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SOLUTIONS OF BOUNDARY VALUE PROBLEMS
FOR 2n-ORDER DIFFERENTIAL EQUATIONS

BINGGEN ZHANG AND YUJI LIU

ABSTRACT. In this paper we consider the higher order
differential equation

(0.1) (−1)nx(2n)(t) = f(t, x(t), x′(t), . . . , x(2n−1)(t)),

0 < t < 1,

subject to one of the following boundary value conditions

(0.2) x(2i)(1) = 0 for i = 0, 1, . . . , n − 1,

x(2i+1)(0) = 0 for i = 0, 1, . . . , n − 1,

or

(0.3) x(i)(1) = 0 for i = 0, 1, . . . , n − 1,

x(i)(0) = 0 for i = n, . . . , 2n − 1,

where f(t, x0, x1, . . . , x2n−1) is continuous. Sufficient con-
ditions for the existence of at least one solution or positive
solution of the BVP (1) and (2) and BVP (1) and (3) are es-
tablished, respectively. The emphasis in this paper is that f
depends on all higher-order derivatives and we allow that the
variables x0, . . . , x2n−1 in f have the degrees greater than 1.
Examples are given to illustrate the main results.

1. Introduction. Recently, there has been increasing interest in the
study of the existence of positive solutions of boundary value problems
for second order or higher order ordinary differential equations, we refer
the reader to [5, 7, 9, 12 15, 17 19] and the monographs [1 3].

For the second order case, the existence of positive solutions of
boundary value problems for nonlinear differential equations has been
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studied by many authors. Especially, the study of the following
differential equation

(1) x′′(t) + f(t, x(t)) = 0, 0 < t < 1,

subjected to different boundary value conditions, has received much
attention in seeking conditions on the nonlinearity f for which there
are either at least one, at least two or at least three positive solutions,
one may see [4, 8, 10, 11, 22], for examples.

However, the existence of positive solutions of the following differen-
tial equation

(2) x′′(t) + f(t, x(t), x′(t)) = 0, 0 < t < 1,

associated with different boundary value conditions has not many
studies, since the presence of x′ in the nonlinearity f causes some
considerable difficulties. We name a few, see [6, 14, 16, 20] for
examples.

Very recently, Chyan and Henderson, in [7], studied the following
2mth-order differential equation

(3) x(2m)(t) = f(t, x(t), x′′(t), . . . , x(2(m−1))(t)), 0 < t < 1,

with either the Lidstone boundary value condition

(4) x(2i)(0) = x(2i)(1) = 0 for i = 0, 1, . . . , m − 1,

or the focal boundary value condition

(5) x(2i+1)(0) = x(2i)(1) = 0 for i = 0, 1, . . . , m − 1.

They proved the existence of at least one positive solution in the case
that either f is super-linear or f is sub-linear.

Similar problems were also investigated in [19] by Palamides by using
an analysis of the corresponding field on the face-plane and the well
known Sperner’s lemma. The method there is different from that in
[7, 14]. In the papers mentioned above, the nonlinearity f depends on
x, x′′, . . . , x(2(m−1)).
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In this paper, we consider the existence of the solutions or positive
solutions of the higher order differential equation

(6) (−1)nx(2n)(t) = f(t, x(t), x′(t), . . . , x(2n−1)(t)), 0 < t < 1,

subject to one of the following boundary value conditions

x(2i+1)(0) = 0 for i = 0, 1, . . . , n − 1,

x(2i)(1) = 0 for i = 0, 1, . . . , n − 1,(7)

x(i)(1) = 0 for i = 0, 1, . . . , n − 1,

x(i)(0) = 0 for i = n, . . . , 2n − 1,(8)

where f(t, x0, x1, . . . , x2n−1) is continuous. For the existence of so-
lutions of equation (6) subject to different boundary conditions, such
as focal boundary value problems, conjugate boundary value problems
and (n,p) boundary value problems, there have been many studies in
recent years. In [1 3], the existence results were established. One of
the main conditions imposed on f is as follows:

(∗) |f(t, x0, x1, . . . , x2n−1)| ≤ L +
2n−1∑
i=0

Li|xi|,

where Li, i = 0, . . . , 2n − 1, are constants. We note that the degree of
variable xi at the right of equation (∗) is 1. However, when (∗) is not
valid, the existence problems for equation (6) have not been enough
investigated till now, [23]. This paper will establish existence results
for equation (6) when (∗) is not valid.

2. Existence results for BVPs. In this section, we will establish
sufficient conditions for the existence of at least one positive solution of
BVP (6) and (7) and BVP (6) and (8), and then we give some examples
to illustrate the main results.

We choose Banach space C[0, 1] with the maximum norm ‖ · ‖∞, and
we define the condition (H): f ∈ C([0, 1] × R2n, R), and there exist
functions h ∈ C([0, 1] × R2n, R), e ∈ C([0, 1], R), gi ∈ C([0, 1], [0,∞)),
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i = 0, 1, 2, . . . , 2n − 1, and real numbers β > 0 and m > 0 such that,
for (t, x0, x1, . . . , x2n−1) ∈ [0, 1] × R2n, f satisfies

f(t, x0, x1, . . . , x2n−1) = e(t) + h(t, x0, x1, . . . , x2n−1) +
2n−1∑
i=0

gi(t)xm
i ,

x2n−1h(t, x0, x1, . . . , x2n−1) ≤ −β|x2n−1|m+1,

and

(9)
2n−1∑
i=0

||gi||∞ < β.

The following well-known fixed point theorem is crucial in our rea-
soning.

Lemma 2.1 [21, Theorem 4.3.2]. Let X be a real Banach Space
and T : X → X a compact operator. If the set Ω = {x ∈ X | x =
λTx, for some λ ∈ (0, 1)} is bounded, then the operator T has a fixed
point in X.

Then we obtain the following main result.

Theorem 2.1. We assume the nonlinear term f in (6) satisfies the
condition (H). Then BVP (6) (7) has at least one solution.

Proof. Let X = C2n−1[0, 1] be endowed with the norm

‖x‖ = max{‖x‖∞, ‖x′‖∞, . . . , ‖x(2n−1)‖∞}.
Let G(t, s) be the Green function [1 3] of the corresponding problem

(10)

x(2n)(t) = 0, t ∈ (0, 1),

x(2i)(1) = 0 for i = 0, 1, . . . , n − 1,

x(2i+1)(0) = 0 for i = 0, 1, . . . , n − 1.

Define an operator T by

Tx(t) =
∫ 1

0

G(t, s)f(s, x(s), x′(s), . . . , x(2n−1)(s)) ds, t ∈ [0, 1],
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for x ∈ X. It is easy to check that the operator T : X → X is compact
and x is a solution of BVP (6) and (7) if and only if x is a fixed point
of the operator T . Let

Ω = {x ∈ X | x = λTx, for some λ ∈ (0, 1)}.
It suffices to prove that Ω is bounded according to Lemma 2.1. We
need to prove that there is a constant B > 0 such that

‖x‖ = max{‖x‖∞, ‖x′‖∞, . . . , ‖x(2n−1)‖∞} ≤ B.

For x ∈ Ω, it is easy to show that
(11)

|x(2n−2)(t)| =
∣∣∣∣x(2n−2)(1) +

∫ t

1

x(2n−1)(s) ds

∣∣∣∣ ≤
∫ 1

0

|x(2n−1)(s)| ds,

|x(2n−3)(t)| =
∣∣∣∣x(2n−3)(0) +

∫ t

0

x(2n−2)(s) ds

∣∣∣∣ ≤
∫ 1

0

|x(2n−2)(s)| ds

≤
∫ 1

0

|x(2n−1)(s)| ds,

. . . . . . . . . . . . ,

|x(t)| ≤
∫ 1

0

|x(2n−1)(s)| ds.

We divide our reasoning into two steps.

Step 1. We claim that there is a constant M > 0 such that∫ 1

0
|x(2n−1)(s)|m+1 ds ≤ M .

For x ∈ Ω, we have

(12) x(2n)(t) = λf(t, x(t), x′(t), . . . , x(2n−1)(t)).

Multiplying both sides of (12) by x(2n−1)(t) and integrating from 0 to
1, by the condition (H), we get
1
2
(
x(2n−1)(1)

)2 − 1
2
(
x(2n−1)(0)

)2
= λ

∫ 1

0

f(s, x(s), x′(s), . . . , x(2n−1)(s))x(2n−1)(s) ds

= λ

(∫ 1

0

h(s, x(s), x′(s), . . . , x(2n−1)(s))x(2n−1)(s) ds

+
2n−1∑
i=0

∫ 1

0

gi(s)[x(i)(s)]mx(2n−1)(s) ds +
∫ 1

0

e(s)x(2n−1)(s) ds

)
.
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Thus, from the second part of condition (H),

λ β

∫ 1

0

∣∣x(2n−1)(s)
∣∣m+1

ds

≤ −λ

∫ 1

0

h(s, x(s), x′(s), . . . , x(2n−1)(s))x(2n−1)(s) ds

= − 1
2
(
x(2n−1)(1)

)2 + λ
2n−1∑
i=0

∫ 1

0

gi(s)[x(i)(s)]mx(2n−1)(s) ds

+ λ

∫ 1

0

e(s)x(2n−1)(s) ds

≤ λ

2n−1∑
i=0

∫ 1

0

gi(s)[|x(i)(s)|]m |x(2n−1)(s)| ds

+ λ

∫ 1

0

|e(s)| |x(2n−1)(s)| ds.

Hence

β

∫ 1

0

∣∣x(2n−1)(s)
∣∣m+1

ds ≤
2n−1∑
i=0

∫ 1

0

gi(s)[|x(i)(s)|]m|x(2n−1)(s)| ds

+
∫ 1

0

|e(s)| |x(2n−1)(s)| ds.

So, for i = 0, 1, . . . , 2n − 2, we have

∫ 1

0

gi(s)|x(i)(s)|m |x(2n−1)(s)| ds

≤
(∫ 1

0

|x(2n−1)(s)| ds

)m ∫ 1

0

gi(s)|x(2n−1)(s)| ds

≤ ||gi||∞
(∫ 1

0

|x(2n−1)(s)| ds

)m+1

.

Since

∫ 1

0

|x(2n−1)(s)| ds ≤
(∫ 1

0

|x(2n−1)(s)|m+1 ds

)1/(m+1)

,
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we get

β

∫ 1

0

|x(2n−1)(s)|m+1 ds

≤
2n−2∑
i=0

||gi||∞
(∫ 1

0

|x(2n−1)(s)| ds

)m+1

+ ||g2n−1||∞
∫ 1

0

|x(2n−1)(s)|m+1 ds + ||e||∞
∫ 1

0

|x(2n−1)(s)| ds

≤
2n−2∑
i=0

||gi||∞
∫ 1

0

|x(2n−1)(s)|m+1 ds

+ ||g2n−1||∞
∫ 1

0

|x(2n−1)(s)|m+1 ds

+ ||e||∞
(∫ 1

0

|x(2n−1)(s)|m+1 ds

)1/(m+1)

.

Hence

(
β −

2n−1∑
i=0

‖gi‖∞
)∫ 1

0

|x(2n−1)(s)|m+1 ds

≤ ‖e‖∞
(∫ 1

0

|x(2n−1)(s)|m+1 ds

)1/(m+1)

.

Since

β >
2n−1∑
i=0

‖gi‖∞,

we get there is an M > 0 such that

∫ 1

0

|x(2n−1)(s)|m+1 ds ≤ M.
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Step 2. We claim that there exists B > 0 such that ‖x‖ ≤ B. From
(11), we have, for i = 0, 1, . . . , 2n − 2,

‖x(i)‖∞ ≤
∫ 1

0

|x(2n−1)(s)| ds

≤
(∫ 1

0

|x(2n−1)(s)|m+1 ds

)1/(m+1)

≤ M
1/(m+1)

.

Multiplying both sides of (12) by x(2n−1)(t), integrating from 0 to t
and by condition (H), we get

1
2
(
x(2n−1)(t)

)2 − 1
2
(
x(2n−1)(0)

)2
= λ

∫ t

0

f(s, x(s), x′(s), . . . , x(2n−1)(s))x(2n−1)(s) ds

= λ

∫ t

0

h(s, x(s), x′(s), . . . , x(2n−1)(s))x(2n−1)(s) ds

+ λ

∫ t

0

g0(s)[x(s)]mx(2n−1)(s) ds

+ λ

2n−1∑
i=1

∫ t

0

gi(s)[x(i)(s)]mx(2n−1)(s) ds + λ

∫ t

0

e(s)x(2n−1)(s) ds

≤ −λ β

∫ t

0

|x(2n−1)(s)|m+1 ds +
∫ 1

0

g0(s)[|x(s)|]m|x(2n−1)(s)| ds

+
2n−1∑
i=1

∫ 1

0

gi(s)[|x(i)(s)|]m|x(2n−1)(s)| ds

+
∫ 1

0

|e(s)||x(2n−1)(s)| ds

≤
2n−2∑
i=0

||gi||∞
(∫ 1

0

|x(2n−1)(s)| ds

)m ∫ 1

0

|x(2n−1)(s)| ds

+ ||e||∞
∫ 1

0

|x(2n−1)(s)| ds + ||g2n−1||∞
∫ 1

0

|x(2n−1)(s)|m+1 ds.
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Similarly to Step 1, we can get

1
2
|x(2n−1)(t)|2 ≤

(
2n−1∑
i=0

||gi||∞
)∫ 1

0

|x(2n−1)(s)|m+1 ds

+ ||e||∞
(∫ 1

0

|x(2n−1)(s)|m+1 ds

)1/(m+1)

≤
2n−1∑
i=0

||gi||∞M + ||e||∞M
1/(m+1)

.

So there exists M
′
> 0 such that ‖x(n−1)‖∞ ≤ M

′
. It follows that

‖x‖ ≤ max
{
M, M

′}
=: B.

It follows from Steps 1 and 2 that Ω is bounded. Hence from Lemma 2.1,
T has at least one fixed point, which is a solution of BVP (6) and (7).
This completes the proof of Theorem 2.1.

Corollary 2.1. Suppose the nonlinear term f in (6) satisfies the
condition (H) and f is nonnegative. If f(t, 0, . . . , 0) �≡ 0 on any sub-
interval [α, β] ⊂ [0, 1], where 0 ≤ α < β ≤ 1, then BVP (6) and (7) has
at least one positive solution.

Proof. From Theorem 2.1, BVP (6) and (7) has at least one solution
x, so it suffices to prove that x(t) > 0 for all t ∈ (0, 1). From [1 3],
G(t, s) ≥ 0 for all (t, s) ∈ [0, 1] × [0, 1], then we have

x(t) =
∫ 1

0

G(t, s)f(s, x(s), . . . , x(2n−1)(s)) ds ≥ 0, t ∈ [0, 1].

If x(t0) = 0 for some t0 ∈ (0, 1), it follows from the boundary value
conditions (7) and

(−1)nx(2n)(t) = f(t, x(t), . . . , x(2n−1)(t)) ≥ 0

that (−1)nx(2n−1)(t) ≥ 0 for all t ∈ [0, 1], and so (−1)nx(2n−2)(t) ≥ 0
for all t ∈ [0, 1] since x(2n−2)(1) = 0. By similar analogy, we get
x′(t) is monotone on [0, 1], and so x(t) ≡ 0 for all t ∈ [t0, 1]. Thus
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f(t, 0, · · · , 0) ≡ 0 for t ∈ [t0, 1], and we get a contradiction. Thus x(t)
is positive on [0,1]. So x(t) is a positive solution of BVP (6) and (7).

Theorem 2.2. Under the same assumption on f in (6) as in
Theorem 2.1, BVP (6) and (8) also have at least one solution.

Proof. Let X be defined as the one in the proof of the Theorem 2.1.
Define the operator T by

Tx(t) = (−1)n

∫ 1

t

(s − t)n−1

(n − 1)!

∫ s

0

(s − u)n−1

(n − 1)!

× f(u, x(u), . . . , x(2n−1)(u)) du ds,

for t ∈ [0, 1] and x ∈ X. It is easy to check that T is compact and x
is a solution of BVP (6) and (8) if and only if x(t) is a solution of the
operator equation Tx = x in X. The remainder of the proof is similar
to that of Theorem 2.1 and is omitted.

Corollary 2.2. Under the same assumption on f in (6) as in
Corollary 2.1, BVP (6) and (8) also have at least one positive solution.

Proof. From Theorem 2.2, BVP (6) and (8) have at least one solution
x, it suffices to prove that x(t) > 0 for all t ∈ (0, 1). Since

x(t) = (−1)n

∫ 1

t

(s − t)n−1

(n − 1)!

∫ s

0

(s − u)n−1

(n − 1)!

× f(u, x(u), . . . , x(2n−1)(u)) du ds,

we know x is nonnegative. If x(t0) = 0 for some t0 ∈ (0, 1), it follows
from the boundary value conditions (8) it is easy to have x(t) ≡ 0
for all t ∈ [t0, 1]. Thus f(t, 0, . . . , 0) ≡ 0 for t ∈ [t0, 1], and we get a
contradiction. So x is a positive solution of BVP (6) and (8).

Remark 1. By a similar method, we can establish the existence results
for the following boundary value problem⎧⎨

⎩
x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)) t ∈ (0, 1),
x(i)(1) = 0 i = 0, 1, . . . , p − 1,
x(i)(0) = 0 i = p, . . . , n − 1,
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and the multi-point boundary value problem

⎧⎨
⎩

x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)) t ∈ (0, 1),
x(ik)(ξk) = 0 k = 1, . . . , n − 1,
x(n−1)(0) = 0,

where 1 ≤ p ≤ n − 1, 0 ≤ ξ0 ≤ · · · ≤ ξn−2 ≤ 1 and {i0, i2, . . . , in−2} =
{0, 1, 2, . . . , n − 2}. We omitted the details.

3. Examples. Now, we give some examples to illustrate the main
results.

Example 1. Consider the following boundary value problem

(18)
{

x(4)(t) = ē(t) − β
(
1 + | sin(x(t))|) [x′′′(t)]3 + exp(t) [x′′(t)]3,

x(1) = x′′(1) = x′(0) = x′′′(0) = 0.

It is easy to see that

f(t, x0, x1, x2, x3) = ē(t) + h(t, x0, x1, x2, x3) + exp(t) [x2]3,
h(t, x0, x1, x2, x3) = −β(1 + | sin x0|)x3

3,

g0 = g1 = g3 = 0, g2(t) = exp(t),
3∑

i=0

||gi||∞ = e, m = 3, β > 0,

x3h(t, x0, x1, x2, x3) = −β(1 + | sin x0|) x4
3 ≤ −β x4

3.

It follows from Theorem 2.1 that BVP (13) has at least one solution
for every continuous function ē ∈ C[0, 1] provided β > e.

Example 2. Consider the following boundary value problem
(14){

x(6)(t) = e(t) − β[x(5)(t)]3 + t[x(t)]3 + t3[x′′(t)]3 + t6[x(5)(t)]3,
x(1) = x′(1) = x′′(1) = x′′′(0) = x4p(0) = x(5)(0) = 0.
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It is easy to see that

f(t, x0, x1, . . . , x5) = e(t) + h(t, x0, x1, . . . , x5) + tx3
0 + t3x3

2 + t6x3
5,

h(t, x0, x1, . . . , x5) = −β x3
5,

g0(t) = t, g1 = g3 = g4 = 0, g2(t) = t3, g5(t) = t6,

3∑
i=0

||gi||∞ = 3, m = 3, β > 0,

x5h(t, x0, x1, . . . , x5) = −β x4
5 ≤ −β x4

5.

It follows from Theorem 2.2 that BVP (14) has at least one solution
for every continuous function e ∈ C[0, 1] provided β > 3.
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