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PHELPS’ UNIQUENESS PROPERTY
FOR K(X,Y ) IN L(X,Y )

MÄRT PÕLDVERE

ABSTRACT. We study pairs of Banach spaces X and Y
with X∗ or Y ∗ having a metric compact approximation of
the identity (MCAI) with adjoint operators such that the
subspace K(X, Y ) of compact operators from X to Y has the
Phelps’ uniqueness property U in the space of all continuous
linear operators L(X, Y ), i.e., every functional f ∈ K(X, Y )∗
has a unique norm-preserving extension to L(X, Y ).

Our main results are: (1) K(X, X) has property U in
L(X, X) whenever X has an MCAI and K(E, E) has property
U in L(E, E) for every closed separable subspace E of X
having an MCAI; (2) if a Banach space Y has an MCAI, then
K(X, Y ) has property U in L(X, Y ) for all Banach spaces X
if and only if K(l1, Y ) has property U in L(l1, Y ). We also
show that if a separable dual space X∗ has an MCAI with
adjoint operators, then property U for K(X, X) in L(X, X)
is determined by the properties of the extreme points of the
unit ball of L(X, X)∗.

0. Introduction. Let X be a (real or complex) Banach space, and
let Z be a closed subspace of X. By the Hahn-Banach theorem, every
continuous linear functional g ∈ Z∗ has a norm-preserving extension
f ∈ X∗. In general, such an extension is highly non-unique. Following
Phelps [16], we say that Z has property U in X if every g ∈ Z∗ has a
unique norm-preserving extension f ∈ X∗.

According to the terminology in [2], a closed subspace Z of a Banach
space X is said to be an ideal in X if there exists a contractive
projection P on X∗ with kerP = Z⊥. It is straightforward to verify
that, if Z is an ideal in X, then, for every f ∈ X∗, Pf ∈ X∗ is a norm-
preserving extension of the restriction f |Z ∈ Z∗. Therefore, ranP is
canonically isometric to Z∗. In the sequel, we shall use the (generally
non-Hausdorff) weak topology σ(X, ranP ). Ideals with property U
have been studied e.g. in [10, 11, 14, 15].
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In this paper, we study property U for the subspace of compact
operators K(X,Y ) in the space of all continuous linear operators
L(X,Y ) between two Banach spaces X and Y . We restrict our
attention to the case where X∗∗ or Y ∗ enjoys the Radon-Nikodým
property (shortly, RNP) and X or Y has a shrinking metric compact
approximation of the identity. Recall that a net (Kα) in K(X,X) with
‖Kα‖ ≤ 1 is called a metric compact approximation of the identity
(shortly, MCAI) if limKαx = x for all x ∈ X. If also limKα

∗x∗ = x∗

for all x∗ ∈ X∗, then (Kα) is called a shrinking MCAI. Note that, see
[4, proof of Lemma 1], if (Kγ) is any weak∗ convergent (in K(X,X)∗∗)
shrinking MCAI of X, respectively weak∗ convergent (in K(Y, Y )∗∗)
MCAI of Y , then K(X,Y ) is an ideal in L(X,Y ) with respect to the
following Johnson projection P on L(X,Y )∗ defined by

(0.1) Pφ(T ) = lim
γ
φ(TKγ), φ ∈ L(X,Y )∗, T ∈ L(X,Y ),

respectively

(0.2) Pφ(T ) = lim
γ
φ(KγT ), φ ∈ L(X,Y )∗, T ∈ L(X,Y ).

In Section 1, we give a sufficient condition for the convergence of nets
with respect to the weak topology induced by the Johnson projection,
and establish a criterion of property U for ideals of compact operators
in the corresponding space of all continuous linear operators.

In Section 2, we prove that, in certain cases, property U for K(X,Y )
in L(X,Y ) is separably determined, and study its hereditary properties.
In particular, we prove that (1) K(X,X) has property U in L(X,X)
whenever X has an MCAI and K(E,E) has property U in L(E,E)
for every closed separable subspace E of X having an MCAI; (2) if
a Banach space Y has an MCAI, then K(X,Y ) has property U in
L(X,Y ) for all X if and only if K(l1, Y ) has property U in L(l1, Y ).
Most of the results of this section are extensions of the corresponding
results on M -ideals (for the prototype of (1), see [12, Theorem 2]; for
the prototype of (2), see [12, Corollary 7], see also [9, Theorem 2.12] for
the separable case), a well-studied subclass of subspaces with property
U , see [3]. Recall that a closed subspace Z of a Banach space X is said
to be an M -ideal in X if it is an ideal in X with respect to a projection
P on X∗ such that, for each f ∈ X∗, one has ‖f‖ = ‖Pf‖+ ‖f −Pf‖.
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In Section 3, we prove an extremal test for property U for separable
ideals, and, as an application, we show that, under certain assumptions,
the uniqueness of the norm-preserving extensions of functionals of the
form x∗∗ ⊗ y∗ is sufficient for K(X,Y ) to have property U in L(X,Y ).

Let us fix some notation. The closed unit ball and the unit sphere of a
Banach space X will be denoted, respectively, by BX and SX . For a set
A ⊂ X, we denote its convex hull by convA, its linear span by spanA,
and the set of its extreme points by extA. The symbol L(X,Y ) will
stand for the space of continuous linear operators from X to a Banach
space Y , and K(X,Y ) for its subspace of compact operators. We shall
write L(X) and K(X) instead of L(X,X) and K(X,X), respectively.
We also denote

UX =
{
(xn)∞n=1 ⊂ X: ‖x1‖ ≤ 1, ‖xn+1 − xn‖ ≤ 1, n ∈ N

}
.

1. Auxiliary results. Our arguments to prove the results in
Section 2 are based on

Proposition 1.1 (see [14, Theorem 3]). Let Z be an ideal in
a Banach space X with respect to a projection P . The following
assertions are equivalent.

(i) Z has property U in X.

(ii) Whenever ε > 0, (yn)∞n=1 ∈ UZ , K is a convex subset of Z, and
x is in the σ(X, ranP )-closure of K, then there are z ∈ K and n0 ∈ N
satisfying

‖yn0 + x− z‖ ≤ n0 + ε.

(iii) For every (yn)∞n=1 ∈ UZ and every x ∈ BX , there is a net (zα)
in BZ such that lim zα = x in the σ(X, ranP )-topology and, provided
ε > 0, one can find an index α0 so that, for every α > α0, there is
some nα ∈ N satisfying

‖ynα
+ x− zα‖ ≤ nα + ε.

If K(X,Y ) is an ideal in L(X,Y ) with respect to some Johnson
projection, then, in order to make use of Proposition 1.1 to decide
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whether K(X,Y ) does or does not have property U in L(X,Y ), it
would be helpful to have some description of the convergence of nets
with respect to the weak topology induced by this projection. This will
be given in

Lemma 1.2. Let X and Y be Banach spaces with X∗∗ or Y ∗

enjoying the RNP and X, respectively Y , having a shrinking MCAI,
and let P be a Johnson projection on L(X,Y )∗. Then, for any shrinking
MCAI (Kα) of X, respectively Y , and all T ∈ L(X,Y ), one has
limα TKα = T , respectively limαKαT = T , in the σ(L(X,Y ), ranP )-
topology.

Proof. Let (Kα) be any shrinking MCAI of X (the proof is almost
verbatim with some obvious changes if we assume that Y has a shrink-
ing MCAI), and let T ∈ L(X,Y ), f ∈ L(X,Y )∗ and ε > 0. It suffices
to show that there is an index α0 such that |Pf(T ) − Pf(TKα)| < ε
for all α > α0. To this end, first observe that whenever x∗∗ ∈ X∗∗

and y∗ ∈ Y ∗, then, for the functional x∗∗ ⊗ y∗ ∈ L(X,Y )∗ de-
fined by x∗∗ ⊗ y∗(V ) = x∗∗(V ∗y∗), V ∈ L(X,Y ), one has P (x∗∗ ⊗
y∗) = x∗∗ ⊗ y∗. Since X∗∗ or Y ∗ has the RNP, by [1, Theorem 1],
span {x∗∗ ⊗ y∗|K(X,Y ): x∗∗ ∈ X∗∗, y∗ ∈ Y ∗} is a dense subspace of
K(X,Y )∗, and thus there are n ∈ N, x∗∗i ∈ X∗∗, y∗i ∈ Y ∗, i = 1, . . . , n,
such that, for g =

∑n
i=1x

∗∗
i ⊗ y∗i ∈ L(X,Y )∗, one has

‖Pf − Pg‖ = ‖P (f − g)‖ = ‖(f − g)|K(X,Y )‖
= ‖f |K(X,Y ) − g|K(X,Y )‖ < ε

3‖T‖ .

Choosing an index α0 so that, for all α > α0, one has

‖T ∗y∗i −Kα
∗T ∗y∗i ‖ <

ε

3n‖x∗∗i ‖ , i = 1, . . . , n,

it remains to observe that, for any α > α0,

|Pf(T ) − Pf(TKα)| ≤ ‖Pf − Pg‖ ‖T‖ + |Pg(T − TKα)|
+ ‖Pf − Pg‖ ‖T‖ ‖Kα‖

<
2ε
3

+
∣∣∣∣ n∑
i=1

x∗∗i

(
(T − TKα)∗y∗i

)∣∣∣∣ < ε.
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The following criterion of property U is now a quick consequence of
Proposition 1.1 and Lemma 1.2.

Proposition 1.3. Let X and Y be Banach spaces with X∗∗ or Y ∗

having the RNP, and X, respectively Y , having a shrinking MCAI. The
following assertions are equivalent.

(i) K(X,Y ) has property U in L(X,Y ).

(ii) For every (Sn)∞n=1 ∈ UK(X,Y ), T ∈ BL(X,Y ), ε > 0, and every
shrinking MCAI (Kα) of X, respectively Y , there are n0 ∈ N and
K ∈ conv {Kα} satisfying

‖Sn0 + T − TK‖ ≤ n0 + ε, resp. ‖Sn0 + T −KT‖ ≤ n0 + ε.

(iii) For every (Sn)∞n=1 ∈ UK(X,Y ) and T ∈ BL(X,Y ), there exists a
shrinking MCAI (Kα) of X, respectively Y , such that, provided ε > 0,
one can find an index α0 so that, for every α > α0, there is some
nα ∈ N satisfying

(1.1) ‖Snα
+T −TKα‖ ≤ nα +ε, resp. ‖Snα

+T −KαT‖ ≤ nα +ε.

Proof. (i) ⇒ (ii) and (iii) ⇒ (i) follow immediately from the corre-
sponding implications of Proposition 1.1 by Lemma 1.2.

(ii) ⇒ (iii). Let (Kβ)β∈B be any shrinking MCAI of X, respectively
Y . Consider the set A = {(β, ε): β ∈ B, ε ∈ R, ε > 0} directed in
the natural way. By (ii), to each α = (β, ε) ∈ A, one can associate
some Kα ∈ conv {Kγ : γ ∈ B, γ > β} such that, for some nα ∈ N, the
condition (1.1) holds. The net (Kα)α∈A clearly meets all the conditions
of (iii).

2. Hereditary results on property U for K(X,Y ) in L(X,Y ).
Most of the results in this section are extensions of the analogous results
for M -ideals.

Throughout this section, we shall repeatedly exploit the following
well known lemma (see [17, Theorem 15] or [3, p. 126], and, e.g., the
proofs of [7, Theorem 4.2, (c)⇒(a), and Proposition 4.1, (b)⇒(c)]).
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Lemma 2.1. Let a Banach space X have property U in its bidual.
Then

(a) X∗ has the RNP,

(b) every MCAI of X is shrinking.

Theorem 2.2. Let X be a Banach space having an MCAI. Suppose
that K(E) has property U in L(E) for all closed separable subspaces
E ⊂ X having an MCAI. Then K(X) has property U in L(X).

Remark. 1) The proof of Theorem 2.2 is essentially based on the
same effects as its prototype’s for M -ideals, see [12, Theorem 2], see
also [13, Corollary 4.3]. However, use of Proposition 1.3 makes our
proof somewhat simpler than the proof of the prototype.

2) It is well known that, see e.g., [3, p. 301], if X is a Banach space
and K(X) is an M -ideal in L(X), then K(E) is an M -ideal in L(E) for
all closed subspaces E ⊂ X having an MCAI. We do not know whether
the analogous result is true for property U .

Proof of Theorem 2.2. Since every closed separable subspace of X is
contained in some closed separable subspace having an MCAI, and our
assumptions yield that every closed separable subspace of X having
an MCAI enjoys property U in its bidual, see [5, Theorem 4.5] or
[14, Theorem 7], every closed separable subspace of X has property
U in its bidual (because property U in biduals is inherited by closed
subspaces). Thus, by [14, Corollary 5], X has property U in its bidual.
By Lemma 2.1, the latter implies that X∗ has the RNP and any MCAI
of X is shrinking.

Suppose for contradiction that K(X) does not have property U
in L(X). Then, by Proposition 1.3, there are (Sn)∞n=1 ∈ UK(X),
T ∈ BL(X), ε > 0, and a shrinking MCAI (Kα) of X such that

‖Sn + T −KT‖ > n+ ε for all n ∈ N and all K ∈ conv {Kα}.

We are going to construct a closed separable subspace E ⊂ X having
an MCAI so that K(E) fails to have property U in L(E).

To this end, first pick any index α1 and any z ∈ BX , and put
C1 = {z}. Now continue as follows. Given indices αi and finite sets
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Ci ⊂ X, i = 1, . . . ,m (m ∈ N) pick an index αm+1 > αm so that

‖Kαm+1x− x‖ < 1
m+ 1

for all x ∈ Cm.

Choose a finite 1/(m+ 1)-net Am+1 of conv {Kα1 , . . . ,Kαm+1} and a
finite set Bm+1 ⊂ BX so that, for allK ∈ Am+1 and n ∈ {1, . . . ,m+1},
there exists some x ∈ Bm+1 satisfying

‖(Sn + T −KT )x‖ > ‖Sn + T −KT‖ − 1
m+ 1

.

Then put

Cm+1 = Cm ∪Bm+1 ∪
[ ⋃

V ∈{T,Si,Kαi
: i=1,... ,m+1}

x∈Cm∪Bm+1

{
V x

}]
.

Proceeding as described, we obtain a sequence (Kαm
)∞m=1 ⊂ BK(X) and

a sequence (Cm)∞m=1 of finite subsets ofX. DenoteE = span ∪∞
m=1 Cm.

Since Tx, Snx,Kαm
x ∈ E for all x ∈ E, n ∈ N, m ∈ N, denoting

T̃ = T |E , S̃n = Sn|E , Km = Kαm
|E , n,m ∈ N, we have T̃ ∈ BL(E),

(S̃n)∞n=1 ∈ UK(E), Km ∈ BK(E), m ∈ N. Clearly (Km) is an MCAI
of E. Since property U in biduals is inherited by closed subspaces,
the subspace E has property U in E∗∗, and, by Lemma 2.1, (Km)
is shrinking. For all n ∈ N and all K ∈ conv {Km}, one has
‖S̃n + T̃ −KT̃‖ > n + ε, and, by Proposition 1.3, K(E) fails to have
property U in L(E).

Theorem 2.3. Let X and Y be Banach spaces with Y having
property U in Y ∗∗ and an MCAI. Suppose that K(E,F ) has property
U in L(E,F ) for all closed separable subspaces E ⊂ X and F ⊂ Y with
F having an MCAI. Then K(X,Y ) has property U in L(X,Y ).

Proof. Let (Kα) ⊂ BK(Y ) be any MCAI. By Lemma 2.1, (Kα) is
shrinking and Y ∗ has the RNP.

Suppose for contradiction that K(X,Y ) does not have property U
in L(X,Y ). Then, by Proposition 1.3, there are (Sn)∞n=1 ∈ UK(X,Y ),
T ∈ BL(X,Y ), ε > 0, and a shrinking MCAI (Kα) of Y such that

‖Sn + T −KT‖ > n+ ε for all n ∈ N and all K ∈ conv {Kα}.
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We are going to construct closed separable subspaces E ⊂ X and
F ⊂ Y with F having an MCAI so that K(E,F ) fails to have property
U in L(E,F ).

To this end, first pick any index α1 and z ∈ BX , and put C1 = {z}
and D1 = {S1z, Tz}. Now continue as follows. Given indices αi and
finite sets Ci ⊂ X, Di ⊂ Y , i = 1, . . . ,m (m ∈ N) pick an index
αm+1 > αm so that

‖Kαm+1y − y‖ < 1
m+ 1

for all y ∈ Dm.

Choose a finite 1/(m+ 1)-net Am+1 of conv {Kα1 , . . . ,Kαm+1} and a
finite set Bm+1 ⊂ BX so that, for allK ∈ Am+1 and n ∈ {1, . . . ,m+1},
there exists some x ∈ Bm+1 satisfying

‖(Sn + T −KT )x‖ > ‖Sn + T −KT‖ − 1
m+ 1

.

Then put Cm+1 = Cm ∪Bm+1 and

Dm+1 = Dm ∪
[ ⋃

V ∈{S1,... ,Sm+1,T}
x∈Cm+1

{
V x

}] ⋃[ ⋃
i∈{1,... ,m+1}

y∈Dm

{
Kαi

y
}]
.

Proceeding as described, we obtain a sequence (Kαm
)∞m=1 ⊂ BK(Y )

and sequences (Cm)∞m=1 and (Dm)∞m=1 of finite subsets of X and Y ,
respectively. Denote E = span ∪∞

m=1 Cm and F = span ∪∞
m=1 Dm.

Since Tx, Snx ∈ F for all x ∈ E, n ∈ N, and Kαm
y ∈ F for all

y ∈ F , m ∈ N, denoting T̃ = T |E , S̃n = Sn|E , Km = Kαm
|F , n,m ∈ N,

we have T̃ ∈ BL(E,F ), (S̃n)∞n=1 ∈ UK(E,F ), Km ∈ BK(F ), m ∈ N.
Clearly (Km) is an MCAI of F . Since property U in biduals is inherited
by closed subspaces, the subspace F has property U in F ∗∗, and, by
Lemma 2.1, (Km) is shrinking. For all n ∈ N and all K ∈ conv {Km},
one has ‖S̃n + T̃ −KT̃‖ > n+ε, and, by Proposition 1.3, K(E,F ) fails
to have property U in L(E,F ).

Proposition 2.4. Let X and Y be Banach spaces with X∗∗ or Y ∗

having the RNP, and let K(X,Y ) have property U in L(X,Y ).
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(a) If X has a shrinking MCAI, then K(X,F ) has property U in
L(X,F ) for all closed subspaces F ⊂ Y .

(b) If Y has a shrinking MCAI, then K(X/E, Y ) has property U in
L(X/E, Y ) for all closed subspaces E ⊂ X.

Remark. For the prototype of Proposition 2.4 for M -ideals, see [9,
Proposition 2.9].

Proof of Proposition 2.4. (a) Suppose that X has a shrinking MCAI.
Let F ⊂ Y be any closed subspace and let j: F → Y denote the natural
embedding. Fix arbitrary (Sn) ∈ UK(X,F ) and T ∈ BL(X,F ). Clearly
(jSn) ∈ UK(X,Y ) and jT ∈ BL(X,Y ). Since K(X,Y ) has property U in
L(X,Y ), by Proposition 1.3, there is a shrinking MCAI (Kα) ⊂ BK(X)

such that, provided ε > 0, one can find an index α0 such that, for every
α > α0, there exists some nα ∈ N satisfying

‖Snα
+ T − TKα‖ = ‖jSnα

+ jT − jTKα‖ ≤ nα + ε.

By Proposition 1.3, K(X,F ) has property U in L(X,F ).

(b) Suppose that Y has a shrinking MCAI. Let E ⊂ X be any closed
subspace and let q: X → X/E denote the quotient map. Fix arbitrary
(Sn) ∈ UK(X/E,Y ) and T ∈ BL(X/E,Y ). For any U ∈ L(X/E, Y ), one
has ‖U‖ = ‖Uq‖, thus (Snq) ∈ UK(X,Y ) and Tq ∈ BL(X,Y ). Since
K(X,Y ) has property U in L(X,Y ), by Proposition 1.3, there is a
shrinking MCAI (Kα) ⊂ BK(Y ) such that, provided ε > 0, one can find
an index α0 such that, for every α > α0, there exists some nα ∈ N
satisfying

‖Snα
+ T −KαT‖ = ‖Snα

q + Tq −KαTq‖ ≤ nα + ε.

By Proposition 1.3, K(X/E, Y ) has property U in L(X/E, Y ).

Corollary 2.5. Let Y be a Banach space having an MCAI. The
following assertions are equivalent.

(i) K(X,Y ) has property U in L(X,Y ) for all Banach spaces X.

(ii) K(l1, Y ) has property U in L(l1, Y ).
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Remark. For the prototype of Corollary 2.5 for M -ideals, see [12,
Corollary 7], see also [9, Theorem 2.12] for the separable case. By
courtesy of Theorem 2.3, the proof of Corollary 2.5 is more direct than
its prototype’s one.

Proof of Corollary 2.5. (i) ⇒ (ii) is more than obvious.

(ii) ⇒ (i). Let X be a Banach space, and let E ⊂ X and F ⊂ Y
be closed separable subspaces with F having an MCAI. Since K(l1, Y )
has property U in L(l1, Y ), the subspace Y has property U in Y ∗∗,
see [14, Theorem 12], and, by Lemma 2.1, Y ∗ has the RNP. By
Proposition 2.4(a), K(l1, F ) has property U in L(l1, F ). Since property
U in biduals is inherited by closed subspaces, the subspace F has
property U in its bidual, and thus, by Lemma 2.1, F ∗ has the RNP
and any MCAI of F is shrinking. By Proposition 2.4(b), K(E,F ) has
property U in L(E,F ) (because every closed separable Banach space
is isometrically isomorphic to a quotient of �1). It remains to apply
Theorem 2.3.

3. Extremal test for property U . The following theorem is an
extremal test for property U for separable ideals.

Theorem 3.1. Let X be a Banach space, and let Z be a separable
ideal in X with respect to a projection P ∈ L(X∗) such that, for every
x ∈ BX , there is a sequence (zm)∞m=1 ⊂ BZ satisfying lim zm = x in
the σ(X, ranP )-topology. If, for all φ ∈ extBX∗ with ‖φ‖ = ‖φ|Z‖,
the functional φ itself is the only norm-preserving extension to X of its
restriction on Z, then Z has property U in X.

Remark. The assumption for Z to be an ideal in Theorem 3.1 cannot
be dropped even if X is finite dimensional, see [6, p. 459, Example].
We do not know whether the assertion of Theorem 3.1 remains true
if one drops the assumption for BX to be contained in the sequential
σ(X, ranP )-closure of BZ .

Proof of Theorem 3.1. Let f ∈ SX∗ satisfy ‖Pf‖ = ‖f‖. It suffices to
show that Pf = f . Suppose for contradiction that Pf(x) 
= f(x)
for some x ∈ BX . Put E = span (Z ∪ {x}) and C = extBE∗ ,
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and let Q ∈ L(E∗) be the ideal projection for Z in E induced by
P (i.e., for h ∈ E∗, one has Qh = Pg|E where g ∈ X∗ is any
extension of h to X). Let a sequence (zm)∞m=1 ⊂ BZ be such that
lim zm = x in the σ(X, ranP )-topology of X; then also lim zm = x in
the σ(E, ranQ)-topology of E. Denote h = f |E . By Choquet’s integral
representation theorem, there is a regular Borel probability measure μ
on (BE∗ , w∗) concentrated on C and representing h. By Lebesgue’s
bounded convergence theorem, one has

Qh(x) = lim
m→∞Qh(zm)

= lim
m→∞h(zm)

= lim
m→∞

∫
C

ψ(zm) dμ(ψ)

= lim
m→∞

∫
C

Qψ(zm) dμ(ψ)

=
∫

lim
m→∞Qψ(zm) dμ(ψ) =

∫
C

Qψ(x) dμ(ψ).

Denote A = {ψ ∈ C: Qψ 
= ψ}. Observe that ‖Qψ‖ < 1 for all
ψ ∈ A. (Indeed, let ψ ∈ A. Since ψ ∈ extBE∗ , then ψ has some norm-
preserving extension φ ∈ extBX∗ . Since Qψ 
= ψ, also Pφ 
= φ, and
thus ‖Qψ‖ = ‖Pφ‖ < ‖φ‖ = 1 because if ‖Pφ‖ = ‖φ‖, then Pφ and φ
would be different norm-preserving extensions to X of φ|Z .) Since∫

C

(ψ −Qψ)(x) dμ(ψ) = h(x) −Qh(x) 
= 0,

one has μ(A) > 0, and hence
∫

A
‖Qψ‖ dμ(ψ) < μ(A). Thus

‖Pf‖ = ‖Qh‖ = sup
y∈BE

|Qh(y)|

= sup
y∈BE

∣∣∣∣∫
C

Qψ(y) dμ(ψ)
∣∣∣∣

≤
∫

C

sup
y∈BE

|Qψ(y)| dμ(ψ)

=
∫

C

‖Qψ‖ dμ(ψ)
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=
∫

A

‖Qψ‖ dμ(ψ) +
∫

C\A

‖Qψ‖ dμ(ψ)

< μ(A) + μ(C \A) = μ(C) = 1 = ‖f‖,

a contradiction.

Recall that if X and Y are Banach spaces, and x∗∗ ∈ X∗∗ and
y∗ ∈ Y ∗, then the functional x∗∗ ⊗ y∗ ∈ L(X,Y )∗ is defined by
x∗∗ ⊗ y∗(T ) = x∗∗(T ∗y∗), T ∈ L(X,Y ).

Corollary 3.2. Let X and Y be Banach spaces with X∗ and Y ∗

being separable and X or Y having a shrinking MCAI (Km)∞m=1. If,
for all x∗∗ ∈ BX∗∗ and y∗ ∈ BY ∗ , the functional x∗∗ ⊗ y∗ ∈ L(X,Y )∗

itself is the only norm-preserving extension to L(X,Y ) of its restriction
on K(X,Y ), then K(X,Y ) has property U in L(X,Y ).

Remark. For x∗∗ ∈ BX∗∗ and y∗ ∈ BY ∗ , the functional x∗∗ ⊗ y∗ ∈
L(X,Y )∗ itself is the only norm-preserving extension to L(X,Y ) of its
restriction on K(X,Y ) e.g. whenever x∗∗ is a weak∗-denting point of
BX∗∗ or y∗ is a weak∗-denting point of BY ∗ , see [8, Lemma 3.1].

Proof of Corollary 3.2. Suppose that (Km)∞m=1 is a shrinking MCAI
of X, respectively Y . Let φ ∈ extBL(X,Y )∗ . Since conv {x∗∗⊗y∗: x∗∗ ∈
BX∗∗ , y∗ ∈ BY ∗} is weak∗ dense in BL(X,Y )∗ , Milman’s converse to
the Krein-Milman theorem and the weak∗ compactness of BX∗∗ and
BY ∗ yield that φ|K(X,Y ) = x∗∗ ⊗ y∗|K(X,Y ) for some x∗∗ ∈ BX∗∗

and y∗ ∈ BY ∗ . Observing that K(X,Y ) is a separable ideal (because
K(E,F ) is separable if and only if E∗ and F are separable) in L(X,Y )
with respect to the projection P defined by (0.1), respectively (0.2),
where (Kγ) is a weak∗ convergent (in K(X,X)∗∗, respectively in
K(Y, Y )∗∗) subnet of (Km), and, by Lemma 1.2, limTKm = T ,
respectively limKmT = T , in the σ(L(X,Y ), ranP )-topology for all
T ∈ L(X,Y ), an appeal to Theorem 3.1 finishes the proof.
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