A. Vaccaro, The action of the symplectic group associated with a quadratic extension of fields, J. Algebra 220 (1999), 115-151.
2. P. Garrett, Decomposition of Eisenstein series: Rankin triple products, Ann. of Math. (2) 125 (1987), 209-235.
3. N. Jacobson, Basic algebra II, W.H. Freeman and Co., San Francisco, 1980.
4. G. Karpilovski, Field theory: Classical foundations and multiplicative groups, Marcel Dekker, Inc., New York, 1988.
5. I. Piatetski-Shapiro and S. Rallis, L-functions of automorphic forms on simple classical groups, in Modular forms (R. Rankin, ed.), Ellis Horwood, Brisbane, 1983, pp. 251-263.
6. -, Rankin triple L-functions, Comp. Math. 64 (1987), 31-115.
7. C. Riehm, The equivalence of bilinear forms, J. Algebra 31 (1974), 45-66.
8. W. Scharlau, Quadratic and Hermitian forms, Springer-Verlag, Berlin, 1985.

Dipartimento di Matematica ed Applicazioni, Universitá di Palermo, Via Archirafi 34, I-90123 Palermo, Italy
E-mail address: cg@math.unipa.it
Dipartimento di Matematica ed Applicazioni, Universitá di Palermo, Via Archirafi 34, I-90123 Palermo, Italy
E-mail address: vaccaro@math.unipa.it

[^0]: 2000 AMS Mathematics Subject Classification. Primary 51N30, 15A21, Secondary 11E39.

 Received by the editors on October 13, 2003

