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CO-LOCALIZATION, CO-SUPPORT
AND LOCAL HOMOLOGY

ANDREW S. RICHARDSON

ABSTRACT. We propose a definition of co-support for
modules over commutative, Noetherian rings that we hope will
relate to the local homology functors of Greenlees and May in
the same way ordinary support relates to local cohomology.
By expressing local homology in terms of the Koszul complex,
we prove some vanishing theorems involving this co-support.
We also investigate the co-localization functor which gives rise
to our definition of co-support. This functor treats Artinian-
type constructions the same way the ordinary localization
functor treats Noetherian-type constructions, and this duality
extends to one between co-support and ordinary support.

Introduction. Given a module M over a commutative, Noetherian
ring A and an ideal I of A, if we attempt to restrict the support of M to
the variety V (I), that amounts to taking the I-adic torsion of M . The
right derived functors of this process are the local cohomology functors
H•I . The concept of support is thus part of local cohomology from the
beginning. It also shows up in certain well-known vanishing results: If
M is torsion to begin with, which is to say if Supp M ⊂ V (I), then
all the higher local cohomology modules of M vanish. Furthermore,
the local cohomology of any module M will always vanish past the
dimension of the support of M .

In [8], Matlis defined the local homology functors to be the left
derived functors of the I-adic completion functor. Since torsion and
completion are dual, one expects these functors to live up to their name
and behave in a manner dual to local cohomology. In particular, it is
natural to expect there to be vanishing theorems for local homology
dual to the ones that relate the local cohomology of a module to the
module’s support. Before we can prove or even state such theorems,
however, we have to decide how to dualize the notion of support. That
is the primary objective of this paper.
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To define the co-support of a module, we first create a co-localization
functor; the co-support of a module will then be the set of primes at
which the module’s co-localization is nonzero. So, given a commutative
ring A and a multiplicatively closed subset S ⊂ A, we would like to
have a functor S−1(−) from the category of A-modules to the category
of S−1A-modules which is dual to the ordinary localization functor
S−1(−). In particular, S−1(−) should preserve secondary representa-
tions and attached primes (the duals of primary decompositions and
associated primes; see [6] or [2, Section 7.2]) and the co-localization
of an Artinian A-module should be an Artinian S−1A-module. Most
importantly, from our point of view, this co-localization functor should
define a sensible co-support. In particular, the co-support of a nonzero
module should be nonempty, the co-support of an Artinian module M
should be V (ann M), and the co-support of a finitely generated module
should, like the ordinary support of an Artinian module, consist solely
of maximal ideals.

Since S−1(−) = S−1A⊗− , the obvious choice for S−1(−) would be
Hom (S−1A, − ). Melkersson and Schenzel [9] tried this approach and
were able to show that this definition works well when restricted to the
class of Artinian modules, with the exception that it almost never takes
an Artinian module to an Artinian module. However, this definition
does not work at all well for non-Artinian modules. For example, if S is
a multiplicatively closed set of integers which includes a nonunit, then
Hom (S−1Z,Z) = 0, which says that the co-support of Z, under this
definition, is empty, which is definitely not what we want. Beyond our
belief that nonzero modules should have nonempty co-support, this
would violate our prospective vanishing theorem for local homology:
For any prime integer p, H

(p)
0 (Z) = Ẑ(p) �= 0, so we need the dimension

of the co-support of Z to be at least 0, which is to say the co-support
should be nonempty.

To motivate our alternative co-localization functor, we look at why
the Melkersson-Schenzel version does not preserve Artinian modules;
for simplicity, we consider the case of an Artinian module M over a
complete, local ring A. Using the fact that M is reflexive relative to
the Matlis duality functor (−)∨, one can show that Hom(S−1A, M) ∼=(
S−1(M∨)

)∨. Using this formula, one might try to “prove” that
Hom (S−1A, M) is Artinian by pointing out that M∨ is finitely gener-
ated, so S−1(M∨) is finitely generated, and thus its Matlis dual must
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be Artinian. However, S−1(M∨) is only finitely generated as an S−1A-
module, so this argument would only work if we took the second Matlis
dual with respect to the new ring S−1A.

Therefore, we propose the following: For any A-module M , we let
S−1M = DS−1A

(
S−1DA(M)

)
, where DB is the generalized Matlis

duality functor for the ring B as defined in [1]. This co-localization
functor will preserve Artinian modules when A is complete and S−1A
is semi-local (but rarely otherwise, unfortunately), and it will also
preserve secondary representations and attached primes, even for non-
Artinian modules. More importantly, this co-localization gives a much
better co-support for non-Artinian modules.

There is a price to pay for these improvements, however. For one
thing, while there is a natural transformation Hom (S−1A, − ) → id
dual to the familiar map id → S−1(−), there is no such natural
transformation S−1(−) → id. Also, and this may perhaps explain
the previous problem, if S = {1}, one would expect S−1(−) to be the
identity functor, but it is instead D2

A. Finally, our co-localization is not
transitive that is, (S1)−1 ((S2)−1(−)) and (S1∪S2)−1(−) need not be
the same functor but at least the co-support of a module is always
closed under specialization.

We will generally assume that our rings are commutative and Noethe-
rian. While Melkersson and Schenzel obtained their results for arbitrary
commutative rings, they restricted their results to Artinian modules
which, by [15, Theorem 3.2], can always be viewed over a Noetherian
ring with little loss of information, so our Noetherian assumption is
not a significant drawback. The assumption can also be omitted from
those results which depend solely on the exactness and faithfulness of
the Matlis duality functor, such as Lemma 2.1, Theorem 2.2 and The-
orem 2.7, except part (vi).

In the first section of this paper we list some facts about the functors
DB which will be useful in later sections. In the second section we prove
that our co-localization and co-support have properties dual to ordinary
localization and support. We also show that our co-localization behaves
well relative to some standard homological constructions; in particular,
we show that Sharp’s “shifted localization principle” for local coho-
mology modules [14, Theorem 3.7] can be expressed in terms of our
co-localization functor. In the third section we show how the local ho-
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mology modules relative to an ideal I = (x1, . . . , xn) can be described
using the Koszul homologies on powers of the sequence x = x1, . . . , xn;
namely, they fit into a short exact sequence

0 −→ lim
←−

1 Hj+1(xk; M) −→ HI
j (M) −→ lim

←−
Hj(xk; M) −→ 0.

(For the definition and some basic properties of the functor lim
←−

1 , see

[19, Section 3.5].) In the final section, we use this to show that the
higher local homology modules vanish whenever the co-support of the
module is contained in V (I). We also show that HI

j (M) = 0 for
j > dim coSuppM whenever M is Artinian or finitely generated. By
reducing to the Artinian case, we can show that for a general module
M , at least the lim

←−
Hj(xk; M) part will vanish for j > dim coSuppM .

1. Generalized Matlis duality. Let B be a commutative ring.

Definition. Let EB be the injective hull of ⊕B/m, the sum run-
ning over all maximal ideals m of B, and let DB be the functor
Hom (− , EB).

This module EB is the minimal injective cogenerator of the category
of B-modules; that is, it is the smallest injective module with the
property that, for every module M and nonzero x ∈ M , there is a
homomorphism φ:M → EB with φ(x) �= 0. Two variations on this
property are sometimes useful: If N is a submodule of M which does
not contain x, then applying this property to x + N ∈ M/N , we can
construct a φ:M → EB which vanishes on N but not on x; thus, maps
from M to EB can be used to separate points from submodules. Also,
since we are generally assuming the ring B is Noetherian, we can split
EB into the direct sum of all E(B/m), and each of these modules is
Artinian. So, by composing our φ with one of the projections, we get:

Lemma 1.1. Assume that B is Noetherian. Then, given any B-
module M , submodule N ⊂ M , and element x ∈ M \ N , there is an
Artinian module Ξ and a homomorphism φ:M → Ξ such that φ(x) �= 0
but φ(N) = 0.
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One can think of this as dualizing the fact that any module is a direct
limit of finitely generated modules; we will use this property later to
reduce a question about general modules to a question about Artinian
modules.

One can use the cogenerator property of EB to prove the following
facts about our duality functor, see [2, 10.2.2] for the local case; the
proof of the general case is essentially the same.

Lemma 1.2. Let M be a module over the ring B.

(i) DB(M) = 0 if and only if M = 0.

(ii) annDB(M) = annM .

The following generalization of Matlis’ original duality theorem was
proven by Ooishi [10, Theorem 1.6]:

Proposition 1.3. Assume B is semi-local and Noetherian.

(i) If M is a finitely generated B-module, then DB(M) is Artinian.

(ii) If M is an Artinian B-module then DB(M) is finitely generated
over the completion of B.

(iii) If B is complete and M is either finitely generated or Artinian,
then M ∼= D2

B(M).

We will also need the following homological facts, which follow from
the adjoint isomorphism for Hom and ⊗ and from Sharp’s isomorphism
([14, Lemma 2.7]; see also [10, Corollary 1.5]). In fact, most of this
proposition will work for any functor of the form Hom (−, E) with E
an injective module; the only exception is the “if” part of (i), which
requires the faithfulness of Matlis duality.

Proposition 1.4. Assume B is Noetherian. Let M and N be B-
modules and i any integer.

(i) M is flat, respectively injective, if and only if DB(M) is injective,
respectively flat.

(ii) DB (Tori(M, N)) ∼= Exti (M, DB(N)).
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(iii) If M is finitely generated, then

DB

(
Exti(M, N)

) ∼= Tori (M, DB(N)) .

We need the next lemma in order to prove a nonvanishing criterion
for our co-localization functor. That criterion is sufficient but not
necessary, which will show that the surjection in Lemma 1.5 need not
be an isomorphism. (See [11, Lemma 1.2.13] for variations on this
lemma which do involve isomorphisms.)

Lemma 1.5. Let {fλ:M → Mλ|λ ∈ Λ} be a collection of module
homomorphisms with common domain. Then there is a surjection

DB(M)∑
λ∈Λ im DB(fλ)

→ DB

( ⋂
λ∈Λ

ker fλ

)
.

Proof. Let K =
⋂

λ ker fλ and Q = M/K. For each λ ∈ Λ, K ⊂ ker fλ

so that fλ may be written as a composite M → Q → Mλ. This means
that DB(fλ) factors through DB(Q), and thus imDB(fλ) is contained
in the image of DB(Q) → DB(M), which is the kernel of the surjection
DB(M) → DB(K).

2. Co-localization. Let A be a commutative ring and S a
multiplicatively closed subset of A.

Definition. For any A-module M , the co-localization of M relative
to S is the S−1A-module S−1M = DS−1A

(
S−1DA(M)

)
. If S = A \ p

for some p ∈ Spec A, we write pM for S−1M .

Note that, as a composite of exact, additive functors, S−1(−) is exact
and additive.

We start with a pair of simple results about the vanishing and
nonvanishing of S−1(−):

Lemma 2.1. Let M be an A-module.

(i) If sM = 0 for some s ∈ S then S−1M = 0.

(ii) If
⋂

s∈SsM �= 0, then S−1M �= 0.
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Proof. (i) follows from the analogous result for ordinary localization.
For (ii), note that the kernel (0 :DA(M) s) of the map DA(M) s→ DA(M)
is the image of the map DA(M/sM) → DA(M). Lemma 1.5 gives a
surjection

DA(M)∑
s∈S(0 :DA(M) s)

−→ DA

(⋂
s∈S

sM
)
,

which means that ∪(0 :DA(M) s) �= DA(M). That in turn means that
S−1DA(M) �= 0, so S−1M �= 0.

If M is Artinian, then by [9, Corollary 3.3], the submodule ∩s∈SsM
is precisely the image of the natural map Hom (S−1A, M) → M , so one
may view (ii) as correcting for the lack of a natural map S−1M → M .
Also, note that (ii) is not a necessary condition: Let A = M = Z and
S = {1, p, p2, . . . } for some prime number p. Then ∩∞n=0p

nZ = 0, but
S−1DZ(Z)∼= ⊕q �=p q/Z(q), so S−1Z∼= ∏

q �=p Ẑ(q), which is nonzero.

We can use these results and the exactness of S−1(−) to show that
our co-localization functor preserves secondary representations and
attached primes:

Theorem 2.2. Let M be an A-module.

(i) If M is p-secondary, then S−1M is either zero, if S ∩ p �=, or
S−1p-secondary, if S ∩ p = ∅.

(ii) If M is representable then so is S−1M and AttS−1M =
{S−1p|p ∈ AttM and S ∩ p = ∅}.

Proof. (i) If S ∩ p �= ∅, then snM = 0 for some s ∈ S, so S−1M = 0
by Lemma 2.1 (i). If S ∩ p = ∅, then sM = M for all s ∈ S, so
S−1M �= 0 by Lemma (2.1) (ii). In this case, exactness of S−1(−) shows
that for any x/s ∈ S−1A, multiplication by x/s is either surjective on
S−1M (if x/s /∈ S−1p) or nilpotent (if x/s ∈ S−1p).

(ii) We need to show that if M = T1 + · · · + Tn is an irredundant
secondary representation, say with Ti a pi-secondary submodule, then
the S−1Ti’s with S ∩ pi = ∅ give an irredundant representation of
S−1M . For any X ⊂ {1, . . . , n}, let NX =

∑
i∈X Ti. Suppose that

X and Y partition {1, . . . , n}, so that M = NX + NY , and consider
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the exact sequence

⊕
i∈X

S−1Ti −→ S−1M → S−1

(
NY

NY ∩NX

)
;

this shows that the S−1Ti, i ∈ X, give a representation of S−1M if and
only if the module S−1(NY /NX ∩NY ) is zero. Now, co-localizing the
surjection ⊕i∈Y Ti → (NY /NY ∩NX) shows that S−1(NY /NX ∩NY )
will be zero if Y ⊂ {i|S ∩ pi �= ∅}, so that the S−1Ti’s with S ∩ pi =
∅ do give a representation. On the other hand, for each i ∈ Y ,
NY /(NY ∩NX) surjects onto a pi-secondary module, so S−1(NY /
(NY ∩ NX)) will be nonzero if Y includes some i with S ∩ pi =, which
proves the minimality of our representation.

We assume henceforth that our ring A is Noetherian.

Theorem 2.3. Suppose A is semi-local and complete. If S−1A is also
semi-local, but not necessarily complete, then S−1(−) takes Artinian
A-modules to Artinian S−1A-modules.

Proof. This follows from Proposition 1.3 and the fact that S−1(−)
takes finitely generated A-modules to finitely generated S−1A-modules.

This is essentially the best result possible: If A is complete and semi-
local, then the co-localization of the Artinian module EA is ES−1A,
which will only be Artinian if S−1A is semi-local. On the other hand,
suppose A is local but not complete and consider the co-localization of
EA at some p ∈ SpecA:

pEA
∼= Hom Ap

((Â)p, E(A/p))∼= Hom (Â, E(A/p)).

Since Â is a flat A-module, this is injective as an A-module; it will be
Artinian over Ap if and only if it is a direct sum of finitely many copies
of E(A/p). That is to say, we would need for the κ(q)-dimension of

Hom
(
κ(q), Hom(Â, E(A/p))q

) ∼= Hom
(
(Â/qÂ)p, E(A/p)

)
q
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to be finite if q = p and zero if q �= p. However, both of these
may fail if the ring is not complete: For one thing, we see that the
number of times E(A/p) occurs as a summand of pEA is determined
by the dimension of κ(p)⊗Â over κ(p); as this extension is generally
transcendental, there will usually be infinitely many such summands.
On the other hand, if for some q ⊂ p, the ring A/q is not complete
in the A/q-topology that is, the linear topology defined by letting all
the nonzero ideals form a subbase for the neighborhoods of zero; see [7,
Section 6] then E(A/q) will also occur as a summand of pEA. This is
so because Â/qÂ will have a nonzero subquotient M which is divisible
and torsion-free as an A/q-module, namely Ã/q/A/q, where Ã/q is the
completion of A/q in the A/q-topology, see [7, Theorem 6.10]. Since M
will then be an Aq-module, Hom (Mp, E(A/p))q

∼=Hom (Mp, E(A/p))
will be nonzero, which will mean that Hom((Â/qÂ)p, E(A/p))q will
also be nonzero. (For a concrete example of this phenomenon, consider
A = Z(p), p = pA, and q = 0; thus, not even mEA need be Artinian.)

Our co-localization functor also works well with standard homological
concepts. In particular, applying Proposition 1.4, we get

Proposition 2.4. The functor S−1(−) preserves flats and injectives

and

Proposition 2.5. Let M and N be A-modules with M finitely
generated, and let i be any integer.

(i) S−1TorA
i (M, N)∼= TorS−1A

i (S−1M, S−1N).

(ii) S−1Exti
A(M, N)∼= Exti

S−1A(S−1M, S−1N).

We will see in Theorem 2.7 below that a module is zero if and only if
its co-localizations are all zero. Combining that fact with part (i) of the
preceding proposition, we find that the flat dimension of an A-module
M is the supremum of the flat dimensions of the co-localizations of
M . Similarly, part (ii) tells us that the injective dimension of M is
sup{idp

Ap
M |p ∈ SpecA}.
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Theorem 2.6. Let (A, m) be a complete local ring, let p be a prime
of A, let t = dimA/p, and let M be a finitely generated A-module.
Then, for any integer i we have pHi+t

m (M) = Hi
pAp

(Mp).

Proof. Let (B, n) be a complete Gorenstein ring mapping onto A,
and let p̃ be the inverse image of p in B. Since Hi+t

n (M)∼= Hi+t
m (M),

Hi
p̃Bp̃

(Mp̃)∼= Hi
pAp

(Mp), and the functors p̃(−) and p(−) agree on A-
modules, we may assume that A is itself Gorenstein.

Letting n = dim A, we now apply the apply the formula

Hj
m
∼= Torn−j(− , E(A/m))

[14, Proposition 3.3]:

pHi+t
m (M)∼= p TorA

n−(i+t)(M, EA)∼= TorAp

(n−t)−i(Mp,
p EA).

Since A is complete, pEA
∼= E(A/p), and the result now follows from a

second application of the Tor formula for local cohomology.

The discussion following Theorem 2.3 shows that this theorem fails
dramatically if A is an incomplete Gorenstein ring. However, if we
combine the formula pHi+t

m (M) = Hi
pAp

(Mp) with Theorem 2.2, we
get that AttHi

pAp
(Mp) = {qAp|q ⊂ p and q ∈ AttHi+t

m (M)}; this is
true for any ring which is a homomorphic image of a Gorenstein ring
(see [2, 11.3.2]; this is Sharp’s “shifted localization principle”).

Definition. For any A-module M , the co-support of M is coSupp M =
{p ∈ SpecA|pM �= 0}.

Theorem 2.7. Let M be an A-module.

(i) coSupp M = SuppDA(M).

(ii) coSupp M = ∅ if and only if M = 0.

(iii) coSupp M ⊂ V (annM).

(iv) If M is representable, then coSupp M = {p ∈ SpecA|p ⊃
q for some q ∈ AttM} = V (ann M).
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(v) If 0 → M ′ → M → M ′′ → 0 is exact, then coSupp M =
coSupp M ′ ∪ coSupp M ′′′.

(vi) If M is finitely generated, then coSupp M = V (annM)∩m-
SpecA (and mM ∼= M̂m for any m ∈ coSupp M).

Proof. (i) follows from the fact that the dual of a nonzero module is
nonzero; (ii) follows from (i) together with the analogous result for
ordinary localization; (iii) follows from Lemma 2.1 (i); (iv) follows
from Theorem 2.2 together with the fact that any prime containing
the annihilator of a representable module must contain an attached
prime; and (v) follows from the exactness of co-localization.

To prove (vi), we note that, since M is finitely generated, we have
DA(M)p

∼= Hom Ap
(Mp, (EA)p) for all p ∈ SpecA, so Supp DA(M) ⊂

Supp M ∩Supp EA = V (annM)∩m-Spec A. On the other hand, if m
is maximal, then (EA)m

∼= EAm
, so

mM ∼= Hom Am
(Hom Am

(Mm, EAm
), EAm

)
∼= Mm⊗Hom (EAm

, EAm
)

∼= M̂m,

which is nonzero if and only if m ∈ V (ann M).

Since we are assuming that our rings are Noetherian, saying that
Supp M ⊂ V (I) for some ideal I is the same as saying that M is I-
adically torsion. We finish this section by proving a similar result for
co-support. This result will be useful when we prove that the higher
local homology modules of M vanish when coSupp M ⊂ V (I).

Definition. Let M be an A-module and I an ideal of A. We say
that M has bounded I-adic torsion if there is a fixed integer k such
that any element of M annihilated by a power of I is annihilated by
Ik.

Proposition 2.8. Let M be an A-module and I an ideal of A. If
coSupp M ⊂ V (I), then M has bounded I-adic torsion.

Proof. For any integer r > 0, let T (r) = {m ∈ M |Irm = 0}. Since
coSupp ∪∞r=1 T (r) ⊂ coSupp M , we may assume that M = ∪∞r=1T (r).
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We will show that, if every T (r) is a proper submodule of M , then
there must be a homomorphism f :M → EA such that, for every positive
integer l, we have f(I lM) �= 0. Such an f could not be annihilated by a
power of I, thus contradicting Supp Hom (M, EA) = coSuppM ⊂ V (I).

To construct this f , we first inductively define a sequence of functions
fj :M → EA and integers rj and lj such that for every integer s > 0:

(i) fs(I lsT (rs)) �= 0.

(ii) For every 0 < j < s, fs(T (rj)) = 0

(iii) For every 0 < j < s, fj(I lsM) = 0.

Note that these conditions guarantee that {rj} and {lj} are strictly
increasing sequences. On the one hand, that means that when con-
structing fs and choosing ls, we need only verify (ii) and (iii) for
j = s − 1. On the other hand, it also means that limj→∞ rj = ∞ =
limj→∞ lj , which will be useful when working with our eventual func-
tion f .

For s = 1, (ii) and (iii) are vacuous, so we need only pick an
m ∈ M \ T (1) and a y in I with ym �= 0; then let f1 be a map
M → EA which doesn’t vanish on ym, let l1 = 1, and let r1 = min{r ∈
n|m ∈ T (r)}. Now suppose we have defined f1, . . . , fs−1 (and the
concomitant rj ’s and lj ’s). Let ls = 1 + sup{l ∈ n|fs−1(I lM) �= 0}.
If the supremum were infinite, then fs−1 would have the property we
want our f to have, so we may assume that ls is finite, and this choice
makes (iii) hold. We are assuming that T (rs−1 + ls) �= M , so there
is an m ∈ M with I lsm /∈ T (rs−1); pick a specific y ∈ I ls with
ym /∈ T (rs−1). Then there is an fs:M → EA with fs(ym) �= 0 and
fs(T (rs−1)) = 0, and such a map satisfies (i), (ii) and (iii), where we
again set rs = min{r ∈ n|m ∈ T (r)}.

Finally, once we have our sequences of functions and integers, we
let f =

∑∞
j=1 fj : for any specific element of M , this sum will be

finite because we are assuming M = ∪T (r) and fj(T (r)) = 0 for j
sufficiently large. To see that this f is not annihilated by any power
of I, we let l be any positive integer and then pick an integer s such
that ls ≥ l. For any j < s we have fj(I lsT (rs)) = 0 by (iii) while,
for j > s, we have fj(I lsT (rs)) = 0 by (ii); that is to say, that
f(I lM) ⊃ f(I lsT (rs)) = fs(I lsT (rs)) �= 0, as desired.
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This gives us a necessary condition for coSupp M to be contained in
V (I); to get a sufficient condition, we need a couple more assumptions:

Proposition 2.9. Let M be an A-module, and let I be an ideal of
A which is contained in the Jacobson radical of A. If every quotient of
M has bounded I-adic torsion, then coSupp M ⊂ V (I).

Proof. By Theorem 2.7 (i), it is enough to show that D(M) is I-
adically torsion. Given f ∈ D(M), the image of f is a submodule of
EA = ⊕E(A/m). Since I is contained in the Jacobson radical of A, EA

is I-adically torsion, which means im f is I-adically torsion. However,
our assumption on M tells us that im f has bounded I-adic torsion, so
all of im f is annihilated by a single power of I. This power of I then
annihilates f .

3. Local homology and the Koszul complex. Let A be a
commutative, Noetherian ring.

We start this section by reminding the reader of the definition of local
homology, see also [4, 8]:

Definition. Given an ideal I of A, we let ΛI be the I-adic completion
functor: ΛI = lim

←−
(A/Ik⊗− ). For every integer j we define the jth

local homology functor HI
j to be the jth left derived functor of ΛI .

Since ΛI is not, in general, a right exact functor, we cannot expect
ΛI to be the same as HI

0 ; we do, however, get a surjection HI
0 → ΛI ,

see Theorem 3.2 below.

If M is a module which can be expressed as the Matlis dual of some
module N , then the local homology of M is just the dual of the local
cohomology of N . More generally, we have:

Proposition 3.1. Let E be an injective A-module, and let (−)∗ be
the functor Hom(−, E). Then, for any A-module M , any ideal I and
any integer j, we have HI

j (M∗) = Hj
I (M)∗.
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Proof. Let ΓI be the I-adic torsion functor lim
−→

Hom (A/Ik,−). Using

Sharp’s isomorphism, as in Proposition 1.4 (iii), and the fact that (−)∗

converts direct limits to inverse limits, we get ΓI(N)∗∼= ΛI(N∗) for
any A-module N .

Now let E• be an injective resolution of M . As in Proposition 1.4 (i),
(−)∗ will convert E• to a flat resolution of M∗. Since flat modules are
acyclic relative to local homology, see Lemma 3.5 below, we can use
this flat resolution to compute the local homology of M∗:

HI
j (M∗)∼= Hj (ΛI ((E•)∗)) ∼= (

Hj(ΓI(E•))
)∗ ∼= Hj

I (M)∗.

This dual relationship is one-sided; however, it is not generally true
that the local cohomology of a dual is the dual of the local homology:

Example 3.1. Let A = Z, I = 2Z, and M = ⊕∞n=1Z/2nZ.
If DA(HI

0 (M)) were isomorphic to H0
I (DA(M)) then in particular

DA(HI
0 (M)) would have to be 2-adically torsion. However, using the

surjection HI
0 (M) → ΛI(M) and the injection M → ΛI(M) note that

∩ IkM = 0 we can see that DA(M) is a subquotient of DA(HI
0 (M)).

Since DA(M) is just
∏∞

n=1 Z/2nZ, which is not 2-adically torsion,
we can conclude that DA(HI

0 (M)) is also not 2-adically torsion, so
it cannot be H0

I of anything.

One of the nice things about local cohomology modules is that
they can be computed as direct limits of Koszul cohomologies; this
description is more explicit and often more convenient to use than
the usual approach to derived functors via injective resolutions. The
goal for this section is to dualize this fact to get a description of local
homology in terms of inverse systems of Koszul homologies. Schenzel
[13, Theorem 1.1(v)] has done something along these lines using a
derived category approach, but we will want a more concrete version.

We will at times need to work with individual elements of the
Koszul complex, and for that I find a nonstandard notation to be
more convenient (see [11, Section 2.1] for a more detailed description
of this approach to the Koszul complex). Given an A-module M
and a sequence x = x1, . . . , xn of elements of A, the number of
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copies of M in the module Kj(x; M) is the same as the number of
subsets S of {1, . . . , n} with cardinality j. Thus, we have a one-to-one
correspondence between summands of Kj(x; M) and these subsets; we
will write an element of the summand corresponding to S as m[S] where
m ∈ M . In terms of the standard exterior algebra notation, one may
think of my [S] as representing the exterior product ei1 ∧· · ·∧eij

where
S = {i1, . . . , ij} with i1 < · · · < ij . In addition to the advantage of
brevity, my notation makes it easier to specify the sequence or module
when there is some possibility of confusion; we just add a subscript
to the [S]. For example, we will want to work with different powers
xk = xk

1 , . . . , xk
n of our sequence; in this situation we write [S]k to refer

specifically to a summand of Kj(xk; M).

Given a sequence x = x1, . . . , xn of elements of A, an A-module M ,
and two positive integers r > k, there is a well-known map of complexes
φr,k
x : K•(xr; M) → K•(xk; M) which is the identity on K0 = M

and multiplication by (x1 . . . xn)r−k on Kn = M , see [8, Lemma 3.2],
for example. In our notation, these maps are given explicitly by the
formula φr,k

x ([S]r) = x(r−k)S[S]k (where xtS =
∏

i∈S xt
i). The induced

maps on homology make {Hj(xk; M)|k > 0} into an inverse system for
each j, and we have:

Theorem 3.2. Let x = x1, . . . , xn be a sequence of elements of A,
and let I be the ideal (x). Then, for any A-module M and any integer
j, there is a short exact sequence

0 −→ lim
←−

1 Hj+1(xk; M) −→ HI
j (M) −→ lim

←−
Hj(xk; M) −→ 0.

Proof. By replacing A by the polynomial ring A[X1, . . . , Xn] and x
by the sequence X1, . . . , Xn, if necessary, we may assume that x is a
regular sequence on A, see [17, 3.3 and 3.4].

For each k > 0, let Ik = (xk); since {Ik} is cofinal with {Ik},
we can compute ΛI as lim

←−
(A/Ik⊗− ). Adapting the proof of [4,

Proposition 1.1], we get a short exact sequence

0 → lim
←−

1 Torj+1(A/Ik, M) → HI
j (M) → lim

←−
Torj(A/Ik, M) → 0.
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However, since xk is a regular sequence on A, we can compute
Torp(A/Ik, M) as Hp(xk; M) with the natural map Torp(A/Ir, M) →
Torp(A/Ik, M) corresponding to Hp(φr,k

x ).

Ideally, we would like to have just HI
j (M)∼= lim

←−
Hj(xk; M). Obvi-

ously one way to get that would be to have lim
←−

1 Hj+1(xk; M) = 0.
However, this is not always the case:

Example 3.2. Let A = Z, S = ⊕∞n=1Z/2nZ, P =
∏∞

n=1 Z/2nZ,
and consider the one-element sequence x = 2. We can compute
lim
←−

1 H1(2k; S) as the cokernel of the map ΘS :
∏∞

k=1 H1(2k; S) →∏∞
k=1 H1(2k; S) defined by ΘS ({mk})r = mr −2mr+1, see [19, Section

3.5]. This is just the restriction of the analogously defined map
ΘP :

∏∞
k=1 H1(2k; P ) → ∏∞

k=1 H1(2k; P ). The kernel of ΘP is

lim
←−

H1(2k; P )∼= lim
←−

∏
n

H1(2k;Z/2nZ)∼=
∏
n

lim
←−

H1(2k;Z/2nZ)

which is zero since, for any fixed k, the map

H1(2k+n;Z/2nZ) 2n

−→ H1(2k;Z/2nZ)

is zero. Thus, to show ΘS is not surjective, it suffices to produce an
element of

∏∞
k=1 H1(2k; P ) not in

∏∞
k=1 H1(2k; S) which ΘP takes to∏∞

k=1 H1(2k; S).

We write elements of
∏

k H1(2k; P )∼= ∏
k,n H1(2k,Z/2nZ) as doubly

indexed sequences {an,k|n, k ∈ Z+} where an,k ∈ H1(2k;Z/2nZ).
Consider the sequence given by

an,k =
{

1 if n ≤ k

2n−k if n > k.

For each fixed k there are infinitely many nonzero an,k, so this sequence
is not in

∏
k H1(2k; S); however, for m > l, we have ΘP ({an,k})m,l =

2m−l − 2 · 2m−(l+1) = 0, so ΘP ({an,k}) is an element of
∏

k H1(2k; S),
as desired.

We do have HI
j (M)∼= lim

←−
Hj(xk; M) under some circumstances, how-

ever:
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Proposition 3.3. Let M be an A-module and suppose that ei-
ther M is Artinian or M ∼= Hom (N, E) where E is injective. Then,
for any sequence x of elements of A and any integer j, we have
HI

j (M)∼= lim
←−

Hj(xk; M), where I is the ideal generated by x.

Proof. First suppose M is Artinian. That means that, for every fixed
k, the module Hj(xk; M) is also Artinian, so the descending chain

im Hj

(
φk+1,k
x

) ⊃ im Hj

(
φk+2,k
x

) ⊃ · · · ,

eventually stabilizes. By [19, Proposition 3.5.7], this makes lim
←−

1 Hj

(xk; M) = 0, so HI
j (M)∼= lim

←−
Hj(xk; M) by Theorem 3.2.

On the other hand, if M ∼= Hom(N, E) with E injective, then we
just combine the fact that local cohomology is given by a direct limit
of Koszul homologies with Proposition 3.1 to get (writing (−)∗ for
Hom (−E)):

HI
j (M)∼= (Hj

I (N))∗∼=
(
lim
−→

Hj(xk; N)
)∗

∼= lim
←−

Hj(xk; N)∗∼= lim
←−

Hj(xk; M).

Some authors whose work is almost exclusively focused on Artinian
modules simply define local homology this way; that is, instead of using
derived functors of completion, they define local homology to be the
inverse limit of simpler homology modules (Koszul homology in the
case of [18] and Tor in the case of [3]).

To use our Koszul formula to prove vanishing results, we will make
use of some additional concepts (see also [13] and [4]):

Definitions. (i) We say an inverse system {Mk|k > 0} is prozero if,
for each k > 0, there is an r > k such that Mr → Mk is zero. (In [19]
this is the “trivial Mittag-Leffler condition”.)

(ii) Given a module M and a sequence x = x1, . . . , xn of elements of
A, for any pair i ∈ {1, . . . , n} and k > 0 we let

M(i, k) =

(
(xk

1 , . . . , xk
i−1)M : xk

i

)
(xk

1 , . . . , xk
i−1)M

.
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For r > k multiplication by xr−k
i induces a map M(i, r) → M(i, k),

and we say that our sequence x is proregular on M if for every i the
inverse system {M(i, k)|k > 0} is prozero.

(iii) Given a module M and a sequence x = x1, . . . , xn of elements
of A, we say that x is weakly proregular on M if, for every j > 0, the
inverse system {Hj(xk; M)|k > 0} is prozero.

Schenzel only discusses (weakly) proregular sequences on the ring it-
self, but his proof [13, Lemma 2.7] that a proregular sequence is weakly
proregular carries over to modules, see also [11, Lemma 2.3.2]. Since
lim
←−

Mk = 0 = lim
←−

1 Mk whenever {Mk} is a prozero inverse system,
Theorem 3.2 tells us that, whenever I is generated by a weakly M -
proregular sequence, HI

j (M) = 0 for all j > 0 and HI
0 (M)∼= ΛI(M).

As with local cohomology, we do not actually need our weakly proreg-
ular sequence x to generate I; it is enough just to assume that√

(x) + annM =
√

I + annM , see [17, 3.5].

Since completion is exact on finitely generated modules, we expect
their higher local homology modules to vanish. A slightly stronger
statement is true:

Proposition 3.4. Let M be a finitely generated module. Every
sequence x = x1, . . . , xn of elements of A is proregular on M .

Proof. See [13, 2.6] or [11, Proposition 2.3.3].

In proving our Koszul formula, we used a change of rings result for lo-
cal homology from [17]; her result applies only to ring homomorphisms
A → B where B is finitely generated over A. We can use proregular
sequences to drop this condition; to this end we need a lemma about
flat modules:

Lemma 3.5. Let F be a flat A-module, let M be any A-module, and
let x = x1, . . . , xn be a sequence of elements of A which is proregular
on M . Then x is also proregular on F⊗M .
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Proof. Because F is flat, tensoring the exact sequence

0 −→ M(i, k) −→ M

(xk
1 , . . . , xk

i−1)M
xk

i−→ M

(xk
1 , . . . , xk

i−1)M

with F shows that (F⊗M)(i, k)∼= F⊗M(i, k). Since {M(i, k)} is
prozero, so is {F⊗M(i, k)}.

Proposition 3.6. Let A → B be a homomorphism of commutative,
Noetherian rings. For any ideal I of A and any B-module M , we have
HI

j (M)∼= HIB
j (M) for all j.

Proof. Let x = x1, . . . , xn be a sequence generating I. Given any B-
module N , saying that x is proregular on N does not depend on whether
we view x1, . . . , xn as elements of A or as elements of B. Therefore,
since x is proregular on B (because B is a Noetherian B-module), x
will be proregular on any flat B-module.

So, if we let F• be a B-flat resolution of M , then even though F• may
not be an A-flat resolution of M , it will still be a resolution of M by
modules which are acyclic relative to the local homology functors H•I .
We can therefore use it to compute H•I(M):

HI
j (M)∼= Hj(ΛI(F•))∼= Hj(ΛIB(F•))∼= HIB

j (M).

As one application, this allows us to compute the local homology of
an injective indecomposable module in terms of better understood local
cohomology modules:

Example 3.3. Let A be a ring, I any ideal of A and p any prime of
A. Let E be the injective hull of A/p. Our change of rings result says
that HI

j (E) is the same as H
IAp

j (E). Since E = DAp
(Ap), this means

HI
j (E)∼= DAp

(Hj
IAp

(Ap)). In particular, HI
j (E) vanishes whenever

j > ht p or j < depth (IAp, Ap), see [2, Theorems 6.1.2 and 6.2.7].

We can also use this to show that, for an Artinian module, having
finite length does not depend on the ring. That is:
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Proposition 3.7. Let A → B be a homomorphism of commutative
rings, not necessarily Noetherian, and let M be a B-module of finite
length. If M is Artinian as an A-module, then it also has finite length
as an A-module.

Proof. Using a result of Sharp [15, Theorem 3.2], we can replace A
and B by Noetherian rings A′ and B′ without changing the submodule
structure of M . We construct this A′ by first letting Â be the
completion of A with respect to the intersection of the maximal ideals
of A associated to M and then letting A′ = Â/ann ÂM . B′ is formed
similarly and one can easily show that the ring homomorphism A → B
induces a homomorphism A′ → B′. Thus we may assume A and B are
Noetherian and semi-local.

Let J be the Jacobson radical of A. Since M is finitely generated
over B, we have HJB

j (M) = 0 for all j > 0. By Proposition 3.6, that
makes HJ

j (M) = 0 for all j > 0. Now, A is complete in the J-adic
topology, so M ∼= D2

A(M), which means HJ
j (M)∼= DA(Hj

J(DA(M))),
so we have Hj

J (DA(M)) = 0 for j > 0. However, DA(M) is a finitely
generated module, so Hd

J (DA(M)) �= 0 when d is the Krull dimension
of DA(M) [2, 6.1.4]. Thus DA(M) has finite length, so M has finite
length.

One way to compute local cohomology modules (in characteristic 0,
at least) is to pass to a ring of differential operators, where the local
cohomology modules will have finite length [4]. Since there are plenty
of local cohomology modules which are Artinian but do not have finite
length [2, 7.3.3], Proposition 3.7 shows that the ring of differential
operators cannot be replaced with a commutative ring.

4. Local homology and co-support. Let A be a commutative,
Noetherian ring.

If the support of a module M is contained in V (I) for some ideal
I, then all of M ’s higher local cohomology modules relative to I are
known to vanish, see [2, Corollary 2.1.7], for example. We get a dual
result for local homology:
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Theorem 4.1. Let x = x1, . . . , xn be a sequence of elements of A,
I the ideal they generate, and M an A-module. If coSupp M ⊂ V (I),
then x is proregular on M . In particular, HI

j (M) = 0 for j > 0 and
HI

0 (M)∼= ΛI(M).

Proof. Let i be an integer between 1 and n, and let k be any
positive integer. Since coSuppM/(xk

1 , . . . , xk
i−1)M ⊂ coSupp M and

V (I) ⊂ V (xi), Lemma 2.8 tells us that the module M/(xk
1 , . . . , xk

i−1)M
has bounded xi-adic torsion. Thus there is an r > k such that
any element of M/(xk

1 , . . . , xk
i−1)M annihilated by a power of xi is

annihilated by xr−k
i ; this implies that the map M(i, r) → M(i, k) is

zero.

For local cohomology, it is also known that Hj
I (M) = 0 for all

j > dim Supp M , see [2, Theorem 6.1.2], for example; we would like
to have HI

j (M) = 0 for all j > dim coSupp M . We cannot as yet prove
that result in full generality, but we can at least prove some results in
that direction. We start with the case of “small” modules:

Proposition 4.2. Let I be an ideal of A and M an A-module. If
M is either finitely generated or Artinian, then HI

j (M) = 0 for all
j > dim coSuppM .

Proof. If M is finitely generated, any sequence is proregular on M ,
so HI

j (M) = 0 for any I and any j > 0. Thus, the only way the
proposition could fail in this case would be for dim coSupp M to be
negative, which would mean M = 0, but then HI

j (M) = 0 for all j.

Now suppose M is Artinian. We prove the result using induction on
the dimension of coSuppM if dim coSuppM = 0, then the attached
primes of M are all maximal, whence M has finite length and the result
follows from the finitely generated case.

Suppose M has one attached prime p, so coSupp M = V (p). If I ⊂ p,
then HI

j (M) = 0 for all j > 0 by Theorem 4.1; thus, we may assume
that there is an x ∈ I \p. Then coSupp (0 :M x) ⊂ coSupp M ∩V (x) =
V (p, x) which has dimension less than dim coSupp M . For any j, the
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exact sequence 0 → (0 :M x) → M
x→ M → 0 yields

HI
j (M) x−→ HI

j (M) −→ HI
j−1((0 :M x)).

If j > dim coSupp M , we may assume by induction that the last module
is zero, so xHI

j (M) = HI
j (M). However, by [16, Lemma 5.1 (iii)], that

means HI
j (M) = 0.

The result follows for a general Artinian module by induction on
the number of attached primes, using the long exact sequence in
homology and the fact that for any submodule N of M , coSuppN
and coSuppM/N are both contained in coSuppM .

([3, Proposition 4.8] and [18, Theorem 3.3] give similar results
relating the vanishing of local homology to the “Krull dimension” of
Artinian modules as defined in [12].)

To prove the full version of the local cohomology vanishing result,
one reduces the general case to the finitely generated case by noting
that any module is the direct limit of its finitely generated submodules.
Dualizing, we would like to say that every module is the inverse limit
of its Artinian quotients, but this is not the case (that would say,
for example, that every finitely generated module is complete). The
most we can say is that the Artinian quotients “separate points from
submodules” as in Lemma 1.1. In the next theorem we adapt that
fact to Koszul homologies; that is enough to reduce the vanishing of
lim
←−

Hj(xk; M) to the case where M is Artinian.

Lemma 4.3. Let A be a ring, x = x1, . . . , xn a sequence of
elements of A, and M an A-module. If z is a nonzero element of
Hj(x; M), then there exists a surjective homomorphism f : M → N
with N Artinian such that z is not in the kernel of the induced map
f̃ : Hj(x; M) → Hj(x; N).

Proof. Abusing notation, we view z as an element of Kj(x; M)
which is not in the submodule of boundaries Bj(x; M). By Lemma 1.1
there is then a homomorphism g : Kj(x; M) → Ξ with Ξ Artinian,
g(Bj(x; M)) = 0, and g(z) �= 0. Indexing the Koszul complex
using subsets of {1, . . . , n}, we think of this g as a homomorphism
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⊕|S|=jM → Ξ. For each S we let gS : M → Ξ be the composition of g
with the inclusion M → ⊕M corresponding to S. Putting these maps
gS together one way gives us our original function: g (

∑
ms[S]M ) =∑

gS(mS). Putting them together in the other gives a map M →
⊕|S|=jΞ; we let N be the image of this map, and we let f :M → N be
the corestriction to N .

Let fj be the induced map Kj(x; M) → Kj(x; N); we need to show
that fj(z) /∈ Bj(x; N). Viewing N as a submodule of ⊕|T |=jΞ makes
Kj(x; N) a submodule of ⊕|S|=j ⊕|T |=j Ξ; we will write an element
of Kj(x; N) as

∑
S,T nS,T [S, T ]N . With this notation, the map fj is

defined by

fj

( ∑
S

mS [S]M

)
=

∑
S,T

gT (mS)[S, T ]N .

We next define a homomorphism of modules Δ : Kj(x; N) → Ξ by
adding up diagonal terms: Δ(

∑
nS,T [S, T ]N ) =

∑
nS,S . Composing

this Δ with fj gives us back our original g, since for any
∑

mS [S]M ∈
Kj(x; M) we have

Δ
(
fj

( ∑
mS [S]M

))
= Δ

( ∑
gT (mS)[S, T ]N

)
=

∑
gS(mS) = g

( ∑
mS [S]M

)
.

In particular, this says that fj(z) /∈ fj(Bj(x; M)), but since f is
surjective the boundaries of K•(x; N) all come from boundaries of
K•(x; M). Thus fj(z) represents a nonzero element of Hj(x; N).

Using this we get a partial vanishing result for local homology:

Theorem 4.4. Let A be a ring, x = x1, . . . , xn any sequence of
elements of A and M any A-module. For any j > dim coSuppM we
have lim

←−
Hj(xk; M) = 0.

Proof. Suppose lim
←−

Hj(xk; M) �= 0. Then we can find a sequence

{zk ∈ Hj(xk; M)} with one of the zr �= 0. Let f :M → N be a surjective
homomorphism with N Artinian and f̃(zr) �= 0 as provided in the pre-
vious lemma. Then the induced map lim

←−
Hj(xk; M) → lim

←−
Hj(xk; N)
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takes {zk} to a nonzero sequence, showing that H
(x)
j (N) �= 0. Since N

is Artinian, we can conclude that j ≤ dim coSupp N ≤ dim coSupp M .

This means that if j > dim coSupp M , then any nonzero element
of the local homology module HI

j (M) would have to come from the
more exotic lim

←−
1 Hj+1(xk; M) part. In particular, if M is one of

the modules described in Proposition 3.3, so only the lim
←−

Hj(xk; M)

part has any relevance, then we do in fact have HI
j (M) = 0 for all

j > dim coSuppM . Also, the index shift in the lim
←−

1 part means that
if the sequence x has length n and dim coSupp M < n, then at least
HI

n(M) = 0. In particular, HI
j (M) = 0 for all j > dim coSupp M

whenever I is a principal ideal.
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