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THE WEAK CHANG-MARSHALL INEQUALITY
VIA GREEN’S FORMULA

MIROSLAV PAVLOVIĆ AND DRAGAN VUKOTIĆ

ABSTRACT. We prove the uniform Trudinger-Moser type
inequality of Chang and Marshall for the Dirichlet space when
α < 1 by using only Green’s formula instead of Beurling’s deep
inequalities.

1. Introduction. In this note we present a very short proof of the
weak Chang-Marshall inequality based only on Green’s formula for the
disk and a standard growth estimate for the functions in the Dirichlet
space D of the disk. By the weak Chang-Marshall inequality we mean
the uniform estimate

(1) sup
{∫ 2π

0

eα|f(eiθ)|2 dθ : ‖f‖D ≤ 1, f(0) = 0
}

< ∞, α < 1.

This is a complex variable case of the well-known inequalities of
Trudinger-Moser type. The uniform estimate (1) no longer holds when
α > 1. Its proof in the critical case α = 1 was a deep result of
Chang and Marshall [3] and provided an answer to a question stated on
page 1079 of Moser’s influential paper [6]. See also [5] for a simplified
proof and [2] for more details and the vast literature on this topic and
its relations with geometry.

The weak Chang-Marshall inequality is certainly easier to prove than
the case α = 1. However, its proofs that one encounters in the literature
are based on the following deep uniform estimate from Beurling’s thesis
[1]:

(2) If f ∈ D, ‖f‖D ≤ 1, and f(0) = 0, then |Eλ| ≤ e−λ2+1.

Here Eλ = {θ ∈ [0, 2π] : |f(eiθ)| > λ} and |Eλ| is its normalized arc
measure on the unit circle T. Namely, a generalization of the basic
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1632 M. PAVLOVIĆ AND D. VUKOTIĆ

lemma on the first page of Chapter VIII of [4] and (2) together yield

(3)
∫ 2π

0

eα|f(eiθ)|2 dθ

2π
= 1 + 2α

∫ ∞

0

λeαλ2 |Eλ| dλ < ∞

for any α < 1.

Our approach is much simpler: it relies only on the growth estimate
for Dirichlet functions and Green’s identity. Even though we are not
able to cover the case α = 1 as the papers [3] or [5] did, this still
appears to be a novelty in the literature on the subject.

1. The proof via Green’s identity. Throughout this note, D(z, r)
will denote the disk of radius r centered at z and D = D(0, 1) the unit
disk. We will use the notation dA = (π)−1 dx dy for the normalized
area measure so that A(D) = 1 instead of π.

The Dirichlet space D is the Hilbert space of analytic functions with
finite area integral, whose norm is given by

(4) ‖f‖2
D = |f(0)|2 +

∫
D

|f ′(z)|2 dA(z) = |a0|2 +
∞∑

n=1

n|an|2,

where f has the Taylor series
∑∞

n=0 anzn in D. Every function in D
satisfies the (sharp) pointwise inequality:

(5) |f(ζ) − f(0)| ≤ ‖f‖D
√

log
1

1 − |ζ|2 .

This follows by applying the Cauchy-Schwarz inequality to the Tay-
lor series of f . One of the earliest sources that quotes this fact ap-
pears to be [7, pp. 218 219]. This estimate and Green’s theorem in
the Littlewood-Paley form will suffice to prove the Chang-Marshall in-
equality when 0 < α < 1.

Theorem 1. For every positive value α < 1, we have

sup
{∫ 2π

0

eα|f(eiθ)|2 dθ : ‖f‖D ≤ 1, f(0) = 0
}

< ∞.
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Proof. Fix α < 1. Let f ∈ D, ‖f‖D ≤ 1 and f(0) = 0. Consider the
function

Wf (z) = exp(α|f(z)|2) − 1.

Its dilatations Wf,r, defined by Wf,r(z) = Wf (rz), vanish at the origin
and belong to C∞(D), so we may apply the first lemma in Section D.1,
Chapter X of [4] to get

(6)
∫ 2π

0

Wf (reiθ) dθ = π

∫
D

log
1
|z| · r

2 · (ΔWf )(rz) dA(z).

A straightforward computation of the Laplacian of Wf yields:

ΔWf = 4∂∂ exp(α|f |2) = 4α|f ′|2(1 + α|f |2) exp(α|f |2).

Since by Fatou’s lemma we have

∫ 2π

0

eα|f(eiθ)|2 dθ ≤ 2π + lim inf
r→1−

∫ 2π

0

Wf (reiθ) dθ,

the theorem will follow from (6) if we can show that the integrals over
D of the functions

Uf,r(z) = log
1
|z| · |f

′(rz)|2(1 + α|f(rz)|2) exp(α|f(rz)|2)

are all finite and bounded by the same constant (independent of r) for
each f as specified above. This can be done easily as follows.

By (5) and by our assumptions that f(0) = 0 and ‖f‖D ≤ 1, we
obtain

Uf,r(z) ≤ log
1
|z| ·

1 + α log 1/(1 − r2|z|2)
(1 − r2|z|2)α

· |f ′(rz)|2

≤ log
1
|z| ·

1 + α log 1/1 − |z|
(1 − |z|)α

· |f ′(rz)|2.

For R sufficiently close to one, log(1/|z|) � 1−|z| whenever R < |z| < 1.
Since α < 1, we get

Uf,r(z) ≤ |f ′(rz)|2 on some annulus AR = {z : R < |z| < 1}.
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It is well known that M2
2 (r, f ′) = (2π)−1

∫ 2π

0
|f ′(reiθ)|2 dθ is an increas-

ing function of r, hence

(7)

∫
AR

Uf,r dA ≤
∫
D

|f ′(rz)|2 dA(z) = 2
∫ 1

0

M2
2 (rρ, f ′) ρ dρ

≤ 2
∫ 1

0

M2
2 (ρ, f ′) ρ dρ = ‖f‖D ≤ 1.

On the other hand, the area version of the sub-mean value property
yields

(1 − R)2|f ′(rz)|2 ≤ (1 − r|z|)2|f ′(rz)|2 ≤
∫

D(rz,1−r|z|)
|f ′|2 dA

≤ ‖f‖2
D ≤ 1

whenever |z| ≤ R. Hence

(8)

Uf,r(z) ≤ MR log(1/|z|) on the punctured closed disk D(0, R)\{0},

where MR is a constant that depends only upon R.

From (7) and (8) we finally obtain∫
D

Uf,r(z) dA(z) ≤ 1 + MR

∫
D(0,R)

log
1
|z| dA

for all r ∈ (0, 1) and all f such that ‖f‖D ≤ 1 and f(0) = 0, which is
what was needed.

2. Some concluding remarks. We remind the reader that we
actually have

(9)
∫ 2π

0

eα|f(eiθ)|2 dθ

2π
< ∞, whenever f ∈ D, 0 < α < ∞.

This observation, due to J.B. Garnett, can be found in [3, p. 1016].
We point out that our approach can be adapted to yield a direct proof
of (9) as follows. First observe from (4) that every f ∈ D can be
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approximated in the norm by its Taylor polynomials. It follows from
here that, for every fixed f in the Dirichlet space, we have the “little-
oh” estimate

|f(z)| = o

((
log

1
1 − |z|

)1/2
)

, as |z| → 1−.

This will make it possible in the estimates for the functions Uf,r in the
proof above to replace α in every appearance by αε2, where ε > 0 is
chosen so that αε2 < 1. This immediately yields the proof for arbitrary
positive α.

Finally, we should point out the limitations of our method, as far
as proving the uniform estimate of Chang-Marshall with α = 1 is
concerned. To this end, it would be desirable in that case (and it
seems crucial by inspecting the proof of Theorem 1 above) to have a
uniform estimate such as

|f(z)|2
log 1/(1 − |ζ|2) < ε

in some annulus {z : R < |z| < 1} and for some ε < 1. Unfortunately,
this is impossible due to the sharpness of the “big-Oh” estimate (5).
Namely, for every point ζ in the unit disk we can still find a function
f of norm one and vanishing at the origin so that

|f(ζ)|2 = log
1

1 − |ζ|2 .

The function fζ(z) = log 1/(1 − ζz) does the trick. In summary, when
α = 1, a more subtle approach seems to be required, as in [3, 5].

Note added in proof. After the acceptance of this paper for publi-
cation, we learned that A. Aleman and A.M. Simbotin have also used
Green’s forumla to obtain some related results for a general class of
function spaces in their paper, Estimates in Möbius invariant spaces
of analytic functions, Complex Var. Theory Appl. 49, no. 7 9 (2004),
487 510.
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