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UNITARY GROUPS ACTING ON
GRASSMANNIANS ASSOCIATED WITH
A QUADRATIC EXTENSION OF FIELDS

CLAUDIO G. BARTOLONE AND M. ALESSANDRA VACCARO

ABSTRACT. Let (V, H) be an anisotropic Hermitian space
of finite dimension over the algebraic closure of a real closed
field K. We determine the orbits of the group of isometries of
(V, H) in the set of K-subspaces of V .

Throughout the paper K denotes a real closed field and K its
algebraic closure. Then it is well known (see, for example, [4, Chapter
2], [23]; see also [8]) that K = K(i) with i =

√−1. Also we let
(V, H) be an anisotropic Hermitian space (with respect to the involution
underlying the quadratic field extension K/K) of finite dimension n
over K. In this context we consider the natural action of the unitary
group U = U(V, H) of isometries of (V, H) on the set Xd of all d-
dimensional K-subspaces of V . The analogous problem where (V, H)
is a symplectic space was treated in [1] (for arbitrary quadratic field
extensions). It turns out that, in contrast with the symplectic case,
there are infinitely many orbits for the action of the unitary group U
on Xd.

In group theoretic language the stated problem turns into the deter-
mination of the double coset spaces of the form

(1) GW \G / U,

where G = GL (VK) and GW denotes the parabolic subgroup of G
stabilizing a member W ∈ Xd (we write VK to indicate that we are
regarding V as a vector space over K). The precise structure of
double coset spaces involving classical groups is of great interest in
applying the classical Rankin-Selberg method for explicit construction
of automorphic L-functions, as Garrett [2] and Piatetski-Shapiro and
Rallis [6] worked out.
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Besides G = GL (VK), there are further possibilities for the group
G in (1), because U embeds into other classical groups over K. For
instance, we have

(2) H(x, y) = S(x, y) + iA(x, y)

for suitable K-bilinear forms S and A with S (anisotropic) symmetric
and A alternating. Moreover, for any γ ∈ U we have

S(γ(x), γ(y)) + iA(γ(x), γ(y)) = S(x, y) + iA(x, y),

which means that U embeds into the orthogonal group O(VK , S) of
isometries of (VK , S), as well as into the symplectic group Sp (VK , A)
of isometries of (VK , A). Therefore in (1) we can take G = O(VK , S), or
G = Sp (VK , A). As O(VK , S) is transitive on Xd, double coset spaces
(1) with G = O(VK , S) are essentially the same as with G = GL (VK).
The situation is different when G = Sp (VK , A): if A restricts to
W ∈ Xd with rank r, the double coset space GW \G / U corresponds
to the action of U on the set Xd,r of all d-dimensional K-subspaces on
which A induces an alternating form of rank r. In this framework it
has to be emphasized the fact that U has infinitely many orbits in Xd,r

for r > 0 and it is transitive on Xd,0, i.e., on the set of d-dimensional
A-totally isotropic K-subspaces of V .

I. The set of anisotropic Hermitian forms on V maps bijectively onto
a set of anisotropic bilinear forms on VK via

(3)
H �−→ B = S + A,

B �−→ H =
1
2
[(B + tB) + i(B − tB)],

where S and A are defined as in (2) and tB(x, y) means B(y, x).

The bilinear form B associated to H, in the sense of (3), plays a
fundamental role in this context. It turns out that the orthogonality
in (V, H) is essentially the same as in (VK , B). Indeed we have

1. Proposition. H(x, y) = 0 if and only if B(x, y) = 0 and
B(y, x) = 0.
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Proof. Let H(x, y) = S(x, y) + iA(x, y) = 0. Then

S(x, y) = S(y, x) = 0 = A(x, y) = A(y, x)

and consequently

B(x, y) = S(x, y) + A(x, y) = 0 = S(y, x) + A(y, x) = B(y, x).

Conversely, if B(x, y) = B(y, x) = 0, then H(x, y) = 0 follows from (3).

Let W be a K-subspace of V , and let W = W1 ⊕ W2 be a decompo-
sition of W into the direct sum of two nontrivial subspaces. We shall
write

W = W1 ⊥H W2 (resp. W = W1 ⊥B W2),

if H(W1, W2) = 0 (respectively B(W1, W2) = B(W2, W1) = 0). Thanks
to Proposition 1, we have then

(4) W = W1 ⊥H W2 ⇐⇒ W = W1 ⊥B W2,

so it is superfluous to specify the form with respect to which the
orthogonality occurs.

As B is anisotropic, B induces on any K-subspace W of V a nonde-
generate K-bilinear form BW :

BW (x, y) = B(x, y) ∀x, y ∈ W.

So there exists a (unique) linear mapping σW ∈ GL(W ) (the asymme-
try of BW ) such that

BW (x, y) = BW (y, σW (x))) ∀x, y ∈ W.

Then BW (x, y) = BW (σW (x), σW (y)), BW (σW (x), y) = BW (x, σ−1
W (y))

and, more generally for every polynomial p ∈ K[x],

(5)

BW (p(σW )(x), y) = BW (x, p(σ−1
W )(y)) = BW (x, σ

−deg (p)
W p∗(σW )(y)),

where p∗ denotes the adjoint polynomial of p, that is, the polynomial

p∗(x) := xdeg (p)p(x−1).
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Riehm in [7] pointed out the importance of the asymmetry σW for
the K-bilinear space (W, BW ). In fact, orthogonal decompositions in W
correspond to decompositions into K[σW ]-submodules, as the following
proposition states.

2. Proposition. Let W = W1 ⊕ W2 be a decomposition of the K-
subspace W into the direct sum of two K-subspaces with B(W1, W2) =
0. Then W = W1 ⊥ W2 if and only if W1, as well as W2, is a K[σW ]-
submodule.

Proof. [7, p. 47].

II. In view of the foregoing section, if we want to determine the U -
orbit of a given K-subspace W of V , we can apply the Krull-Schmidt
theorem to the K[σW ]-module W and reduce matters to the case where
such a module is indecomposable (see [3, p. 115]). This corresponds to
say that (W, BW ) is an indecomposable K-bilinear space, i.e., it has no
orthogonal decomposition such as (4).

We have

3. Proposition. Let (W, BW ) be indecomposable. Then, one of the
following occurs:

a) W is a K-line;

b) W is a K-substructure (i.e., a K-subspace generated by K-linearly
independent vectors).

Proof. In fact, let C be the largest K-subspace of V contained in W
(the K-component of W ), and let C⊥ be the subspace of V orthogonal
to the whole C. Then V = C ⊥ C⊥ and we have the decomposition
W = C ⊥ (C⊥ ∩ W ). Hence, either C is trivial, i.e., W is a K-
substructure, or C = W , and we have a line of V because a K-subspace
of V always possesses an orthogonal basis.

As K is really closed, to be anistropic for the Hermitian form H means
that H is either definite positive, i.e., H(x, x) is a nonzero square in K
(for any x ∈ V, x �= 0), or definite negative, i.e., H(x, x) is the opposite
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of a nonzero square in K. This implies that in every one-dimensional
K-subspace, as well as in every one-dimensional K-subspace, there is
always a vector v with H(v, v) = 1 (in the definite positive case), or
H(v, v) = −1 (in the definite negative case), i.e., there is always a
vector of H-norm ε = ±1. Therefore we have

4. Proposition. The lines over K form a unique orbit for the
action of U and the same occurs for the lines over K.

Thus we have reduced matters to the determination of the U -orbit
of an indecomposable K-substructure W of dimension > 1. The next
proposition claims that it is the same if we determine the orbit of W
for the action of the group of isometries of (VK , B).

5. Proposition. Let W and W ′ be K-substructures of V . There
exists an element in U mapping W onto W ′ if and only if there exists
an isometry of (VK , B) mapping W onto W ′.

Proof. Assume there exists an isometry of (VK , B) mapping the K-
substructure W onto the K-substructure W ′. Then there exist bases
(e1, . . . , ed) of W and (e′1, . . . , e′d) of W ′ with respect to which B has the
same representation in both W and W ′. This means that, with respect
to the above bases, the Hermitian form H (= 1/2[(B+ tB)+i(B− tB)])
has the same representation in both the K-vector spaces KW and KW ′

generated by W and W ′. Hence,

d∑
i=1

λiei �−→
d∑

i=1

λie
′
i (λi ∈ K)

defines an isometry (KW, H) → (KW ′, H) which extends, by Witt’s
theorem, to an isometry (V, H) → (V, H) mapping W onto W ′.

The converse part follows from the fact that an isometry ϕ ∈ U
satisfies the condition

S(ϕ(x), ϕ(y)) + iA(ϕ(x), ϕ(y)) = S(x, y) + iA(x, y),

giving in turn S(ϕ(x), ϕ(y)) = S(x, y) and A(ϕ(x), ϕ(y)) = A(x, y).
Hence, ϕ preserves B = S + A, i.e., ϕ is an isometry of (VK , B).
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III. It turns out from Sections I and II that we have to classify the
K-bilinear spaces (W, BW ) with W an indecomposable K-substructure
of dimension > 1. A fundamental result in this direction is

6. Proposition. The asymmetry σW of BW has minimal polyno-
mial x2 − 2bx + 1 for a suitable element b ∈ K such that 1 − b2 ∈ K2,
b �= ±1.

Proof. By [7 Proposition 3], W decomposes orthogonally if the
minimal polynomial of σW has two distinct prime divisors p and p′

with p′ and p∗ relatively prime. Thus, if for each irreducible monic
polynomial p ∈ K[x] we denote by Wp the p-primary component of W ,
which is the subspace

Wp = {w ∈ W : ps(σW )(w) = 0 for some s ≥ 0},

just two cases can occur [7, p. 48]:

a) W = Wp for some irreducible monic p ∈ K[x] such that p = ±p∗,
and in such a case the minimal polynomial of σW is a power pr;

b) W = Wp ⊕ Wp∗ for some irreducible monic p ∈ K[x] such that
p �= ±p∗, and in such a case the minimal polynomial of σW is a product
cprp∗s for a suitable c ∈ K, c �= 0.

First we shall prove that case b) cannot occur because it requires both
Wp and Wp∗ to be totally isotropic. This can be shown as follows.

Using (5), for all x, y ∈ W we infer

B(p∗r(σW )(x), p∗s(σW )(y)) = B(x, σ
−rdeg (p)
W prp∗s(σW )(y))

= B(x, σ
−rdeg (p)
W (0)) = 0.

On the other hand,

B(p∗r(σW )(x), p∗s(σW )(y)) = B(p∗s(σW )(y), σW p∗r(σW )(x))

= B(y, σ
1−sdeg (p)
W psp∗r(σW )(x)).

Hence, the endomorphism psp∗r(σW ) maps every vector to 0, which
means that psp∗r is the minimal polynomial of σW and this occurs if
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and only if r = s. Thus, Wp = p∗r(σW )(W ) and Wp∗ = pr(σW )(W ).
Consequently, for all x, y ∈ W , we have

B(p∗r(σW )(x), p∗r(σW )(y)) = B(x, σ
−rdeg (p)
W prp∗r(σW )(y)) = 0

and we see that Wp is totally isotropic. Likewise, B(Wp∗ , Wp∗) = 0.

Therefore, we are in case a). Assume now there exists a nonzero
vector w ∈ W such that σW (w) = λw for some λ ∈ K (λ �= 0
because σW ∈ GL (W )) and let W1 ⊂ W with B(W1, w) = 0 (hence
W = 〈w〉 ⊕ W1, w being anisotropic). Then we have

B(w, W1) = B(W1, σW (w)) = λB(W1, w) = 0,

i.e., an orthogonal decomposition of W occurs.

Thus, as K is real closed, we have p∗(x) = p(x) = x2 − 2bx + 1 for a
suitable element b ∈ K such that 1 − b2 ∈ K2, b �= ±1 [4, p. 337].

Choose now a vector v such that pr−1(σW )(v) �= 0. Then using (5)
we have

0 �= B(pr−1(σW )(v), pr−1(σW )(v)) = B(v, σ
(1−r)deg (p)
W p2r−2(σW )(v)),

which means 2r − 2 < r, or r = 1.

Now we are able to determine definitively the dimension of an inde-
composable K-substructure:

7. Proposition. An indecomposable K-substructure has dimension
≤ 2.

Proof. In view of Proposition 2, the claim is an immediate conse-
quence of Proposition 6.

Thanks to Propositions 6 and 7, if we are given an indecomposable
K-bilinear space (W, BW ) with W a K-substructure of dimension > 1,
then dimK W = 2 and the asymmetry σW of BW has a representation
of shape (

b
√

1 − b2

−√
1 − b2 b

)
,
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for a suitable element b ∈ K such that 1−b2 ∈ K2, b �= ±1. Let (e1, e2)
be a basis of W giving the above representation of σW and put

a := B(e1, e1).

Then

B(e1, e1) = B(e1, σW (e1)) = bB(e1, e1) +
√

1 − b2 B(e1, e2),

that is

B(e1, e2) = a

√
1 − b

1 + b
.

Likewise we find

B(e2, e1) = −a

√
1 − b

1 + b
and B(e2, e2) = a.

Now

(6)
b �−→ k =

√
1 − b

1 + b

k �−→ b =
1 − k2

1 + k2

is a bijective mapping from the set of elements b ∈ K with 1 − b2 a
nonzero square onto the set of nonzero squares k ∈ K2. Thus, with
respect to the basis (e1, e2), BW has the representation

(
a ak

−ak a

)
,

for some k ∈ K2, k �= 0, and this representation can be turned in a
straightforward way into

(7)
(

ε k
−k ε

)
,

where ε = 1 or ε = −1 according to whether H is positive or negative
definite. By Theorem 4 in [7], equivalent K-bilinear forms have similar
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asymmetries, hence the parameter k in (7), arising via (6) from the
minimal polynomial of σW , distinguishes the isometry class of (W, BW ).

Summing up, the restriction of the Hermitian form H to a two-
dimensional indecomposable K-substructure has a representation of
the shape

(8)
(

ε ik
−ik ε

)
�

(
εk−1 i
−i εk−1

)

for some k ∈ K2, k �= 0, with ε depending on the signature of H. We
shall denote by Wk such a K-substructure of V .

IV. The above arguments say that a K-subspace W ∈ Xd de-
composes orthogonally into K-lines, K-lines and two-dimensional K-
substructures such as Wk. Hence there is a decomposition W = C ⊥
D ⊥ E, where

• C is the largest K-subspace contained in W , generated by mutually
orthogonal vectors having H-norm ε,

• D is a K-substructure generated by mutually orthogonal vectors
having H-norm ε,

• E is a K-substructure splitting into an orthogonal sum E = Wk1 ⊥
· · · ⊥ Wkq

for nonzero elements k1, . . . , kq ∈ K,

where ε = 1 or ε = −1 according to whether H is positive or negative
definite. Let us term the set of parameters

(9)
(
m = dimK C, p = dimK D, q =

1
2

dimK E; k1, . . . , kq

)

the U -type of W , where the q-tuple (k1, . . . , kq) is ordered and 2m +
p + 2q = d. Then the Krull-Schmidt theorem allows one to state

8. Theorem. Two K-subspaces W ′, W ′′ ∈ Xd are in the same orbit
for the action of U if and only if W ′ and W ′′ have the same U-type.

Remarks. i) As there is no unipotent element in U , every orbit in Xd

for the action of U is negligible in the sense of [5].

ii) As the K-bilinear symmetric form S is always either positive or
negative definite (according to H) on any member of Xd, the group
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O(VK , S) of isometries of the orthogonal space (VK , S) acts in Xd with
the same orbits as the group GL (VK).

iii) If W ∈ Xd has U -type (9), then the K-bilinear alternating form A
restricts to W with rank r = 2(m+q). Manifestly the group Sp (VK , A)
of isometries of the alternating space (VK , A) acts in Xd with orbits
Xd,r consisting of all d-dimensional K-subspaces on which A induces
an alternating form of rank r. Hence, if r > 0, there are infinitely many
orbits for the action of U even in each of Xd,r, whereas U operates
transitively on Xd,0, i.e., on the set of A-totally isotropic members of
Xd.
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