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NEW CONVERGENCE THEOREMS FOR CERTAIN
ITERATIVE SCHEMES IN BANACH SPACES

H.Y. ZHOU AND Y.J. CHO

ABSTRACT. In this paper, we first review some conver-
gence results for certain iterative schemes for a certain class
of operators and discuss essential relations between the old
results and new results. Then we establish several general
convergence principles for certain iterative schemes for accre-
tive operators, and show how our convergence principles can
be applied to Mann’s and Ishikawa’s methods. Finally, four
open problems are also given.

1. Introduction. The main purpose of this paper is to present
a version for the convergence theorems due to Nevanlinna and Reich
[35], Bruck and Reich [6]. As consequences of the revision, most of the
recent results can be deduced from our convergence principle.

Early in 1979, Nevanlinna and Reich [35] studied discrete implicit and
explicit schemes for finding the zeros of accretive operators that satisfy
the convergence condition ([35]). Soon afterwards, Bruck and Reich
[6] generalized the results of Nevanlinna and Reich [35] by establishing
the general convergence principle for the implicit and explicit schemes
for a certain class of operators that satisfy the so called condition 2.1
in [6].

Let A : D(A) ⊂ E → 2E be an m-accretive operator in a Banach
space E. The following implicit scheme with errors and the explicit
scheme were considered by Nevanlinna and Reich [35]:
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xn+1 + λn+1Axn+1 � xn + en+1, n ≥ 0,(1.1)
xn+1 ∈ xn − λnAxn, n ≥ 0,(1.2)

respectively, where x0 ∈ E and {λn} is a positive real sequence.

Recently, concerning the convergence problems of the Ishikawa and
Mann iterative processes have been extensively studied by various
authors, see Chidume [11, 12], Osilike [36], Chang [7, 8], Chang et al.
[9], Liu [31], Ding [26] and Zhou [50].

Let E be a real Banach space, K a nonempty convex subset of E
and T : K → K a self-mapping from K into itself. For arbitrary initial
value x0 ∈ K, the sequence {xn} iteratively defined by

(1.3)
{

xn+1 = (1 − αn)xn + αnTyn, n ≥ 0,

yn = (1 − βn)xn + βnTxn, n ≥ 0,

is called the Ishikawa iterative process, where {αn} and {βn} are real
sequences in [0, 1] satisfying certain conditions. In particular, if βn = 0
for all n ≥ 0 in (1.3), then the sequence {xn} defined by (1.3) is called
the Mann iterative process.

Observe now that the implicit scheme (1.1) is equivalent to the so
called resolvent iterative scheme {xn} defined by

(1.4) xn+1 = Jn+1(xn + en+1), n ≥ 0,

and, setting A = I − T in (1.2), the scheme (1.2) is equivalent to the
following:

(1.5) xn+1 = (1 − αn)xn + αnTxn, n ≥ 0,

respectively, where I denotes the identity mapping and Jn = (I +
λnA)−1 for n ≥ 0 are resolvents of A.

Observe also that the Mann and Ishikawa iteration processes can
be viewed as approximations of the corresponding resolvent iterative
schemes for a certain class of nonlinear operators, respectively.

Evidently, it is of interest and importance to study the following
iterative schemes {xn} with perturbations:

xn+1 + λnAxn+1 � xn + en + o(λn), n ≥ 0,(1.6)
xn+1 ∈ xn − λnAxn + en + o(λn), n ≥ 0,(1.7)
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respectively, where x0 ∈ E,
∑∞

n=0 ‖en‖ < ∞ and {λn} is a positive real
sequence.

In this paper we will establish a general convergence principle for
the iterative schemes defined by (1.6) and (1.7) and provide a unified
treatment for the previously established results by several authors.

2. A review of the recent convergence results. Let E be a
real Banach space with norm ‖ · ‖ and E∗ the dual space of E. The
normalized duality mapping from E to the family of subset of E∗ is
defined by

J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing. A multivalued
operator T with domain D(T ) and range R(T ) in E is said to be
accretive if, for each x, y ∈ D(T ), there exists j(x − y) ∈ J(x − y)
such that, for all u ∈ Tx and v ∈ Ty,

(2.1) 〈u − v, j(x − y)〉 ≥ 0.

Furthermore, the operator T is called strongly accretive if, for every
x, y ∈ D(T ), there exists a constant k > 0 and there exists j(x − y) ∈
J(x − y) such that

(2.2) 〈u − v, j(x − y)〉 ≥ k||x − y||2

for all u ∈ Tx and v ∈ Ty. The operator T is said to be φ-strongly
accretive if there exists a strictly increasing function φ : [0,∞) → [0,∞)
with φ(0) = 0 and, for every x, y ∈ D(T ), there exists j(x − y) ∈
J(x − y) such that

(2.3) 〈u − v, j(x − y)〉 ≥ φ(||x − y||)||x − y||

for all u ∈ Tx and v ∈ Ty. Let N(T ) = {x ∈ D(T ) : 0 ∈ Tx}.
If N(T ) �= ∅ and the inequalities (2.1), (2.2) and (2.3) hold for any
x ∈ D(T ) and y ∈ N(T ), then the corresponding operator T is called
quasi-accretive, strongly quasi-accretive and φ-strongly quasi-accretive,
respectively. It was shown in [16] that the class of strongly accretive
operators is a proper subclass of φ-strongly accretive operators.
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A class of mappings closely related to accretive operators is the class
of pseudo-contractive operators. A mapping T : D(T ) ⊂ E → E is
called pseudo-contractive (respectively strongly pseudo-contractive, φ-
strongly pseudo-contractive, φ-hemicontractive) if and only if (I − T )
is accretive (respectively, strongly accretive, φ-strongly accretive, φ-
strongly quasi-accretive), where I denotes the identity operator on E.
An accretive operator T is said to be m-accretive if R(I + rT ) = E for
all r > 0.

Such operators have been extensively studied and applied by various
researchers, see [5 56]. The interest and importance of such operators
stem mainly from the fact that many physically significant problems
can be modeled in terms of an initial value problem of the form

(2.4)
{

u′(t) + Tu(t) = 0,

u(0) = u0,

where T is an accretive operator in an appropriate Banach space. In
this case, a zero of T corresponds to an equilibrium of the system (2.4).

Recall that a quasi-accretive operator A is said to satisfy the condition
(I) if, for any x ∈ D(A), p ∈ N(A) and j(x−p) ∈ J(x−p), the equality
< Ax, j(x − p) >= 0 holds if and only if Ax = Ap = 0.

Lemma 2.1 (Reich [37]). Let E be a real uniformly smooth Banach
space. Then there exists a nondecreasing continuous function

b : [0,∞) −→ [0,∞)

satisfying the following conditions:

(i) b(ct) ≤ cb(t) for all c ≥ 1,

(ii) limt→0+ b(t) = 0,

(iii) ||x + y||2 ≤ ||x||2 + 2〈y, j(x)〉 + max{||x||, 1}||y||b(||y||) for all
x, y ∈ E.

The inequality (iii) is called Reich’s inequality.

We denote the distance between a point x ∈ E and a set V ⊂ E by
d(x, V ). Recall that a point z ∈ V is said to be a best approximation
to x ∈ E if

‖x − z‖ = d(x, V ).
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A set V ⊂ X is said to be a sun if, whenever z ∈ V is a best
approximation to x ∈ E, z is also a best approximation to z + t(x− z)
for all t ≥ 0. It is well known that every convex set is a sun. If V is
a sun and z ∈ V is a best approximation to x ∈ E, then there exists
j(x − z) ∈ J(x − z) such that

〈y − z, j(x − z)〉 ≤ 0

for all y ∈ V . The set V is said to be proximinal if every x ∈ X has at
least one best approximation in V . It is also well known that, if E is a
reflexive Banach space and V is a nonempty closed and convex subset
of E, then V is proximinal. Thus, for all x ∈ E, there exists a nearest
point mapping P : E → 2V and j(x − z) ∈ J(x − z) such that

〈y − z, j(x − z)〉 ≤ 0

for all y ∈ V and z ∈ Px.

In 1979, Nevanlinna and Reich [35] established their convergence
results for the implicit and explicit schemes for m-accretive operators
that satisfy the convergence condition in the setting that both E and
E∗ are uniformly convex Banach spaces.

Let E and E∗ be both uniformly convex Banach spaces and A :
D(A) ⊂ E → 2E be an m−accretive operator. Then A−10 is closed
and convex. Furthermore, the normalized duality mapping J : E → E∗

is single-valued and continuous. If C is a nonempty closed convex subset
of E, then also the nearest point mapping P : E → C defined by

‖x − Px‖ = inf{‖x − y‖ : y ∈ C}
is single-valued and continuous.

It is well known that every nonempty closed convex subset of E is
proximinal. Thus, if 0 ∈ R(A), then A−10 is nonempty closed and
convex. Hence, A−10 is proximinal and convex. Consequently, for each
x ∈ E, there is a point J(x − Px) such that

〈y − Px, J(x − Px)〉 ≤ 0

for all y ∈ A−10. Let P : E → A−10 be the nearest point mapping. The
operator A is said to satisfy the convergence condition if [xn, yn] ∈ A,
‖xn‖ ≤ M , ‖yn‖ ≤ M and

lim
n→∞〈yn, J(xn − Pxn)〉 = 0
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imply that

lim inf
n→∞ ‖xn − Pxn‖ = 0.

It is obvious that every strongly accretive operator A satisfies the
convergence condition.

Nevanlinna and Reich [35] proved the following results:

Theorem NR1. Let A be an m-accretive operator in a Banach
space E with a zero and {xn} a sequence defined by (1.1). If the
operator A satisfies the convergence condition,

∑∞
n=1 λn = ∞ and∑∞

n=1 ‖en‖ < ∞, then the sequence {xn} converges strongly to a zero
of A.

Theorem NR2. Let A be an m-accretive operator with a zero
and {λn} a positive real sequence such that

∑∞
n=0 λn = ∞ and∑∞

n=0 λnb(λn) < ∞. Assume that a sequence {xn} in a Banach space
E satisfies (1.2) and that {(xn − xn+1)/λn} is bounded. If the operator
A satisfies the convergence condition, then the sequence {xn} converges
strongly to a zero of A.

In 1980, Bruck and Reich [6] generalized the results of [35] by
establishing a general convergence principle for the explicit and implicit
schemes for a certain class of operators that satisfy the Bruck-Reich
condition in Banach spaces.

Consider two mappings f and F such that D(f) ⊂ D(F ) ⊂ E,
f : D(f) → [0,∞) and F : D(F ) → E∗. The pair (f, F ) is said to
be admissible if these mappings satisfy either

(2.5) f(x + y) ≥ f(x) + 〈y, F (x)〉 − b(x, y)‖y‖

or

(2.6) f(x + y) ≤ f(x) + 〈y, F (x)〉 + b(x, y)‖y‖

for all appropriate x and y, where 0 ≤ b(x, y) → 0 as y → 0 uniformly
for x.
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A multivalued mapping A : D(A) ⊂ E → 2E is said to satisfy the
Bruck-Reich condition if, for each K > 0, there is an increasing function
g : R+ → R+ such that g(r) > 0 for r > 0 and

(2.7) 〈y, F (x)〉 ≥ g(f(x))‖y‖

for all x ∈ D(A), y ∈ Ax and ‖x‖ ≤ K, ‖y‖ ≤ K.

Recall that a set A ⊂ E × E is said to be accretive in the sense of
Browder if, for all [xi, yi] ∈ A, i = 1, 2,

〈y1 − y2, j(x1 − x2)〉 ≥ 0

for all j ∈ J(x1 − x2). Let A ⊂ E × E be an accretive operator in the
sense of Browder with 0 ∈ R(A) and assume that A−10, the kernel, is
proximinal and convex. If P is a selection of the nearest point mapping
onto A−10, let Jp(x−Px) denote an element in J(x−Px) that satisfies

〈y − Px, Jp(x − Px)〉 ≤ 0

for all y ∈ A−10. Recall that, in this setting, A is said to satisfy the
convergence condition [35] if there is a selection P of the nearest point
mapping onto A−10 such that, if [xn, yn] ∈ A, ‖xn‖ ≤ K, ‖yn‖ ≤ K
and

lim
n→∞〈yn, Jp(xn − Pxn)〉 = 0,

then limn→∞ ‖xn − Pxn‖ = 0.

Bruck and Reich [6] have shown that, if one takes

f(x) = (1/2)d(x, N(A))2 and F (x) = Jp(x − Px),

then (f, F ) satisfies (2.5) with b = 0 in any Banach spaces and that it
satisfies (2.6) if E is a uniformly smooth Banach space.

We remark in passing that the definition of accretive operator in the
sense of Browder is stronger than that appearing in Section 1. If E∗ is
strictly convex, then the normalized duality mapping J is single-valued
and then the two definitions are uniform.

By virtue of above concepts, Bruck and Reich [6] established the
following general convergence principle:
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Theorem BR1. Suppose that (f, F ) satisfies (2.6), the operator A
satisfies the Bruck-Reich condition and the sequence {xn} in a Banach
space E satisfies (1.2). If the sequences {xn} and {yn} remain bounded
and limn→∞ zn = 0, then either

lim
n→∞ f(xn) = 0 or

∞∑
n=0

‖zn‖ < ∞.

Theorem BR2. Suppose that the pair (f, F ) satisfies (2.5), the
operator A satisfies the Bruck-Reich condition and the sequence {xn}
in a Banach space E satisfies (1.1) with en ≡ 0. If the sequences {xn}
and {yn} remain bounded and limn→∞ zn = 0, then either

lim
n→∞ f(xn) = 0 or

∞∑
n=0

‖zn‖ < ∞.

Recently, several strong convergence results of the Mann and the
Ishikawa iteration processes in general Banach spaces have been es-
tablished for approximating either fixed points of strong pseudo-
contractions acted from a nonempty convex subset K into itself or
solutions of nonlinear equations with accretive operators acted from a
Banach space X into itself, see [7 9, 18, 26, 31, 36, 46, 49]. However,
we find that some results mentioned above can be deduced directly from
BR1 while almost all other results can be deduced from a version of a
convergence theorem due to Bruck and Reich [6].

In 1987, Chidume [10] proved the following result:

Theorem C1. Suppose that K is a nonempty closed convex and
bounded subset of Lp, p ≥ 2, and T : K → K is a Lipschitzian strongly
pseudo-contractive mapping. Suppose that {cn} is a real sequence
satisfying the following conditions:

(i) 0 < cn < 1, n ≥ 0,

(ii)
∑∞

n=0 cn = ∞,

(iii)
∑∞

n=0 cn
2 < ∞.
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Then the sequence {xn} of the Mann iterates defined iteratively by

(2.8)
{

x0 ∈ K,

xn+1 = (1 − cn)xn + cnTxn n ≥ 0,

converges strongly to the unique fixed point of T .

In 1994, Chidume [11] extended Theorem C1 from Lp, p ≥ 2, to
uniformly smooth Banach spaces.

Theorem C2. Let E be a real uniformly smooth Banach space, K
a nonempty closed convex and bounded subset of E and T : K → K a
continuous strongly pseudo-contractive mapping. Suppose that {cn} is
a real sequence satisfying the following conditions:

(i) 0 < cn < 1, n ≥ 0,

(ii)
∑∞

n=0 cn = ∞,

(iii)
∑∞

n=0 cnb(cn) < ∞,

where b : R+ → R+ is the function appearing in Reich [37]. Then the
sequence {xn} generated by

(2.9)
{

x0 ∈ K,

xn+1 = (1 − cn)xn + cnTxn n ≥ 0,

converges strongly to the unique fixed point of T .

In 1995, Chidume [12] announced another result as follows:

Theorem C3. Let E be a real Banach space with the uniformly
convex dual space E∗. Suppose that T : E → E is a continuous strongly
accretive mapping such that (I − T ) has bounded range. For a given
f ∈ E, define S : E → E by Sx = f −Tx+x for each x ∈ E. Consider
the sequence {xn} defined iteratively by

(2.10)
{

x0 ∈ E,

xn+1 = (1 − λn)xn + λnSxn n ≥ 0,

where {λn} is a real sequence satisfying the following conditions:
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(i) 0 < λn ≤ 1, n ≥ 0,

(ii)
∑∞

n=0 λn = ∞,

(iii)
∑∞

n=0 λnb(λn) < ∞, where b : R+ → R+ is the function
appearing in Reich [37].

Then the sequence {xn} generated by (2.10) converges strongly to the
unique solution of the equation Tx = f .

Remark 2.1. By a result of Bogin [2], we see that Theorem C3 can
be deduced from Theorem C2. Apparently, Theorem C1 is a special
case of Theorem C2 while Theorem C2 can be deduced directly from
Theorem BR1. The proof of this claim is postponed to Section 3.

In his study of the Ishikawa and Mann iteration methods with errors
for strongly accretive operators, Liu [30] proved the following theorems:

Theorem L1. Let E be a uniformly smooth Banach space and
T : E → E be a Lipschitzian strongly accretive operator with constant
k ∈ (0, 1) and Lipschitz constant L ≥ 1. Define a mapping S : E → E
by Sx = f + x−Tx. Let {un} and {vn} be two summable sequences in
E and {αn}, {βn} be two real sequences in [0, 1] satisfying the following
conditions:

(i) αn → 0 as n → ∞,

(ii)
∑∞

n=0 αn = ∞,

(iii) limn→∞ sup βn < (k/(L2 − k)).

Define the sequence {xn} by

(2.11)

⎧⎨
⎩

x0 ∈ E,

yn = (1 − βn)xn + βnSxn + un n ≥ 0,
xn+1 = (1 − αn)xn + αnSyn + vn n ≥ 0.

If {Syn} is bounded, then the sequence {xn} converges strongly to the
solution of the equation Tx = f .

Theorem L2. Let E be a uniformly smooth Banach space and
T : E → E a semicontinuous strongly accretive operator with the
constant k ∈ (0, 1) and Lipschitz constant L ≥ 1. Define a mapping
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S : E → E by Sx = f +x−Tx. Let {un} be a summable sequence in E
and {αn} be a real sequence in [0, 1] satisfying the following conditions:

(i) αn → 0 as n → ∞,

(ii)
∑∞

n=0 αn = ∞.

Define the sequence {xn} by

(2.12)
{

x0 ∈ E,

xn+1 = (1 − αn)xn + αnSxn + un n ≥ 0.

If {Sxn} is bounded, then the sequence {xn} converges strongly to the
solution of the equation Tx = f .

In 1996, Osilike [36] proved that both the Mann iteration method
and the Ishikawa iteration method are applied to approximate either
the fixed points of φ-hemicontractive mappings or the solutions of φ-
strongly accretive operators in a real q-uniformly smooth Banach space,
where q > 1.

Theorem O1. Let q > 1 and E be a real q-uniformly smooth Banach
space. Let T : E → E be a Lipschitzian and φ-strongly accretive
operator. Suppose that the equation Tx = f has a solution for any
given f ∈ E. Let {αn} and {βn} be real sequences in [0, 1] satisfying
the following conditions:

(i) 0 ≤ βn ≤ αn
q−1, n ≥ 0,

(ii)
∑∞

n=0 αn(1 − αn)q−1 = ∞,

(iii)
∑∞

n=0 αn
q < ∞.

Define a mapping S : E → E by Sx = f + x − Tx for each x ∈ E.
Then the sequence {xn} generated from any x0 ∈ E by

(2.13)
{

yn = (1 − βn)xn + βnSxn n ≥ 0,
xn+1 = (1 − αn)xn + αnSyn n ≥ 0,

converges strongly to the unique solution of the equation Tx = f .

Theorem O2. Let q > 1 and E be a real q-uniformly smooth Banach
space. Let K be a nonempty closed convex subset of E and T : E → E
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be a Lipschitzian φ-hemicontractive mapping. Let {αn} and {βn} be
real sequences in [0, 1] satisfying the following conditions:

(i) 0 ≤ βn ≤ αn
q−1, n ≥ 0,

(ii)
∑∞

n=0 αn(1 − αn)q−1 = ∞,

(iii)
∑∞

n=0 αn
q < ∞.

Then the sequence {xn} generated from any x0 ∈ E by

(2.14)
{

yn = (1 − βn)xn + βnTxn n ≥ 0,
xn+1 = (1 − αn)xn + αnTyn n ≥ 0,

converges strongly to the unique fixed point of T .

In 1997, Zhou [46] extended Theorems C2 and C3 to the Ishikawa
iteration process by proving the following results:

Theorem Z1. Let E be a real uniformly smooth Banach space, K
a nonempty closed convex and bounded subset of E and T : K → K
a continuous strongly pseudo-contractive mapping. Suppose that {αn}
and {βn} are real sequences in [0, 1] satisfying the following conditions:

(i) αn, βn → 0 as n → ∞,

(ii)
∑∞

n=0 αn = ∞.

Then, for each x0 ∈ K, the Ishikawa iterative sequence {xn} generated
by

(2.15)
{

xn+1 = (1 − αn)xn + αnTyn n ≥ 0,
yn = (1 − βn)xn + βnTxn n ≥ 0,

converges strongly to the unique fixed point of T .

Theorem Z2. Let E be a real Banach space with the uniformly
convex dual space E∗. Suppose that T : E → E is a continuous strongly
accretive mapping such that (I − T ) has bounded range. For a given
f ∈ E, define a mapping S : E → E by Sx = f − Tx + x for each
x ∈ E. Consider the sequence {xn} defined iteratively by

(2.16)

⎧⎨
⎩

x0 ∈ E,

xn+1 = (1 − αn)xn + αnSyn n ≥ 0,
yn = (1 − βn)xn + βnSxn n ≥ 0,
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where {αn} and {βn} are real sequences in [0, 1] satisfying the following
conditions:

(i) αn, βn → 0 as n → ∞,

(ii)
∑∞

n=0 λn = ∞.

Then the Ishikawa iterative sequence {xn} generated by (2.16) con-
verges strongly to the unique solution of the equation Tx = f .

In 1997, by using Kato’s inequality, Liu [31] proved the following
result:

Theorem Lu1. Let E be a real Banach space, K a nonempty
closed convex and bounded subset of E and T : K → K a Lipschitzian
and strongly pseudo-contractive mapping. Let {cn} be a real sequence
satisfying the following conditions:

(i) 0 ≤ cn < 1, n ≥ 0,

(ii) cn → 0 as n → ∞,

(iii)
∑∞

n=0 cn = ∞.

Then the sequence {xn} defined by

(2.17)
{

x0 ∈ K,

xn+1 = (1 − cn)xn + cnTxn n ≥ 0,

converges strongly to the unique fixed point of T .

By virtue of Liu’s idea and technique in [31], Chidume and Osilike
[18] extended Theorem L1 to the Ishikawa iteration process as follows:

Theorem CO. Let E be a real Banach space, K a nonempty closed
convex subset of E and T : K → K a Lipschitzian and strongly pseudo-
contractive mapping. Let {αn} and {βn} be real sequences in [0, 1]
satisfying the following conditions:

(i) αn, βn → 0 as n → ∞,

(ii)
∑∞

n=0 αn = ∞.
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Then the Ishikawa iterative sequence {xn} generated from an arbitrary
x0 ∈ K by

(2.18)
{

xn+1 = (1 − αn)xn + αnTyn n ≥ 0,
yn = (1 − βn)xn + βnTxn n ≥ 0,

converges strongly to the unique fixed point of T .

In 1997, Ding [26] also proved the following results, which generalized
Theorems O1, O2 and CO:

Theorem D1. Let E be an arbitrary Banach space and T : D(T ) ⊂
E → E be a Lipschitzian and φ−strongly accretive operator with
domain D(T ) and range R(T ). Suppose that the equation Tx = f
has a solution for any f ∈ D(T ). Let {un} and {vn} be two sequences
in E and {αn}, {βn} two real sequences in [0, 1] satisfying the following
conditions:

(i)
∑∞

n=0 ‖vn‖ < ∞,
∑∞

n=0 ‖un‖ < ∞,

(ii)
∑∞

n=0 αn = ∞,

(iii)
∑∞

n=0 αn(1 − αn)βn < ∞,

(iv)
∑∞

n=0 α2
n < ∞.

Suppose that, for some x0 ∈ D(T ), the Ishikawa type iterative sequences
{xn} and {yn} with errors defined by

(2.19)
{

xn+1 = (1 − αn)xn + αn(f + (I − T )yn) + un n ≥ 0,
yn = (1 − βn)xn + βn(f + (I − T )xn) + vn n ≥ 0,

are both contained in D(T ). Then the sequence {xn} converges strongly
to the unique solution of the equation Tx = f .

Theorem D2. Let E be an arbitrary Banach space and A : D(A) ⊂
E → E a Lipschitzian and φ-hemicontractive mapping with domain
D(A) and range R(A). Let {un}, {vn} be two sequences in E and
{αn}, {βn} two real sequences in [0, 1] such that conditions (i) (iv) in
Theorem D1 hold. Suppose that, for some x0 ∈ D(A), the Ishikawa
type iterative sequences {xn} and {yn} with errors defined by

(2.20)
{

xn+1 = (1 − αn)xn + αnAyn + un n ≥ 0,
yn = (1 − βn)xn + βnAxn + vn n ≥ 0,
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are both contained in D(A). Then the sequence {xn} converges strongly
to the unique solution of A.

Unlike the approach of Chidume and Osilike [18], Chang [7, 8] and
Chang et al. [9] used an inequality which holds in general Banach spaces
and proved the following result:

Theorem CSS. Let E be a real Banach space, K a nonempty closed
convex and bounded subset of E and T : K → K a uniformly continuous
and strongly pseudo-contractive mapping. Let {αn} and {βn} be real
sequences in [0, 1] satisfying the following conditions:

(i) αn, βn → 0 as n → ∞,

(ii)
∑∞

n=0 αn = ∞.

Then the Ishikawa iterative sequence {xn} generated from an arbitrary
x0 ∈ K by

(2.21)
{

xn+1 = (1 − αn)xn + αnTyn n ≥ 0,
yn = (1 − βn)xn + βnTxn n ≥ 0,

converges strongly to the unique fixed point of T .

Zhou [50] also proved the following results:

Theorem Z3. Let E be an arbitrary Banach space and T : E → E a
Lipschitzian and φ-strongly quasi-accretive operator with the Lipschitz
constant L ≥ 1. Set L1 = L + 1. Define a mapping S : E → E by
Sx = x − Tx for each x ∈ E. Let {un}, {vn} be two sequences in
E and {αn}, {βn} two real sequences in [0, 1] satisfying the following
conditions:

(i) ‖vn‖ → 0 as n → ∞, ‖un‖ = o(αn),

(ii)
∑∞

n=0 αn = ∞,

(iii) αn, βn → 0 as n → ∞.

Define the Ishikawa iterative sequence {xn} with errors by

(2.22)

⎧⎨
⎩

x0 ∈ E,

xn+1 = (1 − αn)xn + αnSyn + un n ≥ 0,
yn = (1 − βn)xn + βnSxn + vn n ≥ 0.
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Suppose, furthermore, that {Syn} is bounded. Then the sequence {xn}
converges strongly to the unique solution of the equation Tx = 0.

Theorem Z4. Let E be an arbitrary Banach space, K a nonempty
convex subset of E such that K + K ⊂ K. Let A : K → K be a
Lipschitzian and φ-hemicontractive mapping with the Lipschitz constant
L ≥ 1. Let {un} and {vn} be two sequences in E and {αn}, {βn} two
real sequences in [0, 1] such that conditions (i) (iii) in Theorem Z3 hold.
Define the Ishikawa iterative sequence {xn} iteratively by

(2.23)

⎧⎨
⎩

x0 ∈ K,

xn+1 = (1 − αn)xn + αnAyn + un n ≥ 0,
yn = (1 − βn)xn + βnAxn + vn n ≥ 0.

If {Ayn} is bounded, then the sequence {xn} converges strongly to the
unique fixed point of A.

3. A general convergence principle. In this section we establish
a general convergence principle from which most of the recent conver-
gence theorems can be deduced easily. We start with a simple theorem,
from which Theorems C1, C2 and C3 can be deduced.

Theorem 3.1. Let E be a real uniformly smooth Banach space and
A : D(A) ⊂ E → E a strongly accretive operator with the nonempty
kernel N(A) and strong accretiveness constant k ∈ (0, 1). Suppose that
a sequence {xn} can be defined by the explicit scheme

(3.1) xn+1 = xn − λnAxn, n ≥ 0,

where x0 ∈ D(A), and {λn} is a positive sequence in [0, 1] satisfying∑∞
n=0 λn = ∞ and λn → 0 as n → ∞. If {Axn} remains bounded,

then the sequence {xn} converges strongly to the unique zero of A.

Proof. We observe first that N(A) is a singleton because of the
strong accretiveness of A. Since A is strongly accretive, A satisfies
the convergence condition and hence it satisfies Bruck-Reich condition.

Now we want to prove that {xn} is bounded and to complete this
assertion by using Reich’s inequality. Let M = sup{‖Axn‖ : n ≥ 0}+1.
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Since λn → 0 as n → ∞, we see that b(λn) → 0 as n → ∞. Hence,
for the fixed constant (2k)/M , there is some fixed positive integer n0

such that b(λn) ≤ (2k)/M for all n ≥ n0. Using Reich’s inequality and
(3.1), we have

(3.2)

⎧⎨
⎩

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − 2λn〈Axn, j(xn − x∗)〉
+M2 max{‖xn − x∗‖, 1}λnb(λn)

≤ (1 − 2kλn)‖xn − x∗‖2 + M2 max{‖xn − x∗‖, 1}λnb(λn).

Now we consider two possible cases:

Case 1. ‖xn0−x∗‖ ≤ 1. In this case, by (3.2), we have ‖xn0+m−x∗‖ ≤
1 for all m ≥ 0, which gives {xn} is bounded.

Case 2. ‖xn0 − x∗‖ > 1. In this case, by using (3.2), we have
‖xn0+m − x∗‖ ≤ ‖xn0 − x∗‖ for all m ≥ 0. By Theorem BR1, we see
that f(xn) → 0 as n → ∞ or

∑∞
n=0 ‖zn‖ < ∞. In the first case, we

know that xn → x∗ as n → ∞. In the second case, we have xn → y
as n → ∞. Now it follows from lim infn→∞ ‖Axn‖ = 0 and the strong
accretiveness of A that y = x∗ ∈ N(A). This completes the proof.

Remark 3.1. Theorem C3 can be deduced directly from our Theo-
rem 3.1 and Theorem C2 can be deduced easily by setting A = I − T ,
where T is as in Theorem C2, while Theorem C1 can be deduced from
Theorem C2.

We now turn our attention to the study of convergence for the explicit
scheme (1.7). For the sake of simplicity, we only consider the case when
A is single-valued.

Theorem 3.2. Let E be a real uniformly smooth Banach space and
A : D(A) ⊂ E → E a quasi-accretive operator. Suppose that a sequence
{xn} can be defined by the explicit scheme

(3.3) xn+1 = xn − λnAxn + o(λn) + en, n ≥ 0,

where x0 ∈ D(A), {en} is a sequence in E such that
∑∞

n=0 ‖en‖ < ∞
and {λn} is a positive sequence in [0, 1] satisfying

∑∞
n=0 λn = ∞ and
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λn → 0 as n → ∞. Suppose that there exists a strictly increasing
function φ : [0,∞) → [0,∞) with φ(0) = 0 and that A satisfies the
condition (3.4) such that

(3.4) 〈Axn, j(xn − v)〉 ≥ φ(‖xn − v‖)‖xn − v‖

for any v ∈ N(A). If {Axn} remains bounded, then the sequence {xn}
converges strongly to v.

Proof. Let v ∈ N(A) be given and ‖o(λn)‖ = λnεn with εn → 0 as
n → ∞. Set

M = sup{‖Axn‖ : n ≥ 0} + 1, An = xn − v − λnAxn.

By using Reich’s inequality and (3.3), we have

(3.5)

‖xn+1 − v‖2 ≤ ‖An‖2 + 2〈en, j(An)〉 + max{‖An‖, 1}b(‖en‖)‖en‖
≤ ‖xn − v‖2 − 2λn〈Axn, j(xn − v)〉

+ M2 max{‖xn − v‖, 1}λnb(λn)
+ 2‖en‖‖An‖ + max{‖An‖, 1}b(‖en‖)‖en‖

≤ ‖xn − v‖2 − 2λnφ(‖xn − v‖)‖xn − v‖
+ M2 max{‖xn − v‖, 1}λnb(λn)
+ 2‖en‖(‖xn − v‖ + Mλn)
+ max{‖xn − v‖ + Mλn, 1}b(‖en‖)‖en‖.

Now we consider the following possible cases:

Case (I). There is a fixed positive integer n0 such that ‖xn − v‖ ≥ 1
for all n ≥ n0.

Since λn, en → 0 as n → ∞, we have b(λn), b(‖en‖) → 0 as n → ∞.
Hence, there is a fixed positive integer n1 such that

M2b(λn) ≤ φ(1), b(‖en‖) ≤ 1, 4M‖en‖ ≤ 1
2

φ(1)
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for all n ≥ n1. Take n2 = max{n0, n1}. Then, by using (3.5), we have

(3.6)

‖xn+1 − v‖2 ≤ ‖xn − v‖2 − 2λnφ(1)‖xn − v‖ + M2λnb(λn)‖xn − v‖
+ 2(‖xn − v‖ + Mλn)(1 + b(‖en‖)‖en‖

≤ ‖xn − v‖2 − λnφ(1) + 4(‖xn − v‖ + Mλn)‖en‖
≤ ‖xn − v‖2 − 1

2
φ(1)λn + 4‖xn − v‖‖en‖

for all n ≥ n2, which implies that

(3.7) ‖xn+1 − v‖ ≤ ‖xn − v‖ + 4‖en‖

for all n ≥ n2. It follows from (3.7) that {‖xn − v‖} is bounded. This
in turn implies that

1
2

∑
n≥n2

λn ≤ ‖xn2 − v‖2 + 4C
∑

n≥n2

‖en‖

for some positive constant C, which is a contradiction. This shows the
case (I) is impossible.

Case (II). There is an infinite subsequence {xnj
} of {xn} such that

‖xnj
− v‖ ≤ 1. In this case, by using induction, we can prove that

‖xnj+m − v‖2 ≤ 1 + 5
m−1∑
l=0

‖enj+l‖,

which shows that {‖xn − v‖} is bounded. As in the proof of the
corresponding part of Case (I), we can prove that xnj

→ v as j → ∞.
As in the proof of boundedness for the sequence {xn}, we can prove
that xn → v as n → ∞. This completes the proof.

Remark 3.2. Apparently, if A is φ−strongly quasi-accretive, then
it satisfies the condition (3.4) for any sequence {xn} in D(A), so
that it satisfies the convergence condition [6] and hence satisfies the
Bruck-Reich condition. Conversely, let A be a quasi-accretive operator
which is expending. If A satisfies the Bruck-Reich condition, then it
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satisfies the convergence condition [6]. Furthermore, if both {xn} and
{Axn} are bounded, then A satisfies the condition (3.4). Thus, for
any φ-strongly quasi-accretive operator A, it satisfies the convergence
condition ([6]) if and only if it satisfies the Bruck-Reich condition.

Remark 3.3. Actually, Theorem 3.2 can be extended to the following
more general setting:

Let E be a real uniformly smooth Banach space and A : D(A) ⊂ E →
E be a quasi-accretive operator. Assume that N(A) has a nonempty
closed convex subset of N0(A). Let P0 denote an arbitrary single-valued
selection of the nearest point mapping from E onto N0(A) such that

(3.8) 〈y − P0x, j(x − P0x)〉 ≤ 0

for all y ∈ N0(A). Suppose that a sequence {xn} can be defined by the
explicit scheme

(3.9) xn+1 = xn − λnAxn + o(λn) + en, n ≥ 0,

where x0 ∈ D(A), {en}∞n=0 is a sequence in E such that
∑∞

n=0 ‖en‖ <
∞ and {λn}∞n=0 is a positive sequence in [0, 1] satisfying

∑∞
n=0 λn = ∞

and λn → 0 as n → ∞. Suppose that there exists a strictly increasing
function φ : [0,∞) → [0,∞) with φ(0) = 0 and that A satisfies the
condition (3.10) such that

(3.10) 〈Axn, j(xn − P0xn)〉 ≥ φ(‖xn − P0xn‖)‖xn − P0xn‖.
If {Axn} remains bounded, then the sequence {xn}∞n=0 converges
strongly to a zero of A.

In fact, proceeding as in the proof of Theorem 3.2, we can prove
that ‖xn − P0xn‖ → 0 as n → ∞. By induction, one can prove that
‖xn+m −P0xn‖ → 0 as n → ∞ uniformly for all m ≥ 0. Consequently,
‖xn+m − xn‖ → 0 as n, m → 0. This shows that {xn} is a Cauchy
sequence. Assume that xn → z as n → ∞. Then P0xn → z as n → ∞.
Since N0(A) is closed, we see that z ∈ N0(A).

Thus, taking N0(A) = {v}, then we obtain Theorem 3.2.

By virtue of the techniques in the proof of Theorems 3.2 and Remark
3.3, one can prove that the following more general result:
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Theorem 3.3. Let E be a real uniformly smooth Banach space and
A : D(A) ⊂ E → E be a quasi-accretive operator. Suppose that a
sequence {xn} can be defined by the explicit scheme

(3.11)
{

xn+1 = xn − λnAyn + o(λn) + en n ≥ 0,
yn = xn − βnAxn + o(βn) n ≥ 0,

where x0 ∈ D(A), {en}∞n=0 is a sequence in E such that
∑∞

n=0 ‖en‖ <
∞, {λn}∞n=0 and{βn}∞n=0 are real sequences in [0, 1] satisfying

∑∞
n=0 λn

= ∞ and λn, βn → 0 as n → ∞. Suppose that there exists a strictly
increasing function φ : [0,∞) → [0,∞) with φ(0) = 0 and that A
satisfies the condition (3.13) such that

(3.12) 〈Ayn, j(yn − v)〉 ≥ φ(‖yn − v‖)‖yn − v‖

for any v ∈ N(A). If {Axn} and {Ayn} remain bounded, then the
sequence {xn}∞n=0 converges strongly to v.

Proof. The proof is similar to that of Theorem 3.2 and so it is omitted.

Remark 3.4. If we follow the proofs of Theorem 3.2 and Remark
3.3, then Theorem 3.3 can be extended to the following more general
setting:

Let E be a real uniformly smooth Banach space and A : D(A) ⊂
E → E a quasi-accretive operator. Assume that N(A) has a nonempty
closed subset N0(A). Let P0 be an arbitrary single-valued selection of
the nearest point mapping from E onto N0(A) such that

(3.13) 〈y − P0x, j(x − P0x)〉 ≤ 0

for all y ∈ N0(A). Suppose that a sequence {xn} can be defined by the
explicit scheme

(3.14)
{

xn+1 = xn − λnAyn + o(λn) + en n ≥ 0,
yn = xn − βnAxn + o(βn) n ≥ 0,

where x0 ∈ D(A) and {en}∞n=0 is a sequence in E such that
∑∞

n=0 ‖en‖ <
∞, {λn}∞n=0 and {βn}∞n=0 are real sequences in [0, 1] satisfying

∑∞
n=0 λn
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= ∞ and λn, βn → 0 as n → ∞. Suppose that there exists a strictly
increasing function φ : [0,∞) → [0,∞) with φ(0) = 0 and that A
satisfies the condition (3.15) such that

(3.15) 〈Ayn, j(yn − P0yn)〉 ≥ φ(‖yn − P0yn‖)‖yn − P0yn‖

for all n ≥ 0. If both {Axn} and {Ayn} remain bounded and
‖P0xn − P0yn‖ → 0 as n → ∞, then the sequence {xn} converges
strongly to a zero of A.

The next theorem deals with convergence for the implicit scheme
(1.6). For the sake of simplicity, we only consider the case when A is
single-valued.

Theorem 3.4. Let E be a real Banach space and A : D(A) ⊂ E → E
be a quasi-accretive operator. Suppose that a sequence {xn} can be
defined by the implicit scheme

(3.16) xn+1 + λnAxn+1 = xn + o(λn) + en, n ≥ 0,

where x0 ∈ D(A) and {en}∞n=0 is a sequence in E such that
∑∞

n=0 ‖en‖
< ∞ and {λn}∞n=0 is a positive sequence in [0, 1] such that

∑∞
n=0 λn =

∞. Suppose that there exists a strictly increasing function φ : [0,∞) →
[0,∞) with φ(0) = 0 and that A satisfies the condition (3.17) such that,
for each xn ∈ D(A) and v ∈ N(A), there exists j(xn − v) ∈ J(xn − v)
such that

(3.17) 〈Axn, j(xn − v)〉 ≥ φ(‖xn − v‖)‖xn − v‖.

Then the sequence {xn} converges strongly to v.

Proof. If the conclusion is true with en ≡ 0 for n ≥ 0, then it is also
true if {en}∞n=0 has a compact support. Approximating any sequence
{‖en‖}∞n=0 in l1 by a sequence with a compact support and using the
facts that the resolvents Jλn

are contractions for n ≥ 0, we see that
we may assume in the remainder of the proof that en ≡ 0 for n ≥ 0.
Observe that

(3.18) xn+1 − v + λnAxn+1 = xn − v + o(λn)
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for any v ∈ N(A). Evaluating j(xn+1−v) ∈ J(xn+1−v) on the equality
(3.16), we obtain

(3.19) ‖xn+1 − v‖2 ≤ (‖xn − v‖−λn(φ(‖xn+1− v‖)− εn))‖xn+1 − v‖.

Without loss of generality, we may assume that ‖xn+1 − v‖ > 0 for all
n ≥ 0. It follows from (3.19) that

(3.20) ‖xn+1 − v‖ ≤ ‖xn − v‖ − λn[φ(‖xn+1 − v‖) − εn].

Set cn = inf{r ≥ 0 : φ(r) > εn}. Then cn → 0 as n → ∞. If
εn ≤ φ(‖xn+1 − v‖), then we have

(3.21) ‖xn+1 − v‖ ≤ ‖xn − v‖.

If φ(‖xn+1 − v‖) ≤ εn, then we have

(3.22) ‖xn+1 − v‖ ≤ cn.

Consequently, we have

(3.23) ‖xn+1 − v‖ ≤ max{‖xn − v‖, cn}

for all n ≥ 0. Since cn → 0 as n → ∞, {xn+1 − v} is bounded. Let

h = lim inf
n→∞ ‖xn − v‖.

For any ε > 0, there exists a positive integer such that ‖xm−v‖ < h+ε
and cn < h + ε for all n ≥ m. It follows that in fact ‖xn − v‖ < h + ε
for all n ≥ m. Therefore we have

lim sup
n→∞

‖xn − v‖ ≤ h + ε,

so that h = limn→∞ ‖xn − v‖. If h > 0, then, for sufficiently large n,

φ(‖xn+1 − v‖) > φ

(
h

2

)
,

which implies that (h/2)φ(h/2)λn ≤ ‖xn − v‖ − ‖xn+1 − v‖ and hence∑∞
n=0 λn < ∞. This completes the proof.
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Remark 3.5. Theorem 3.4 can be extended to the following more
general setting:

Let E be a real reflexive and smooth Banach space and A : D(A) ⊂
E → E be a quasi-accretive operator. Assume that N(A) is proximinal
and convex. Let P0 denote an arbitrary single-valued selection of the
nearest point mapping from E onto N(A). Suppose that a sequence
{xn} can be defined by the implicit scheme

(3.24) xn+1 + λnAxn+1 = xn + o(λn) + en, n ≥ 0,

where x0 ∈ D(A), {en}∞n=0 is a sequence in E such that
∑∞

n=0 ‖en‖ <
∞ and {λn}∞n=0 is a positive sequence in [0, 1] such that

∑∞
n=0 λn = ∞.

Suppose that there exists a strictly increasing function φ : [0,∞) →
[0,∞) with φ(0) = 0 and that A satisfies the condition (3.25) such
that, for each xn ∈ D(A), there exists j(xn − P0xn) ∈ J(xn − P0xn)
such that

(3.25) 〈Axn, j(xn − P0xn)〉 ≥ φ(‖xn − P0xn‖)‖xn − P0xn‖.

Then the sequence {xn} converges strongly to a zero of A.

In fact, we observe first that the normalized duality mapping J is
single-valued since E is reflexive and smooth. Since N(A) is proximinal
and convex, we have

〈y − P0x, j(x − P0x)〉 ≤ 0

for all y ∈ N(A). The remainder of the proof is similar to the
corresponding part of Theorem 3.4.

Remark 3.6. Our Theorems 3.2∼3.4 and Remarks 3.3∼3.5 are very
general results, from which almost all the convergence results on the
Ishikawa iterative process (with errors) in arbitrary Banach spaces can
be deduced easily.

4. Applications. In this section, we are devoted to present possible
applications of the convergence principle established in Section 3. It
is expected that almost all the recent convergence results obtained by
Chidume [11], Weng [42], Osilike [36], L.S. Liu [30], L.W. Liu [31],
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Chidume and Osilike [8], Ding [26], Zhou [48, 53] and others can be
deduced from our general convergence principle.

Corollary 4.1. Theorem Z1 is a corollary of Theorem 3.3.

Proof. Define a mapping A : D(A) = K → E by Ax = x − Tx
for each x ∈ K. Then A is strongly accretive with N(A) = {x∗}, the
recursive formula (2.15) reduces to

(4.2)

⎧⎨
⎩

xn+1 = xn − αnAyn − αnβnAxn

= xn − αnAyn + o(αn) n ≥ 0,
yn = xn − βnAxn n ≥ 0.

Moreover, {Axn} and {Ayn} are all bounded since K is bounded. By
Theorem 3.3, we assert that Theorem Z1 holds true. This completes
the proof.

Corollary 4.2. Theorem Lu1 is a corollary of Theorem 3.4.

Proof. Define a mapping A : K → E by Ax = x−Tx for each x ∈ K.
Then A is strongly accretive with N(A) = {x∗}. We observe that the
recursive formula (2.17) reduces to

(4.3) xn+1 = xn − cnAxn, n ≥ 0.

This yields

(4.4) xn+1 + cnAxn+1 = xn + o(cn), n ≥ 0,

with
∑∞

n=0 cn = ∞. Hence the sequence {xn}∞n=0 satisfies (3.9) with
en ≡ 0 for n ≥ 0. By Theorem 3.4, we see that xn → x∗ as n → ∞.
This completes the proof.

Corollary 4.3. Theorem CO is a corollary of Theorem 3.4.

Proof. Define a mapping A : K → E by Ax = x−Tx for each x ∈ K.
Then A is Lipschitzian and strongly accretive with N(A) = {x∗}. The
recursive formula (2.18) reduces to

(4.5) xn+1 +αnAxn+1 = xn−αnβnAxn +αn(Axn+1−Ayn), n ≥ 0.
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Under the assumptions of Theorem CO, we can prove that the sequence
{xn}∞n=0 is bounded and Axn+1 − Ayn → 0 as n → ∞. Thus, the
recursive formula (4.4) in fact reduces to

(4.6) xn+1 + αnAxn+1 = xn + o(αn), n ≥ 0.

By Theorem 3.4, we know that the conclusion of Theorem CO is true.
This completes the proof.

Corollary 4.4. Theorem D1 is a corollary of Theorem 3.4.

Proof. Define a mapping A : D(A) ⊂ E → E by Ax = Tx−f for each
x ∈ K. Then A is Lipschitzian strongly accretive with N(A) = {x∗}.
The recursive formula (2.19) reduces to

(4.7) xn+1 +αnAxn+1 = xn−αnβnAxn +αn(Axn+1−Ayn), n ≥ 0.

Under the assumptions of Theorem D1, we can prove that the sequence
{xn}∞n=0 is bounded and Axn+1 − Ayn → 0 as n → ∞. Thus, the
recursive formula (4.7) in fact reduces to

(4.8) xn+1 + αnAxn+1 = xn + o(αn) + en, n ≥ 0,

with
∑∞

n=0 ‖en‖ < ∞. By Theorem 3.4, we know that the conclusion
of Theorem D1 is true. This completes the proof.

Corollary 4.5. Theorem Z3 is a corollary of Theorem 3.4.

Proof. Under the assumptions of Theorem Z3, the recursive formula
(2.22) in fact reduces to

(4.9) xn+1 + αnTxn+1 = xn + o(αn), n ≥ 0.

By Theorem 3.4, we assert that the conclusion of Theorem Z3 holds
true. This completes the proof.

5. Open problems. We conclude this paper with the following
open problems:
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Open problem 1. Can one present a constructive proof for Theorem
Lu1?

Open problem 2. Can Theorem Z1 be extended to a real smooth
Banach space?

Open problem 3. Can Theorem Z1 be deduced from Theorem 3.2?

Open problem 4. Can one give some sufficient conditions which
guarantee the iterative schemes considered in Theorems 3.2 and 3.4
are well-defined?
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