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INTERSECTIONS OF FRÉCHET SPACES
AND (LB)-SPACES

ANGELA A. ALBANESE AND JOSÉ BONET

ABSTRACT. This article presents results about the class
of locally convex spaces which are defined as the intersection
E ∩ F of a Fréchet space F and a countable inductive limit
of Banach spaces E. This class appears naturally in analytic
applications to linear partial differential operators. The inter-
section has two natural topologies, the intersection topology
and an inductive limit topology. The first one is easier to de-
scribe and the second one has good locally convex properties.
The coincidence of these topologies and its consequences for
the spaces E ∩ F and E + F are investigated.

1. Introduction. The aim of this paper is to investigate spaces
E ∩ F which are the intersection of a Fréchet space F and an (LB)-
space E. They appear in several parts of analysis whenever the space
F is determined by countably many necessary, e.g., differentiability of
integrability, conditions and E is the dual of such a space, in particular
E is defined by a countable sequence of bounded sets which may also
be determined by concrete estimates. Two natural topologies can be
defined on E∩F : the intersection topology, which has semi-norms easy
to describe and which permits direct estimates, and a finer inductive
limit topology which is defined in a natural way and which has good
locally convex properties, e.g., E ∩ F with this topology is a barreled
space. It is important to know when these two topologies coincide.
It turns out that the locally convex properties of E ∩ F with the
intersection topology are related to the completeness of the (LF)-space
E + F . The present setting provides us with new interesting examples
of (LF)-spaces. Recent progress on the study of (LF)-spaces, see [4, 14,
25, 27], is very important in our work. Our main results are Theorems
4 and 7. Examples 5 and 10 show the main difficulties.
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Our article continues the research in [5], where the case when F is a
Fréchet Schwartz space (an (FS)-space) and E is the dual of an (FS)-
space (a (DFS)-space) was analyzed. One of the original motivations for
the research in [5] came up in the investigations of Langenbruch [18,
19, 20] about the surjectivity of linear partial differential operators
P (D) with constant coefficients on spaces of ultradifferentiable func-
tions and ultradistributions. The extension of {ω}-ultradifferentiable
regularity for {ω}-ultradistributions u such that P (D)u = 0 across a
hypersurface has consequences for the surjectivity of P (D), in the same
way that Holmgren’s uniqueness theorem is relevant in the discussions
of surjectivity problems for P (D) on C∞(Ω), see [15, Chapters 8 and
10]. The extension of regularity for ultradistributions was studied by
Langenbruch in [18]. In the classical case, treated by Hörmander in
[15, Section 11.3], one seeks conditions on a linear subspace V of RN

and on the polynomial P (z) to assure the existence of u ∈ Cn(RN ),
n ∈ N, with P (D)u = 0 such that the singular support of u coincides
with V . In the proof of [15, Theorem 11.3.1], Hörmander considers the
intersection G := {u ∈ Cn(RN )| P (D)u = 0} ∩ C∞(RN \ V ) which
is a Fréchet space and uses the closed graph theorem to get concrete
estimates. More than a converse of [15, Theorem 11.3.1] is obtained
in [15, Theorem 11.3.6], which yields the extension of C∞-regularity
across hypersurfaces. The extension of this last result was obtained
by Langenbruch in [18, Theorem 2.2] both for Beurling (ω)-regularity
and Roumieu {ω}-regularity. However, only a partial converse of [18,
Theorem 2.2] is obtained in [18, Theorem 2.6] in which a Fréchet in-
tersection, similar to the Fréchet space G above, plays an important
role. As Langenbruch points out, in the Remark after the proof of his
Theorem 2.6, a full converse of [18, Theorem 2.2] would have required
that every sequentially continuous linear form on the intersection of a
Fréchet Schwartz space and a (DFS)-space was continuous. This prop-
erty does not hold in general for intersections of (FS) and (DFS) spaces
as was shown in [5].

On the other hand, the investigations in [1] about the relation
of the hypoellipticity of a linear partial differential operator with
variable coefficients with the local solvability of its transpose operator
in the setting of Gevrey classes made the authors consider when the
intersection of a Banach space and a (DFS)-space is barreled. This is
one of the reasons why we treat here a setting which is more general
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than the one of [5]. On the other hand, the intersections of function
spaces appear also in other areas of functional analysis. It turned out
that the locally convex structure of the intersection of two Fréchet
spaces was rather intricate. Indeed, Taskinen [23] showed that the
strong dual of the space C(R) ∩ L1(R) is not an (LB)-space. The
structure of the intersection spaces Cm(Ω) ∩ Hk,p(Ω) was studied in
detail (see, for example, [2, 8]).

Our notation for locally convex spaces is standard and we refer the
reader, for example, to [16]. Given a locally convex space G, we denote
by U(G) the system of all closed absolutely convex 0-neighborhoods in
G and by B(G) the system of all closed absolutely convex bounded sets
of G. The general frame in which we work is the following. Let F
be a Fréchet space with a basis (UK)K of closed absolutely convex
0-neighborhoods. The canonical Banach space generated by UK is
denoted by FK . Let E = indnEn be a regular (LB)-space, i.e., every
bounded set in E is contained and bounded in a step En. The unit ball
of the Banach space En is denoted by Bn. We suppose that both E
and F are continuously included in a Hausdorff locally convex space H.
The intersection E∩F is endowed with the intersection topology, which
is denoted by s. A basis of closed absolutely convex 0-neighborhoods
of (E ∩ F, s) is given by the sets of the form U ∩ V as U and V run
over bases of closed absolutely convex 0-neighborhoods of E and F
respectively. The sum E +F , as a subspace of H, can be considered as
a quotient of the locally convex direct sum E ⊕ F via the linear map
q: E ⊕F �→ H, q(x, y):=x− y. On the other hand the space E ∩F can
be identified with a closed subspace of E ⊕ F by means of the linear
injection i: E ∩ F �→ E ⊕ F , i(x):=(x, x). Clearly i(E ∩ F ) = ker q and
we have the short exact sequence

0 −→ E ∩ F
i−→ E ⊕ F

q−→ E + F −→ 0.

There is also an (LF)-topology t on E ∩ F finer than s. Indeed, if for
each n ∈ N we endow En∩F with the intersection topology sn for which
it is a Fréchet space, then the inclusion map (En ∩F, sn) ↪→ (E ∩F, s)
is continuous. Define (E ∩ F, t):=indn(En ∩ F, sn), and observe that,
for each n ∈ N, a basis of closed absolutely convex 0-neighborhoods of
(En ∩ F, sn) is given by (K−1Bn ∩ UK)K .

An (LF)-space G = indnGn is said to satisfy condition (M), respec-
tively condition (M0), of Retakh if there is an increasing sequence
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(Vn)n, with Vn absolutely convex 0-neighborhood in Gn, such that
for each n ∈ N there is an m > n such that G and Gm induce the
same topologies, respectively the same weak topologies, on Vn. By [21,
Corollaries 2.1, 7.2] (see also [25, Theorem 3.2 and Corollary 3.3]) if
G satisfies condition (M), then G is a complete, hence regular, (LF)-
space. On the other hand, G is said to be boundedly stable, respectively
weakly boundedly stable, if on every set which is bounded in some step
almost all step topologies, respectively almost all step weak topologies,
coincide. Finally, G is said to satisfy condition (wQ) introduced by
Vogt [25], respectively condition (wQ*) introduced by Bierstedt and
the second author [4], if

∀n ∈ N ∃m ≥ n, Vn ∈ U(Gn) ∀ k ≥ m, U ∈ U(Gm)
∃S > 0, W ∈ U(Gk) such that Vn ∩ W ⊆ SU,

respectively there is an increasing sequence (Vn)n with the above
property. In [7] it was pointed out that condition (wQ) is equivalent
to the following one: there is a sequence (Vn)n of absolutely convex
0-neighborhoods Vn in Gn, such that for each n ∈ N there is m > n
such that for every k > m the topologies of Gm and Gk have the
same bounded sets in Vn. Every (LB)-space satisfies condition (wQ*).
Regular (LF)-spaces always satisfy condition (wQ) as was proved in [25,
Theorem 4.7]. Moreover, by [28, Theorem 6.4] (or see [26, Theorem
3.8]) an (LF)-space has condition (M) if and only if it is boundedly
stable and satisfies condition (wQ). By [26, Theorem 5.6] an (LF)-
space has condition (M0) if and only if it is weakly boundedly stable and
satisfies condition (wQ*). It was conjectured in [26], see also [14], that
an (LF)-space has condition (M0) if and only if it is weakly boundedly
stable and satisfies condition (wQ).

We have the following preliminary observations.

Lemma 1. Let E = indnEn be a regular, respectively complete,
(LB)-space and F be a Fréchet space. Then the following hold.

(i) The space E ⊕ F = indn(En ⊕ F ) is a regular, respectively
complete, (LF)-space. The space (E ∩ F, s) is a, respectively complete,
locally convex space and the space E + F = indn(En + F ) is an (LF)-
space.
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(ii) The topologies t and s have the same bounded sets, and (E∩F, t)
is a regular (LF)-space.

A (DF)-space G is said to satisfy the dual density condition (DDC) [3,
Definition 1.1] if each bounded subset of G is metrizable. The following
characterization was proved in [13, Section 5].

Lemma 2. Let G be a (DF)-space with an increasing fundamental
sequence (Bn)n of absolutely convex bounded sets. The space G satisfies
the (DDC) if and only if there is U ∈ U(G) such that for every n ∈ N
and V ∈ U(G) there is ε > 0 with Bn ∩ εU ⊂ V .

If we denote by pU the Minkowski functional of the neighborhood
U in G given by Lemma 2, then pU is clearly a norm on G and the
topologies of G and of the normed space (G, pU ) coincide on Bn for all
n ∈ N.

Proposition 3. Let E = indnEn be an (LB)-space with the (DDC).
Let F be a Fréchet space. Then:

(i) There is U ∈ U(E) such that the topologies of (E ∩ F, s) and of
(E ∩ F, sU ) coincide on Bn ∩ F for all n ∈ N, where sU denotes the
intersection topology defined by F and the normed space (E, pU ).

(ii) If (E∩F, s) is barreled, then every sequentially continuous linear
map from (E ∩ F, s) into a Banach space is continuous.

Proof. (i) By Lemma 2 there is U ∈ U(E) such that, for each n ∈ N,
the topology induced by E on Bn has a basis of closed absolutely
convex 0-neighborhoods given by {r−1U ; r ∈ N}. Let V ∈ U(E)
and W ∈ U(F ). Then there is r ∈ N such that Bn ∩ r−1U ⊂ V , hence

(Bn ∩ F ) ∩ (r−1U ∩ W ) = (Bn ∩ r−1U) ∩ W ⊂ V ∩ W.

(ii) Let Y be a Banach space and T be a sequentially continuous
linear map from (E ∩ F, s) into Y . If BY is the closed unit ball
of Y , T−1(BY ) is an absolutely convex absorbing subset of E ∩ F .
Moreover, by (i) for each n ∈ N (2nBn ∩ F, s) is metrizable and hence
T|2nBn∩F : (2nBn ∩ F, s) → Y is continuous, thereby implying that
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T−1(BY ) ∩ (2nBn ∩ F ) is a 0-neighborhood in (2nBn ∩ F, s) for every
n ∈ N. The so-called localization property for barreled spaces (see [22,
Corollary 8.2.5] or [16, Theorem 12.3.5]) implies that T−1(BY ) is also
a 0-neighborhood in (E ∩ F, s).

Theorem 4. Let E = indnEn be a regular and weakly boundedly
stable (LB)-space satisfying condition (DDC), and let F be a Fréchet
space. The following conditions are equivalent:

(1) (E ∩ F, s) = indn(En ∩ F, sn) holds topologically,

(2) (E ∩ F, s) is an (LF)-space,

(3) (E ∩ F, s) is bornological,

(4) (E ∩ F, s) is barreled.

Moreover, if E is boundedly stable, these equivalent conditions imply

(5) E + F is a complete (LF)-space.

Proof. Clearly (1) ⇒ (2) ⇒ (3) ⇒ (4). Let us assume (4). We
first prove that (E ∩F, s)′ = (E ∩F, t)′. Since E is regular and weakly
boundedly stable, the (LF)-space E⊕F is regular and satisfies condition
(M0). This easily implies that every u ∈ (E ∩ F, t)′ is sequentially s-
continuous, hence s-continuous by Proposition 3 (ii), i.e., u ∈ (E∩F, s)′.
Next, since (E ∩ F, s) is barreled and (E ∩ F, s)′ = (E ∩ F, t)′, the
topologies t and s coincide, and (1) holds.

Suppose now that condition (1) is satisfied and that E is also bound-
edly stable. In this case, the (LF)-space E⊕F is acyclic (or equivalently
satisfies condition (M) of Retakh, see [25]). We consider the short exact
sequence

0 −→ indn(En ∩ F ) i−→ indn(En ⊕ F )
q−→ indn(En + F ) −→ 0.

Condition (1) holds if and only if i is a monomorphism. By a theorem
of Palamodov [21] in the version of [25, Theorems 1.4, 1.5, 2.10], this
implies that E + F = indn(En + F ) satisfies the condition (M), hence
it is complete.
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Example 5. We show that (E∩F, t)′ may be different from (E∩F, s)′

although E + F is a complete (LF)-space, even for a (DFS)-space E.
This yields that, in general, condition (5) does not imply condition (1)
in Theorem 4.

Let s be the Fréchet space of rapidly decreasing sequences and s′ its
strong dual. Let E = (s′)(N) and F = �1(�1). Using Hahn-Banach
theorem and the exact sequence

0 −→ (s′)(N) ∩ �1(�1) i−→ (s′)(N) ⊕ �1(�1)
q−→ (s′)(N) + �1(�1) −→ 0,

it is easy to show that the topological dual of
(
(s′)(N) ∩ �1(�1), s

)

coincides with sN + �∞(�∞). Moreover, (s′)(N) ∩ �1(�1) = (�1)(N)

algebraically and the (LF)-topology t on it clearly coincides with the
one of (�1)(N).

We prove that
(
(s′)(N) ∩ �1(�1), s

)
and (�1)(N) have a different dual,

thus obtaining that
(
(s′)(N) ∩ �1(�1), s

)
is not barreled. For each

k ∈ N, let zk be the constant sequence (k, k, . . . ). Then z := (zk)k

belongs to the dual of (�1)(N). Suppose that it belongs to the dual of(
(s′)(N) ∩ �1(�1), s

)
. Consequently, z = x + y for some x = ((xj

k)j)k ∈
�∞(�∞) and y = ((yj

k)j)k ∈ (s)N. For each k ∈ N, there is j(k) such
that |yj

k| < 1 for all j ≥ j(k). Thus, for each k > 2, the norm of xk in �∞

is greater or equal than k−1. This implies that x = (xk)k = (zk −yk)k

does not belong to �∞(�∞), a contradiction.

On the other hand, using again the Hahn-Banach theorem and the
exact sequence

0 −→ (s)N ∩ c0(c0)
i1−→ (s)N ⊕ c0(c0)

q1−→ (s)N + c0(c0) −→ 0,

where i1(x) := (x,−x) and q1(x, y) := x + y, it is easy to show that
the topological dual of the Fréchet space

(
(s)N ∩ c0(c0), s

)
coincides

with (s′)(N) + �1(�1). Moreover, by [11, Proposition 2], see also [12],
its strong dual is barreled so that

(
(s)N ∩ c0(c0), s

)′
β

= (s′)(N) + �1(�1)
holds topologically, thereby implying that (s′)(N)+�1(�1) is a complete,
regular (LB)-space.

An (LB)-space E = indnEn is called an (LSw)-space if for each n
there is an m > n such that the inclusion map En ↪→ Em is weakly
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compact, see [22, Definition 8.5.3]. By the well-known factorization
theorem for weakly compact maps of [10], the weakly compact operator
En ↪→ Em factors over a reflexive Banach space which is algebraically
a subspace of Em. Accordingly, we may and will suppose that the
Banach spaces En are reflexive for all n ∈ N if E = indnEn is an
(LSw)-space. It is well known that, if E = indnEn is an (LSw)-space
and F is a reflexive Banach space, then every sequentially continuous
form on (E ∩ F, s) is continuous, i.e., E ∩ F is a well-located subspace
of E⊕F , cf. [22, Proposition 8.6.7]. This result and Example 5 suggest
that some additional assumptions on F must be required to connect
the completeness of E + F and the fact that E ∩ F is barreled.

We thank the referee for the following lemma and its proof.

Lemma 6. Let E = indnEn be an (LB)-space, and let F be a Fréchet
space. Then the (LF)-space E + F satisfies condition (wQ) if and only
if it satisfies condition (wQ*).

Proof. Since condition (wQ*) always implies condition (wQ), we
only have to prove that the converse holds. By replacing the constant
S appropriately we obtain that condition (wQ) is equivalent to the
following slightly simpler one

∀n ∈ N ∃m ≥ n, N ∈ N ∀ k ≥ m, M ∈ N ∃K ∈ N, S > 0
(Bn + UN ) ∩ (Bk + UK) ⊆ S(Bm + UM ).

Since we clearly can assume N(1) = 1, this yields

(0.1)
∃m(1) ≥ n ∀ k ≥ m(1), M ∈ N ∃K ∈ N, S > 0

U1 ∩ (Bk + UK) ⊆ S(Bm(1) + UM ).

For n ∈ N we set m = max{n, m(1)} and obtain for k ≥ m and M ∈ N
with K and S as in (0.1)

(Bn + U1) ∩ (Bk + UK) ⊆ S(Bm + UM ).

Indeed, given x = b + u = d + v with b ∈ Bn, u ∈ U1, d ∈ Bk, and
v ∈ UK we have

u = d − b + v ∈ U1 ∩ (2Bk + UK) ⊆ 2S(Bm + UM );
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hence x = b + u ∈ (2S + 1)(Bm + UM ).

Lemma 6 settles positively in the context considered in this article
the conjecture of Wengenroth that an (LF)-space has condition (M0) if
and only if it is weakly boundedly stable and satisfies condition (wQ).

Theorem 7. Let E = indnEn be a regular and weakly boundedly sta-
ble (LB)-space, and let F be a Fréchet space. The following conditions
are equivalent:

(1) every sequentially continuous linear form on (E ∩F, s) is contin-
uous,

(2) the (LF)-space E + F satisfies condition (M0) of Retakh,

(3) the (LF)-space E + F is weakly boundedly stable and is of type
(wQ*),

(4) the (LF)-space E + F is weakly boundedly stable and is of type
(wQ), i.e.

∀n ∈ N ∃m ≥ n, N ∈ N ∀ k ≥ m, M ∈ N ∃K ∈ N, S > 0
(N−1Bn + UN ) ∩ (K−1Bk + UK) ⊂ S(M−1Bm + UM ).

Proof. Since E is regular and weakly boundedly stable, the (LF)-
space E ⊕ F is regular and clearly satisfies condition (M0) of Retakh.
Consider the short exact sequence

0 −→ indn(En ∩ F ) i−→ indn(En ⊕ F )
q−→ indn(En + F ) −→ 0.

Condition (1) holds if and only if i is a weak monomorphism. Therefore
a theorem of Palamodov [21] in the version of [25, Theorems 1.4, 1.5
and 2.10] implies that (1) is equivalent to (2). By [26, Theorem 5.6],
(2) is equivalent to (3). Finally, by Lemma 6, (3) is equivalent to (4).

Remark 8. It is desirable to have easy sufficient conditions for E and
F which allow us to conclude that the (LF)-space E + F is of type
(wQ). For instance, for an (LSw)-space E it is enough that F has a 0-
neighborhood U which is closed in H, as happens in Example 5. Then
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Bn +U is closed in H as the sum of a weakly compact set and a closed
set and one can apply [14, Proposition 2.6] to conclude. In this case,
if the (LF)-space is also weakly boundedly stable, it is regular by [17,
Theorem 2].

On the other hand, there are examples of sums of (LB) and Fréchet
spaces which are regular (LF)-spaces of type (wQ) but not weakly
boundedly stable, e.g., (s′)(N) + �1(�1) by Theorem 7 and Example 5.

In the next result, we suppose that E = indnEn is an (LSw)-space
and F = projKFK is a (FSw)-space, i.e., for all K there is an M > K
such that the linking map pK,M : FM → FK is weakly compact, see [22,
Definition 8.5.2].

Proposition 9. Let E = indnEn be an (LSw)-space, and let F =
projKFK be an (FSw)-space. The following conditions are equivalent:

(1) every sequentially continuous linear form on (E ∩F, s) is contin-
uous,

(2) the (LF)-space E + F satisfies condition (M0) of Retakh,

(3) the (LF)-space E + F is of type (wQ*),

(4) the (LF)-space E + F is of type (wQ), i.e.,

∀n ∈ N ∃m ≥ n, N ∈ N ∀ k ≥ m, M ∈ N ∃K ∈ N, S > 0
(N−1Bn + UN ) ∩ (K−1Bk + UK) ⊂ S(M−1Bm + UM ).

(5) The (LF)-space E + F is regular,

(6) the (LF)-space E + F is complete.

Proof. Since E is an (LSw)-space and F is an (FSw)-space, by the
factorization theorem of weakly compact maps of [10], we may assume
that all the Banach spaces En and FK are reflexive. For each n ∈ N,
En + F is then a reflexive Fréchet space. Indeed, it is a quotient of
projK(En ⊕ FK) which is totally reflexive as a subspace of a product
of reflexive Banach spaces, see e.g., [24]. Consequently, E + F is an
(LF)-space with reflexive steps, hence it is weakly boundedly stable.

By Theorem 7 conditions (1), (2), (3) and (4) are equivalent. More-
over, (6) implies (5) as is well known and, by [25, Theorem 4.7], (5)
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implies (4). Finally, since each step En +F is a reflexive Fréchet space,
(2) implies (6) by [25, Proposition 4.4].

Example 10. We give an example of a reflexive Banach space F and
a (DFS)-space E such that E+F is a complete reflexive (LB)-space and
(E ∩F, s) is not barreled. This shows that the equivalent conditions of
Proposition 9 need not imply condition (1) of Theorem 4.

Let E = (s′)(N) and F = �p(�p), 1 < p < +∞. Since (s′)(N) is an
(LSw)-space and �p(�p) is a reflexive Banach space, every sequentially
continuous form on

(
(s′)(N) ∩ �p(�p), s

)
is continuous, cf. [22, Propo-

sition 8.6.7], but it is not barreled. Indeed, (s′)(N) ∩ �p(�p) = (�p)(N)

algebraically and the (LF)-topology t on it coincides with the one of
(�p)(N). Moreover, the exact sequence

0 −→ (s′)(N) ∩ �p(�p) i−→ (s′)(N) ⊕ �p(�p)
q−→ (s′)(N) + �p(�p) −→ 0

is the dual of the exact sequence

0 −→ sN ∩ �q(�q) i1−→ sN ⊕ �q(�q)
q1−→ sN + �q(�q) −→ 0,

where q = p/(p − 1) and, as it is easy to show, sN + �q(�q) = (�q)N

algebraically and topologically. By [6, Corollary 3]
(
(s′)(N) ∩ �p(�p), s

)

is barreled if and only if q1 lifts bounded sets, i.e., for every bounded
set B of (�q)N there is a bounded subset A of sN ⊕ �q(�q) such that
q1(A) ⊃ B. If this were the case, since sN ⊕ �q(�q) is quasinormable,
sN ∩ �q(�q) endowed with the intersection topology would be a quasi-
normable Fréchet space by the following result of [9]: a subspace L of
a quasinormable Fréchet space X is itself quasinormable if and only if
the quotient map q: X → X/L lifts bounded sets. Now, by [12, Proposi-
tion 3] sN∩ �q(�q) is not quasinormable with respect to the intersection
topology and then

(
(s′)(N) ∩ �p(�p), s

)
is not barreled.

Finally, we give a precise characterization of the completeness of E+F
in the setting of Köthe sequence spaces. Its proof is obtained adapting
the methods of [5] or with a direct argument to show that conditions
(1) and (3) are equivalent.

Proposition 11. Let 1 < p < +∞. Let W = (wn)n be a decreasing
sequence of strictly positive weights on N. Let En = �p(wn) for all
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n ∈ N, and let E = indn�p(wn) be an (LSw) echelon space of order p.
Let A = (aK)K be an arbitrary increasing sequence of strictly positive
weights on N. Let F = projK�p(aK) be an (FSw) echelon space of
order p. Then the following conditions are equivalent:

(1) the (LF)-space E + F is of type (wQ),

(2) the (LF)-space E + F is complete,

(3) the following condition is satisfied by the weights:

∀n ∈ N ∃m ≥ n, N ∈ N ∀ k ≥ m, M ∈ N ∃K ∈ N, S > 0 ∀ i ∈ N

min(wm(i), aM (i)) ≤ S (min(wn(i), aN (i)) + min(wk(i), aK(i))) .

Acknowledgment. The authors are very indebted to the referee
for his/her carefully reading of the manuscript and for his/her many
suggestions which improved both the presentation and the results.
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