ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 5, 2006

GENERALIZED FREE PRODUCTS OF RESIDUALLY *P*-FINITE GROUPS

P.C. WONG, C.K. TANG AND H.W. GAN

ABSTRACT. In this note, we characterize the residual p-finiteness of generalized free products and tree products of certain residually p-finite groups with non-trivial center amalgamating infinite cyclic subgroups and the tree products of certain one-relator groups. We then apply our results to tree products of finitely generated torsion-free nilpotent groups and free groups.

1. Introduction. Let p be a prime. A group G is said to be residually *p*-finite if for each non-trivial element x of G, there exists a normal subgroup N of index a power of p in G such that $x \notin N$. It is well known that free groups and finitely generated torsion-free nilpotent groups are residually p-finite for all primes p (Iwasawa [5], Gruenberg [3]). In [4], Higman proved that a generalized free product of two finite *p*-groups amalgamating a cyclic subgroup, is residually p-finite. Kim and McCarron [6] then generalized Higman's result by proving that the generalized free product of residually *p*-groups amalgamating a finite cyclic subgroup, is residually *p*-finite. In the same paper [6], they also proved a sufficient condition for a free product of finitely many residually *p*-finite groups amalgamating a single infinite cyclic subgroup, to be residually *p*-finite. From this, they showed that a generalized free product of finitely many free groups or finitely generated torsion-free nilpotent groups amalgamating a maximal cyclic subgroup is residually *p*-finite for all primes *p*. In [11], Wong and Tang extended Kim and McCarron's result to finite tree product of residually *p*-finite groups, amalgamating infinite cyclic subgroups. Thus, the finite tree products of finitely many free groups or finitely generated torsion-free nilpotent groups amalgamating maximal cyclic subgroups are residually p-finite for all primes p.

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 20E26, 20E06, Secondary 20F05.

Key words and phrases. Residually p-finite, subgroup separable for p, tree products, retract. Received by the editors on May 12, 2003.

Copyright ©2006 Rocky Mountain Mathematics Consortium

P.C. WONG, C.K. TANG AND H.W. GAN

More recently, Kim and Tang [9] characterized the residual p-finiteness of generalized free products and tree products of finitely generated torsion-free nilpotent groups and free groups amalgamating maximal cyclic subgroups while in [7], Kim and McCarron characterized the residual p-finiteness of certain one-relator groups. In this note we continue the work of Kim, McCarron and Tang. In the first part we characterize the residual p-finiteness of generalized free products and tree products of certain residually p-finite groups with non-trivial center amalgamating infinite cyclic subgroups. In the second part we characterize the residual p-finiteness of tree products of certain one-relator groups. Then by applying our results to tree products of finitely generated torsion-free nilpotent groups and free groups amalgamating cyclic subgroups, we obtain partial extensions of the results in [7, 9].

The notation used here is standard. In addition, the following will be used for any group G: p shall denote a prime. $N \triangleleft_p G$ means N is a normal subgroup of index a power of p in G. Z(G) denotes the center of G. $C_G(x)$ denotes the centralizer of the element x in G.

2. Preliminaries. In this section, we give some definitions and lemmas which will be used to prove our results.

Definition 2.1 [6, Definition 2.2]. Let H be a subgroup of a group G. Then H is said to be p-closed in G if for $x \notin H$, there exists $N \triangleleft_p G$ such that $x \notin HN$.

Lemma 2.2 [9, Lemma 2.4]. Let G be a residually p-finite group and $\langle h \rangle$ is p-closed in G. Then $\langle h^n \rangle$ is p-closed in G where $|n| = p^{\alpha}$, $\alpha \ge 0$.

Definition 2.3. A subgroup H of a group G is called a retract of G if G has a normal subgroup L such that G = LH and $L \cap H = 1$.

Lemma 2.4 [8, Lemma 3.2]. Let G be a residually p-finite group and $\langle h \rangle$ be a retract of G. Then $\langle h \rangle$ is p-closed in G.

Lemma 2.5. Let G be a residually p-finite group and $x \in G$. If $C_G(x) = \langle x \rangle$, then $\langle x \rangle$ is p-closed in G.

1730

Proof. Let $g \in G \setminus \langle x \rangle$. Since $C_G(x) = \langle x \rangle$, then $[g, x] \neq 1$. By residual *p*-finiteness of *G*, there exists $N \triangleleft_p G$ such that $[g, x] \notin N$. Clearly $g \notin \langle x \rangle N$ and we are done. \Box

Lemma 2.6. Let G be a free group or a finitely generated torsion-free nilpotent group, and let $\langle h \rangle$ be a maximal cyclic subgroup or a retract of G or $C_G(h) = \langle h \rangle$. Then $\langle h^n \rangle$ is p-closed in G where $|n| = p^{\alpha}$, $\alpha \ge 0$.

Proof. Let p be any prime. It is well known that free groups and finitely generated torsion-free nilpotent groups are residually p-finite [3, 5]. Furthermore, maximal cyclic subgroups of a free group are p-closed (see Theorem 3.9 of Kim and McCarron [6]). Also maximal cyclic subgroups of a finitely generated (non-cyclic) torsion-free nilpotent group are isolated and hence are p-closed (see Theorem 2.5 of Baumslag [2]). By Lemma 2.4, retracts of a residually p-finite group are p-closed. By Lemma 2.5, the cyclic subgroup $\langle h \rangle$ is p-closed since $C_G(h) = \langle h \rangle$. The result now follows from Lemma 2.2.

Lemma 2.7 [11, Lemma 2]. Let $G = A_{a=b}^* B$. Suppose that A, B are residually p-finite groups and $\langle a \rangle$ is p-closed in A and $\langle b \rangle$ is p-closed in B. If K is a subgroup of A and K is p-closed in A, then K is p-closed in G.

Definition 2.8. Let A_i , $1 \le i \le n$, be groups where n is finite. Then $G = \langle A_1, \ldots, A_n; a_{ij} = a_{ji}, i \ne j, 1 \le i, j \le n \rangle$ where $a_{ij} \in A_{ij}$, shall denote a tree product of the groups A_i , with the cyclic subgroups $\langle a_{ij} \rangle$ of A_i and $\langle a_{ji} \rangle$ of A_j amalgamated.

Theorem 2.9 [11, Theorem 3]. Let $G = \langle A_1, \ldots, A_n; a_{ij} = a_{ji}, i \neq j, 1 \leq i, j \leq n \rangle$ where $a_{ij} \in A_{ij}$ and n is finite, be a tree product of the groups A_i , amalgamating the cyclic subgroups $\langle a_{ij} \rangle$ of A_i and $\langle a_{ji} \rangle$ of A_j . Suppose each A_i is residually p-finite and $\langle a_{ij} \rangle$ is p-closed in A_i . Then G is residually p-finite.

3. Generalized free products and tree products of residually *p*-finite groups with non-trivial center. In this section, we characterize the residual *p*-finiteness of generalized free products and

tree products of certain residually *p*-finite groups with non-trivial center amalgamating infinite cyclic subgroups.

Lemma 3.1. Let $G = A_{a=b^m}^* \langle b \rangle$, and suppose that there exists $c \in A \setminus \langle a \rangle$ such that $[c, a^t] = 1$ for some $t \in \mathbf{Z}$, $t \neq 0$. If G is residually *p*-finite, then $|m| = p^{\beta}$, $\beta \geq 0$.

Proof. Suppose that $m = qm_1$ where $q \neq p$ is a prime. By our assumption, there exists $c \in A \setminus \langle a \rangle$ such that $[c, a^t] = 1$ for some $t \in \mathbf{Z}$, $t \neq 0$. \Box

Case 1. q does not divide t. Since $c \in A \setminus \langle a \rangle$ and $b^{m_1 t} \notin \langle b^m \rangle$, we have $x = [c, b^{m_1 t}] \neq 1$. Since G is residually p-finite, there exists $N \triangleleft_p G$ such that $x \notin N$. Let $\overline{G} = G/N$. Since \overline{b} has order a power of p in \overline{G} and $p \neq q$, we have $\overline{b} = \overline{b}^{qs}$ for some s. Therefore, $\overline{x} = [\overline{c}, \overline{b}^{m_1 t}] = [\overline{c}, \overline{b}^{m_1 qst}] = [\overline{c}, \overline{a}^{st}] = \overline{1}$ since $[\overline{c}, \overline{a}^t] = \overline{1}$, a contradiction. This implies that m = 1 or m has no prime factor other than p, that is, $|m| = p^{\beta}, \beta \geq 0$.

Case 2. q divides t. Let $t = q^r m_2$ where $(q, m_2) = 1$ and $r \neq 0$. Since $c \in A \setminus \langle a \rangle$ and $b^{m_1 m_2} \notin \langle b^m \rangle$, we have $x = [c, b^{m_1 m_2}] \neq 1$. By residual p-finiteness of G, there exists $N \triangleleft_p G$ such that $x \notin N$. Since \bar{b} has order a power of p in $\overline{G} = G/N$ and $p \neq q$, we have $\bar{b} = \bar{b}^{qs}$ for some s. Therefore, $\bar{x} = [\bar{c}, \bar{b}^{m_1 m_2}] = [\bar{c}, \bar{b}^{m_1 qs m_2}] = \cdots = [\bar{c}, \bar{b}^{m_1 qq^r m_2 s^{r+1}}] = [\bar{c}, \bar{b}^{mts^{r+1}}] = [\bar{c}, \bar{a}^{ts^{r+1}}] = \bar{1}$, a contradiction. The result now follows as in Case 1.

Lemma 3.2 [7, Theorem 1.1]. Let $G = \langle a \rangle_{a^n = b^m} \langle b \rangle$. Then G is residually p-finite if and only if either |n| = 1 or |m| = 1 or $|n| = p^{\alpha}$ and $|m| = p^{\beta}$, α , $\beta > 0$.

Theorem 3.3. Let $G = A_{a^n = b^m} B$, and suppose that there exist $c \in A \setminus \langle a \rangle, d \in B \setminus \langle b \rangle$ such that $[c, a^t] = 1$ and $[d, b^s] = 1$ for some $s, t \in \mathbb{Z}$. If G is residually p-finite, then $|n| = p^{\alpha}$ and $|m| = p^{\beta}$, $\alpha, \beta \geq 0$.

Proof. Since G is residually p-finite, then the subgroup $\langle a \rangle_{a^n = b^m}^* \langle b \rangle$ is residually p-finite and hence, by Lemma 3.2, |n| = 1 or |m| = 1 or |m| = 1 or $|n| = p^{\alpha}$ and $|m| = p^{\beta}$, $\alpha, \beta > 0$. If |n| = 1, then the subgroup $A_{a=b^m}^* \langle b \rangle$ is residually p-finite and hence, by Lemma 3.1, $|m| = p^{\beta}$, $\beta \ge 0$. Similarly, if |m| = 1, then $|n| = p^{\alpha}$, $\alpha \ge 0$. The result now follows. \Box

Lemma 3.4. Let A be a group with $Z(A) \neq 1$ and $a \in A$. If $A \neq \langle a \rangle$, then there exists $c \in A \setminus \langle a \rangle$ such that $[c, a^t] = 1$ for some $t \in \mathbb{Z}$.

Proof. Suppose that there exists some t such that $a^t \in Z(A)$. Since $A \neq \langle a \rangle$, we can choose $c \in A \setminus \langle a \rangle$. Clearly $[c, a^t] = 1$, and we are done. So suppose $Z(A) \cap \langle a \rangle = 1$. Since $Z(A) \neq 1$, we can choose $1 \neq c \in Z(A)$. Then [c, a] = 1 and $c \notin \langle a \rangle$. \Box

Lemma 3.5. Let $G = A_{a=b^m}^* \langle b \rangle$ where $Z(A) \neq 1$. If G is residually *p*-finite, then either $A = \langle a \rangle$ or $|m| = p^{\beta}$, $\beta \ge 0$.

Proof. Suppose that $A \neq \langle a \rangle$. Then by Lemma 3.4, there exists $c \in A \setminus \langle a \rangle$ such that $[c, a^t] = 1$ for some $t \in \mathbb{Z}$. Hence $|m| = p^{\beta}, \beta \geq 0$ by Lemma 3.1. \Box

We now state and prove the main results of this section, that is, Theorem 3.6 and Theorem 3.8 which are partial extensions of Theorem 4.4 and Theorem 5.4 of [9], respectively.

Theorem 3.6. Let $G = A_{a^n = b^m} B$ where $Z(A) \neq 1$ and $Z(B) \neq 1$. If G is residually p-finite, then |m| = 1 and G = A or |n| = 1 and G = B or $|n| = p^{\alpha}$ and $|m| = p^{\beta}$, $\alpha, \beta \geq 0$.

Proof. Since G is residually p-finite, then the subgroup $\langle a \rangle_{a^n = b^m}^* \langle b \rangle$ is residually p-finite and hence, by Lemma 3.2, |n| = 1 or |m| = 1 or |m| = 1 or $|n| = p^{\alpha}$ and $|m| = p^{\beta}$, $\alpha, \beta > 0$. If |n| = 1, then the subgroup $A_{a=b^m}^* \langle b \rangle$ is residually p-finite and hence by Lemma 3.5, either $A = \langle a \rangle$ which implies G = B or $|m| = p^{\beta}, \beta \ge 0$. Similarly, if |m| = 1, then either $B = \langle b \rangle$ which implies G = A or $|n| = p^{\alpha}, \alpha \ge 0$. The result now follows. \Box

Next we extend Theorem 3.6 to finite tree products of residually p-finite groups with non-trivial center amalgamating infinite cyclic subgroups. First we have the following definition.

Definition 3.7 [9, Definition 5.3]. Let G be the tree product of a tree T and H the tree product of a subtree S of T. Then H is called a subtree product of G. If G = H, then G is said to be contractible to H.

Let I be a finite set.

Theorem 3.8. Let $G = \langle G_1, \ldots, G_n; u_{ij}^{n_{ij}} = u_{ji}^{n_{ji}}, i \neq j, i, j \in I \rangle$ where $u_{ij} \in G_{ij}$ and I is finite, be a tree product of the groups G_i with $Z(G_i) \neq 1, i \in I$, amalgamating the cyclic subgroups $\langle u_{ij}^{n_{ij}} \rangle$ of G_i and $\langle u_{ji}^{n_{ij}} \rangle$ of G_j .

(a) If G is residually p-finite, then G is contractible to a subtree product of G_i , $i \in J \subset I$, amalgamating the cyclic subgroups $\langle u_{ij}^{n_{ij}} \rangle$ of G_i and $\langle u_{ji}^{n_{ji}} \rangle$ of G_j where $|n_{ij}| = p^{\alpha_{ij}}$ and $|n_{ji}| = p^{\beta_{ji}}$, α_{ij} , $\beta_{ji} \geq 0$.

(b) Suppose each G_i is a residually p-finite group and $\langle u_{ij}^{n_{ij}} \rangle$ is pclosed in G_i . If G is contractible to a subtree product of G_i , $i \in J \subset I$, amalgamating the cyclic subgroups $\langle u_{ij}^{n_{ij}} \rangle$ of G_i and $\langle u_{ji}^{n_{ji}} \rangle$ of G_j , then G is residually p-finite.

Proof. (a) Suppose G_i is connected to G_j and $|n_{ij}| \neq p^{\alpha_{ij}}, \alpha_{ij} \geq 0$ where $i, j \in I$. Since $T_1 = G_i \underset{u_{ij}^{n_{ij}} = u_{ji}^{n_{ij}}}{u_{ji}^{n_{j}} = u_{ji}^{n_{ji}}} G_j$ is residually *p*-finite, then by Theorem 3.6, $|n_{ji}| = 1$ and $T_1 = G_i$. Now, if G_j is connected to G_k , then $T_2 = G_i \underset{u_{ij}^{n_{ij}} = u_{ji}^{n_{ji}}}{u_{jk}^{n_{jk}} = u_{kj}^{n_{kj}}} G_k = G_i \underset{u_{ij}^{n_{ij}n_{jk}r}}{u_{ij}} = u_{kj}^{n_{kj}}} G_k$ for some $r \in \mathbb{Z}$. Since $|n_{ij}| \neq p^{\alpha_{ij}}, \alpha_{ij} \geq 0$, then $|n_{ij}n_{jk}r| \neq p^{\alpha_{ij}}, \alpha_{ij} \geq 0$. Therefore by Theorem 3.6, $|n_{kj}| = 1$ and $T_2 = G_i$. Continuing in this way, we see that the tree product of the subtree connected to G_i by the subgroup $\langle u_{ij} \rangle = G_i$ if $|n_{ij}| \neq p^{\alpha_{ij}}, \alpha_{ij} \geq 0$. This implies that G = asubtree product of G_i , $i \in J$, amalgamating $\langle u_{ij}^{n_{ij}} \rangle$ of G_i and $\langle u_{ji}^{n_{ji}} \rangle$ of G_j where $|n_{ij}| = p^{\alpha_{ij}}$ and $|n_{ji}| = p^{\beta_{ji}}, \alpha_{ij}, \beta_{ji} \geq 0$.

(b) Follows from Theorem 2.9. \Box

Note that Theorem 3.8 can only be applied to residually *p*-finite groups with non-trivial center but this class of groups is not small. It includes the finitely generated torsion-free nilpotent groups which are residually *p*-finite for all primes *p* as well as the two-generator one-relator groups $\langle x, y; x^{p^{\alpha}} = y^{p^{\beta}} \rangle$ and $\langle x, y; [x, y^{p^{\beta}}] = 1 \rangle$ which are residually *p*-finite for that particular prime *p* [7, 10]. Thus from Theorem 3.8 and Lemma 2.6, we have the following extensions of Theorem 5.4 and Corollary 5.5 of [9].

Corollary 3.9 (see [9]). Let $G = \langle G_1, \ldots, G_n; u_{ij}^{n_{ij}} = u_{ji}^{n_{ji}}, i \neq j, i, j \in I \rangle$ where $u_{ij} \in G_{ij}$ and I is finite, be a tree product of the groups $G_i, i \in I$, amalgamating the cyclic subgroups $\langle u_{ij}^{n_{ij}} \rangle$ of G_i and $\langle u_{ji}^{n_{ji}} \rangle$ of G_j . Suppose the $G_i, i \in I$, are finitely generated torsion-free nilpotent groups and $\langle u_{ij} \rangle$ is a maximal cyclic subgroup or a retract of G_i . Then G is residually p-finite if and only if G is contractible to a subtree product of $G_i, i \in J \subset I$, amalgamating the cyclic subgroups $\langle u_{ij}^{n_{ij}} \rangle$ of G_i and $\langle u_{ji}^{n_{ji}} \rangle$ of G_j where $|n_{ij}| = p^{\alpha_{ij}}$ and $|n_{ji}| = p^{\beta_{ji}}, \alpha_{ij}, \beta_{ji} \geq 0$.

Corollary 3.10 (see [9]). Let $G = \langle G_1, \ldots, G_n; u_{ij}^{n_{ij}} = u_{ji}^{n_{ji}}, i \neq j, i, j \in I \rangle$ where $u_{ij} \in G_{ij}$ and I is finite, be a tree product of the groups G_i , $i \in I$, amalgamating the cyclic subgroups $\langle u_{ij}^{n_{ij}} \rangle$ of G_i and $\langle u_{ji}^{n_{i}} \rangle$ of G_j . Suppose the G_i , $i \in I$, are finitely generated torsion-free nilpotent groups and $\langle u_{ij} \rangle$ is a maximal cyclic subgroup or a retract of G_i or $C_{G_i}(u_{ij}) = \langle u_{ij} \rangle$. Then G is residually p-finite for all primes p if and only if G is contractible to a subtree product of G_i , $i \in J \subset I$, amalgamating the cyclic subgroups $\langle u_{ij}^{n_{ij}} \rangle$ of G_j where $|n_{ij}| = 1 = |n_{ji}|$.

4. Tree products of certain one-relator groups. In this section we characterize the residual p-finiteness of tree products of certain one-relator groups. We start with the following theorem of Kim and McCarron in [7].

Theorem 4.1 [7, Theorem 3.2]. The group $G = \langle x, y; [x^s, y^t] = 1 \rangle$ is residually *p*-finite if and only if $|s| = p^{\alpha}$ and $|t| = p^{\beta}$, $\alpha, \beta \ge 0$.

We shall extend Theorem 4.1 to certain tree products. First we have the following lemma.

Lemma 4.2. Let $G = \langle x, y; [x^s, y^t] = 1 \rangle$. If $|s| = p^{\alpha}$ and $|t| = p^{\beta}$, $\alpha, \beta \ge 0$, then $\langle x \rangle$ and $\langle y \rangle$ are *p*-closed in *G*.

Proof. Since G is residually p-finite and $\langle x \rangle$ and $\langle y \rangle$ are retracts of G, then $\langle x \rangle$ and $\langle y \rangle$ are p-closed in G by Lemma 2.4.

Before proceeding further, we give here an example. Let $G = \langle a_1, a_2, a_3, a_4, a_5; [a_1^{s_{12}}, a_2^{s_{21}}] = 1, [a_1^{s_{13}}, a_3^{s_{31}}] = 1, [a_2^{s_{24}}, a_4^{s_{42}}] = 1, [a_2^{s_{25}}, a_5^{s_{52}}] = 1 \rangle$. We note that no sequences of relations of the form $[a_i^{s_{ij_1}}, a_{j_1}^{s_{j_1i}}] = 1, [a_{j_1}^{s_{j_1j_2}}, a_{j_{22}}^{s_{j_2j_1}}] = 1, \ldots, [a_{j_r}^{s_{j_r}}, a_i^{s_{ij_r}}] = 1$ for $r \geq 2$, occurs in G. Then by using this fact, we can show that G can be considered as a tree product and extend the result of Theorem 4.1 to this group.

Let $G_1 = \langle a_1 \rangle$, $G_{21} = \langle a_2, x_{12}; [a_2^{s_{21}}, x_{12}^{s_{12}}] = 1 \rangle$, $G_{31} = \langle a_3, x_{13}; [a_3^{s_{31}}, x_{13}^{s_{13}}] = 1 \rangle$, $G_{42} = \langle a_4, x_{24}; [a_4^{s_{42}}, x_{24}^{s_{24}}] = 1 \rangle$, $G_{52} = \langle a_5, x_{25}; [a_5^{s_5}, x_{25}^{s_{25}}] = 1 \rangle$. Next we form the generalized free products $H_{21} = \langle G_1, G_{21}; a_1 = x_{12} \rangle$, $H_{31} = \langle G_1, G_{31}; a_1 = x_{13} \rangle$, $H_{42} = \langle G_{21}, G_{42}; a_2 = x_{24} \rangle$ and $H_{52} = \langle G_{21}, G_{52}; a_2 = x_{25} \rangle$. Now let T be the group with presentation obtained by taking the union of the presentations of the generalized free products H_{21}, H_{31}, H_{42} and H_{52} . We associated with T a linear graph, where the vertices are the groups $G_1, G_{21}, G_{31}, G_{42}$ and G_{52} with an edge joining each following pair of the vertices $\{G_1, G_{21}\}, \{G_1, G_{31}\}, \{G_{21}, G_{42}\}$ and $\{G_{21}, G_{52}\}$. Clearly there are no loops in this graph, and hence this graph is a tree. Therefore, T is called a tree product of the groups G_{ij} amalgamating the cyclic subgroups $\langle a_i \rangle$ of G_{ij} and $\langle x_{ik} \rangle$ of G_{ki} . Since T is isomorphic to G by Tietze transformations, by abuse of notation we say that G is a tree product.

Now we extend Theorem 4.1 to the following class of tree products. Let $G = \langle a_1, \ldots, a_n; [a_i^{s_{ij}}, a_j^{s_{ji}}] = 1, i \neq j, 1 \leq i, j \leq n \rangle$ be such that no sequences of relations of the form $[a_i^{s_{ij1}}, a_{j_1}^{s_{j1}}] = 1, [a_{j_1}^{s_{j_1j_2}}, a_{j_2}^{s_{j_2j_1}}] = 1, \ldots, [a_{j_r}^{s_{j_ri}}, a_i^{s_{ij_r}}] = 1$ for $r \geq 2$, occurs in G. We shall show that G can be considered as a finite tree product.

Suppose $[a_1^{s_{1p_1}}, a_{p_1}^{s_{p_11}}] = 1, [a_1^{s_{1p_2}}, a_{p_2}^{s_{p_21}}] = 1, \dots [a_1^{s_{1p_r}}, a_{p_r}^{s_{p_r1}}] = 1$ are all the relations in G which involve a_1 . Then $p_i \neq p_j$ if $i \neq j$. Now for each $1 < i \le r$, define the group $G_{p_i 1} = \langle a_{p_i}, x_{1p_i}; [a_{p_i}^{s_{p_i 1}}, x_{1p_i}^{s_{1p_i}}] = 1$ and then form the generalized free product $H_{p_i 1} = \langle G_1, G_{p_i 1}; a_1 = x_{1p_i} \rangle$.

Suppose inductively, for each relation of the form $[a_i^{sij}, a_j^{sji}] = 1, j \neq i, 1 \leq i, j \leq n$ which involve a_j in G, we have defined $G_{ij} = \langle a_i, x_{ji}; [a_i^{sij}, x_{ji}^{sji}] = 1, i \neq j, 1 \leq i, j \leq n$ and form the generalized free product $H_{ij} = \langle G_{jh}, G_{ij}; a_j = x_{ji} \rangle$. Now suppose that the relation $[a_i^{sik}, a_k^{ski}] = 1$, where $i \neq k, 1 \leq i, k \leq n$, holds in G. Then we define $G_{ki} = \langle a_k, x_{ik}; [a_k^{ski}, x_{ik}^{sik}] = 1, i \neq k, 1 \leq i, k \leq n \rangle$ and form the generalized free product $H_{ki} = \langle G_{ij}, G_{ki}; a_i = x_{ik} \rangle$. We proceed in this manner until all the relations $[a_r^{srt}, a_t^{str}] = 1$, where $r \neq t, 1 \leq r, t \leq n$, of G have been considered.

Let T be the group with presentation obtained by presenting each of the generalized free product $\langle G_{ij}, G_{ki}; a_i = x_{ik} \rangle$ of the groups G_{ij} and G_{ki} with the cyclic subgroups $\langle a_i \rangle$ of G_{ij} and $\langle x_{ik} \rangle$ of G_{ki} amalgamated under $a_i = x_{ik}$ and then taking the union of these presentations. With T we associated a linear graph, where the vertices are the groups G_{ij} and each of whose edges joins two vertices G_{ij} and G_{ki} if $a_i = x_{ik}$. When this graph is a tree, T is called a tree product of the groups G_{ij} amalgamating the cyclic subgroups $\langle a_i \rangle$ of G_{ij} and $\langle x_{ik} \rangle$ of G_{ki} .

Since no sequences of relations of the form $[a_i^{s_{ij_1}}, a_{j_1}^{s_{j_1i_j}}] = 1, [a_{j_1}^{s_{j_1j_2}}, a_{j_2}^{s_{j_2j_1}}] = 1, \ldots, [a_{j_r}^{s_{j_ri_r}}, a_i^{s_{ij_r}}] = 1$ for $r \ge 2$, occurs in G, then the linear graph associated with T contains no loop. Hence the linear graph is a tree and so T is a tree product. Furthermore, T is isomorphic to G by Tietze transformations. By abuse of notation we say that G is a tree product if T is a tree product. Now we can extend Theorem 4.1.

Theorem 4.3. Let $G = \langle a_1, \ldots, a_n; [a_i^{s_{ij}}, a_j^{s_{ji}}] = 1, i \neq j, 1 \leq i, j \leq n \rangle$ and suppose that G is a tree product. Then G is residually *p*-finite if and only if $|s_{ij}| = p^{\alpha_{ij}}$ and $|s_{ji}| = p^{\beta_{ji}}, \alpha_{ij}, \beta_{ji} \geq 0$.

Proof. As in the discussion above, we can assume that G is a tree product of the groups $G_{ij} = \langle a_i, x_{ji}; [a_i^{s_{ij}}, x_{ji}^{s_{ji}}] = 1 \rangle$ amalgamating the cyclic subgroups $\langle a_i \rangle$ of G_{ij} and $\langle x_{ik} \rangle$ of G_{ki} .

1738

Suppose G is residually p-finite. Then the subgroup G_{ij} is residually p-finite. By Theorem 4.1, $|s_{ij}| = p^{\alpha_{ij}}$ and $|s_{ji}| = p^{\beta_{ji}}$, α_{ij} , $\beta_{ji} \ge 0$.

Conversely, suppose $|s_{ij}| = p^{\alpha_{ij}}$ and $|s_{ji}| = p^{\beta_{ji}}$, α_{ij} , $\beta_{ji} \ge 0$. By Theorem 4.1, G_{ij} is residually *p*-finite. Moreover, by Lemma 4.2, $\langle a_i \rangle$ and $\langle x_{ji} \rangle$ are *p*-closed in G_{ij} . Hence *G* is residually *p*-finite by Theorem 2.9. \Box

To further extend Theorem 4.3, we have the following two lemmas.

Lemma 4.4. Let A, B be residually p-finite groups, and let $\langle a \rangle, \langle b \rangle$ be infinite cyclic subgroups of A, B respectively. Suppose that $\langle a \rangle$ is pclosed in A and $\langle b \rangle$ is p-closed in B. If $|s| = p^{\alpha}$ and $|t| = p^{\beta}, \alpha, \beta \ge 0$, then the group $G = \langle A, B; [a^s, b^t] = 1 \rangle$ is residually p-finite and $\langle a \rangle, \langle b \rangle$ are p-closed in G.

Proof. Let $G_1 = \langle x, y; [x^s, y^t] = 1 \rangle$. Then *G* can be written as $G = A_{a=x}^* G_1 {}_{y=b}^* B$. By Theorem 4.1, G_1 is residually *p*-finite and, by Lemma 4.2, $\langle x \rangle$ and $\langle y \rangle$ are *p*-closed in G_1 . Hence, *G* is residually *p*-finite by Theorem 2.9 and $\langle a \rangle, \langle b \rangle$ are *p*-closed in *G* by Lemma 2.7.

Next we extend Theorem 4.3 to the following class of tree products. Let A_i , $1 \leq i \leq n$, be residually *p*-finite groups and $\langle a_{ij} \rangle$ an infinite cyclic subgroup of A_i where a_{ij} is not a proper power of another element. Let $G = \langle A_1, \ldots, A_n; [a_{ij}^{s_{ij}}, a_{ji}^{s_{ji}}] = 1, i \neq j, 1 \leq i, j \leq n \rangle$. Further, suppose that no sequences of relations of the form $[a_i^{s_{j1}}, a_{j1}^{s_{j1}}] = 1, [a_{j1}^{s_{j1}}, a_{j2}^{s_{j2}}] = 1, \ldots, [a_{jr}^{s_{jr}}, a_i^{s_{ijr}}] = 1$ for $r \geq 2$, occurs in G. Then, as in the discussion before Theorem 4.3, we show that G can be considered as a finite tree product as follows. Let $G_1 = A_1$ and $G_{ij} = \langle A_i, x_{ji}; [a_{ij}^{s_{ij}}, x_{ji}^{s_{ji}}] = 1, a_{ij} \in A_i \rangle$ for $i \neq j$, $1 \leq i, j \leq n$. Then G can be considered as a tree product of the groups $G_{ij} = \langle A_i, x_{ji}; [a_{ij}^{s_{ij}}, x_{ji}^{s_{ji}}] = 1, a_{ij} \in A_i \rangle$ amalgamating the cyclic subgroups $\langle a_i \rangle$ of G_{ij} and $\langle x_{ik} \rangle$ of G_{ki} . Now we can prove the following theorem. **Theorem 4.5.** For each $1 \leq i \leq n$, let A_i be residually p-finite such that $\langle a_{ij} \rangle$ is an infinite cyclic subgroup of A_i where a_{ij} is not a proper power of another element. Further, suppose that, for each A_i , $\langle a_{ij} \rangle$ is p-closed in A_i . Let $G = \langle A_1, \ldots, A_n; [a_{ij}^{s_{ij}}, a_{ji}^{s_{ji}}] = 1, i \neq j, 1 \leq i, j \leq n \rangle$, and suppose that G is a tree product. Then G is residually p-finite if and only if $|s_{ij}| = p^{\alpha_{ij}}$ and $|s_{ji}| = p^{\beta_{ji}}, \alpha_{ij}, \beta_{ji} \geq 0$.

Proof. If all the A_i are cyclic, the result follows from Theorem 4.3. So we may assume that there exists at least one *i* such that A_i is non-cyclic. As in the discussion in Theorem 4.3 and above, we can assume that G is a tree product of the groups $G_{ij} = \langle A_i, x_{ji}; [a_{ij}^{s_{ij}}, x_{ji}^{s_{ji}}] = 1, a_{ij} \in A_i \rangle$ amalgamating the cyclic subgroups $\langle a_i \rangle$ of G_{ij} and $\langle x_{ik} \rangle$ of G_{ki} .

Suppose that G is residually p-finite. Then the subgroup $\langle a_{ij}, x_{ji}; [a_{ij}^{s_{ij}}, x_{ji}^{s_{ji}}] = 1 \rangle$ of G_{ij} is residually p-finite and hence, by Theorem 4.1, $|s_{ij}| = p^{\alpha_{ij}}$ and $|s_{ji}| = p^{\beta_{ji}}, \alpha_{ij}, \beta_{ji} \ge 0.$

Conversely, suppose that $|s_{ij}| = p^{\alpha_{ij}}$ and $|s_{ji}| = p^{\beta_{ji}}$, α_{ij} , $\beta_{ji} \ge 0$. By Theorem 4.1, Lemmas 4.2 and 4.4, G_{ij} is residually *p*-finite and $\langle a_{ij} \rangle$, $\langle x_{ji} \rangle$ are *p*-closed in G_{ij} . Hence *G* is residually *p*-finite by Theorem 2.9. \Box

We apply Theorem 4.5 to free groups and finitely generated torsionfree nilpotent groups.

Corollary 4.6. Let A_i , $1 \le i \le n$, be free groups or finitely generated torsion-free nilpotent groups, and let $\langle a_{ij} \rangle$ be a maximal cyclic subgroup or retract of A_i or $C_{A_i}(a_{ij}) = \langle a_{ij} \rangle$. Let $G = \langle A_1, \ldots, A_n; [a_{ij}^{s_{ij}}, a_{ji}^{s_{ji}}] =$ $1, i \ne j, 1 \le i, j \le n \rangle$, and suppose that G is a tree product. Then G is residually p-finite if and only if $|s_{ij}| = p^{\alpha_{ij}}$ and $|s_{ji}| = p^{\beta_{ji}}$, $\alpha_{ij}, \beta_{ji} \ge 0$.

Proof. Clearly a_{ij} is a non-proper power. Since A_i is residually *p*-finite and for each A_i which is non-cyclic, $\langle a_{ij} \rangle$ is *p*-closed in A_i , then the result follows from Theorem 4.5. \Box

In [7], Kim and McCarron also proved the following theorem:

Theorem 4.7 [7, Theorem 3.4]. The group $G = \langle x, y; x^{-s}y^tx^s = y^{-t} \rangle$ is residually *p*-finite if and only if p = 2 and $|s| = 2^{\alpha}$ and $|t| = 2^{\beta}$, $\alpha, \beta \geq 0$.

As above we shall extend Theorem 4.7 with the help of the next lemma.

Lemma 4.8. Let $G = \langle x, y; x^{-s}y^tx^s = y^{-t} \rangle$. If $|s| = 2^{\alpha}$ and $|t| = 2^{\beta}$, $\alpha, \beta \ge 0$, then $\langle x \rangle$ and $\langle y \rangle$ are 2-closed in G.

Proof. Since G is residually 2-finite and $\langle x \rangle$ is a retract of G, $\langle x \rangle$ is 2-closed in G by Lemma 2.4. To show $\langle y \rangle$ is 2-closed in G, we let $u \in G \setminus \langle y \rangle$. Clearly there is a homomorphism θ from G to $\langle x \rangle$ defined by $x\theta = x$ and $y\theta = 1$. Since $u\theta \neq 1$ and $\langle x \rangle$ is residually 2-finite, our result follows. \Box

Theorem 4.9. Let A_i , $1 \leq i \leq n$, be residually p-finite groups, and $\langle a_{ij} \rangle$ is an infinite cyclic subgroup of A_i such that a_{ij} is not a proper power of another element. Further, suppose that, for each A_i which is non-cyclic, $\langle a_{ij} \rangle$ is p-closed in A_i . Let $G = \langle A_1, \ldots, A_n; a_{ij}^{-s_{ij}} a_{ji}^{s_{ji}} a_{ij}^{s_{ij}} = a_{ji}^{-s_{ji}}$, $i \neq j$, $1 \leq i, j \leq n \rangle$, and suppose that G is a tree product. Then G is residually p-finite if and only if p = 2 and $|s_{ij}| = 2^{\alpha_{ij}}$ and $|s_{ji}| = 2^{\beta_{ji}}$, α_{ij} , $\beta_{ji} \geq 0$.

Corollary 4.10. Let A_i , $1 \leq i \leq n$, be free groups or finitely generated torsion-free nilpotent groups, and let $\langle a_{ij} \rangle$ be a maximal cyclic subgroup or retract of A_i or $C_{A_i}(a_{ij}) = \langle a_{ij} \rangle$. Let $G = \langle A_i; a_{ij}^{-s_{ij}} a_{ji}^{s_{ji}} a_{ij}^{s_{ij}} = a_{ji}^{-s_{ji}}$, $1 \leq i \leq n \rangle$, and suppose that G is a tree product. Then G is residually p-finite if and only if p = 2 and $|s_{ij}| = 2^{\alpha_{ij}}$ and $|s_{ji}| = 2^{\beta_{ji}}$, $\alpha_{ij}, \beta_{ji} \geq 0$.

Since elements of finite orders in residually *p*-finite groups are of orders p^{α} we restate Baumslag's result [1, Lemma 2]:

Theorem 4.11. The group $G = \langle x, y; (x^l y^m)^t = 1 \rangle$, t > 1, is residually p-finite if and only if $t = p^{\alpha}$, $\alpha > 0$.

Lemma 4.12. Let $G = \langle x, y; (x^l y^m)^t = 1 \rangle$, t > 1. If $t = p^{\alpha}$, $\alpha > 0$, then $\langle x \rangle$ and $\langle y \rangle$ are *p*-closed in *G*.

Proof. By Theorem 4.11, G is residually p-finite. We shall now consider the following cases.

Case 1. $|l| \neq 1 \neq |m|$. Note that $G = \langle x \rangle_{x^{l}=c}^{*} G_{0}$ where $G_{0} = \langle c, y; (cy^{m})^{t} = 1 \rangle$. Then $C_{G}(x) = \langle x \rangle$, and hence, $\langle x \rangle$ is *p*-closed in *G* by Lemma 2.5. Similarly, we can show that $\langle y \rangle$ is *p*-closed in *G*.

Case 2. |l| = 1 = |m|. Without loss of generality, we may assume that $G = \langle x, y; (xy)^t = 1 \rangle$. Let z = xy. Note that $G = \langle x, z; z^t = 1 \rangle = \langle x \rangle * \langle z; z^t = 1 \rangle$. Clearly, $C_G(x) = \langle x \rangle$ and hence $\langle x \rangle$ is *p*-closed in *G* by Lemma 2.5. Similarly, $\langle y \rangle$ is *p*-closed in *G*.

Case 3. |l| = 1, $|m| \neq 1$. Without loss of generality, we may assume that $G = \langle x, y; (xy^m)^t = 1 \rangle$. Let $z = xy^m$. Then $G = \langle y, z; z^t = 1 \rangle = \langle y \rangle * \langle z; z^t = 1 \rangle$. Now, $C_G(x) = C_G(zy^{-m}) = \langle zy^{-m} \rangle = \langle x \rangle$, $C_G(y) = \langle y \rangle$ and we are done by Lemma 2.5.

Case 4. $|l| \neq 1$, |m| = 1. This case is similar to Case 3.

As above we can extend Theorem 4.11 to the following theorem:

Theorem 4.13. Let A_i , $1 \le i \le n$, be residually p-finite groups, and let $\langle a_{ij} \rangle$ be an infinite cyclic subgroup of A_i where a_{ij} is not a proper power of another element. Further, suppose that for each A_i which is non-cyclic, $\langle a_{ij} \rangle$ is p-closed in A_i . Let $G = \langle A_1, \ldots, A_n; (a_{ij}^{l_{ij}} a_{ji}^{m_{ji}})^{t_{ij}} =$ $1, i \ne j, 1 \le i, j \le n \rangle, t_{ij} > 1$, and suppose that G is a tree product. Then G is residually p-finite if and only if $|t_{ij}| = p^{\gamma_{ij}}, \gamma_{ij} > 0$.

Corollary 4.14. Let A_i , $1 \leq i \leq n$, be free groups or finitely generated torsion-free nilpotent groups, and let $\langle a_{ij} \rangle$ be a maximal cyclic subgroup or retract of A_i or $C_{A_i}(a_{ij}) = \langle a_{ij} \rangle$. Let $G = \langle A_1, \ldots, A_n;$ $(a_{ij}^{l_{ij}} a_{ji}^{m_{ji}})^{t_{ij}} = 1, i \neq j, 1 \leq i, j \leq n \rangle, t_{ij} > 1$, and suppose that G is a tree product. Then G is residually p-finite if and only if $|t_{ij}| = p^{\gamma_{ij}},$ $\gamma_{ij} > 0$. Acknowledgment. The authors wish to thank the referee for his careful reading of the paper and for the many helpful suggestions to improve the paper.

REFERENCES

1. G. Baumslag, *Residually finite one-relator groups*, Bull. Amer. Math. Soc. 73 (1967), 618–620.

2.——, *Lecture notes on nilpotent groups*, CBMS Reg. Conf. Ser. Math., vol. 2, Amer. Math. Soc., Providence, 1971.

3. K.W. Gruenberg, *Residually properties of infinite soluble groups*, Proc. London Math. Soc. **7** (1957), 29–62.

4. G. Higman, Amalgams of p-groups, J. Algebra 1 (1964), 301-305.

5. K. Iwasawa, *Einige statze uber freie gruppen*, Proc. Imp. Acad. Tokyo **19** (1943), 272–274.

6. G. Kim and J. McCarron, On amalgamated free products of residually p-finite groups, J. Algebra **162** (1993), 1–11.

7. _____, Some residually p-finite one relator groups, J. Algebra 169 (1994), 817–826.

8. G. Kim and C.Y. Tang, *Polygonal products which are residually finite p-groups*, in *Group theory*, Proc. of the Biennial Ohio State-Denison Conf. (S. Sehgal and R. Solomon, eds.), World Scientific, Singapore, 1992, pp. 275–287.

9. _____, On generalised free products of residually finite p-groups, J. Algebra 201 (1998), 317–327.

10. J. McCarron, Residually nilpotent one-relator groups with nontrivial centre, Proc. Amer. Math. Soc. 124 (1996), 1–5.

11. P.C. Wong and C.K. Tang, *Tree products of residually p-finite groups*, Algebra Colloq. 2 (1995), 209–212.

Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia

 $E\text{-}mail \ address: \verb|wongpc@um.edu.my||$

Faculty of Information and Communication Technolggy, Tunku Abdul Rahman University, 13, Jalan 13/6, 46200 Petaling Jaya, Malaysia E-mail address: tangck@mail.utar.edu.my

Faculty of Engineering and Technology, Multimedia University, 75450 Melaka, Malaysia