
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 36, Number 5, 2006

NON ABSOLUTELY CONVERGENT INTEGRALS
OF FUNCTIONS TAKING VALUES IN

A LOCALLY CONVEX SPACE

V. MARRAFFA

ABSTRACT. Properties of McShane and Kurzweil-Henstock
integrable functions taking values in a locally convex space are
considered and the relations with other integrals are studied.
A convergence theorem for the Kurzweil-Henstock integral is
given.

1. Introduction. In this paper we continue the investigation of
the McShane and the Kurzweil-Henstock integrals for functions defined
on a compact interval of the real line and taking values in a locally
convex space. In [12] the McShane and Kurzweil-Henstock integrals
for functions taking values in a locally convex space were introduced
and some properties of the integrals were considered.

When the range is a Banach space, a measurable and Pettis integrable
function f is McShane integrable, see [9, Theorem 17]. We prove
that the same result holds for functions whose range is a Hausdorff
locally convex topological vector space (Theorem 3), if we consider the
measurability by seminorm instead of measurability.

In Section 3 we study some properties of the McShane and Pettis
integrals.

In Section 4 we establish relations between the McShane, the Pettis
and the Kurzweil-Henstock integrals.

In Section 5 we prove a convergence theorem for the Kurzweil-
Henstock integral.

2. Definitions and notations. Let X be a Hausdorff locally
convex topological vector space (briefly a locally convex space) with
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its topology T and topological dual X∗. P(X) denotes a family of T -
continuous seminorms on X so that the topology is generated by P(X).
For p ∈ P(X), let Vp = {x ∈ X : p(x) ≤ 1}, so that V 0

p , the polar of
Vp in X∗, is a weak∗-closed, absolutely convex equicontinuous set in
X∗. For a set E of the real numbers |E| and χE denote respectively
the Lebesgue outer measure and the characteristic function of E. M
denotes the family of all Lebesgue measurable subsets of [0, 1]. The
word “measurable” as well as the expression “almost everywhere,”
abbreviated as a.e., always refer to the Lebesgue measure. An interval
is a compact subinterval of R. A collection of intervals is called
nonoverlapping if their interiors are disjoint. A partition P in [0, 1] is a
collection {(Ii, ti) : i = 1, . . . , s}, where I1, . . . , Is are nonoverlapping
subintervals of [0, 1] and t1, . . . , ts ∈ [0, 1]. Given a set E ⊂ R, we say
that P is

(i) a partition in E if ∪s
i=1Ii ⊂ E;

(ii) a partition of E if ∪s
i=1Ii = E;

(iii) a Perron partition if ti ∈ Ii, i = 1, . . . , s.

Given f : [0, 1] → X and a partition P = {(Ii, ti) : i = 1, . . . , s} in
[0, 1], we set

σ(f, P ) =
s∑

i=1

|Ii| f(ti).

A gauge δ on E ⊂ [0, 1] is a positive function on E. For a given gauge
δ on E a partition P = {(Ii, ti) : i = 1, . . . , s} in [0, 1] is called δ-fine
if Ii ⊂ (ti − δ(ti), ti + δ(ti)).

A function f : [0, 1] → X is called

(a) strongly measurable if there exists a sequence (fn)n of simple
functions such that fn(t) → f(t) a.e.;

(b) measurable by seminorm if for any p ∈ P(X) there exists a
sequence (fp

n)n of simple functions such that limn→∞ p(fp
n(t)−f(t)) = 0

a.e.;

(c) weakly-measurable if the function x∗f is measurable for every
x∗ ∈ X∗.

We recall the following definitions, see [2, Definition 2.4].
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Definition 1. A function f : [0, 1] → X is said to be strongly (or
Bochner) integrable if there exists a sequence (fn)n of simple functions
such that

(i) fn(t) → f(t) a.e.;

(ii) p(f(t) − fn(t)) ∈ L1([0, 1]) for each n ∈ N and p ∈ P(X), and
limn→∞

∫ 1

0
p(f(t) − fn(t)) dt = 0 for each p ∈ P(X);

(iii)
∫

A
fn converges in X for each measurable subset A of [0, 1].

In this case we put (B)
∫

A
f = limn→∞

∫
A

fn.

Definition 2. A function f : [0, 1] → X is said to be integrable by
seminorm if for any p ∈ P(X) there exists a sequence (fp

n)n of simple
functions such that

(i) limn→∞ p(fp
n(t) − f(t)) = 0 a.e.;

(ii) p(f(t) − fp
n(t)) ∈ L1([0, 1]) for each n ∈ N and p ∈ P(X), and

limn→∞
∫ 1

0
p(f(t) − fp

n(t)) dt = 0 for each p ∈ P(X);

(iii) for each measurable subset A of [0, 1] there exists an element
yA ∈ X such that limn→∞ p(

∫
A

fp
n(t) − yA) = 0 for every p ∈ P(X).

We then put
∫

A
f = yA.

Clearly a Bochner integrable function is integrable by seminorm, and
the two definitions coincide in a Banach space.

Definition 3. A function f : [0, 1] → X is said to be Pettis integrable
if x∗f is Lebesgue integrable on [0, 1] for each x∗ ∈ X∗ and for every
E ∈ M there is a vector νf (E) ∈ X such that x∗(νf (E)) =

∫
E

x∗f(t) dt
for all x∗ ∈ X∗.

The set function νf : M → X is called the indefinite Pettis integral
of f . It is known that νf is a countably additive vector measure,
continuous with respect to the Lebesgue measure (in the sense that
if |E| = 0 then νf (E) = 0).

We recall the definition of McShane and Kurzweil-Henstock integral,
see [12, Definition 4].
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Definition 4. A function f : [0, 1] → X is said to be McShane
integrable, respectively Kurzweil-Henstock integrable, (briefly McS-
integrable, respectively KH-integrable) on [0, 1], if there exists a vector
w ∈ X satisfying the following property: given ε > 0 and p ∈ P(X)
there exists a gauge δp on [0, 1] such that for each δp-fine partition,
respectively Perron partition, P = {(Ii, ti) : i = 1, . . . , s} of [0, 1], we
have

p (σ(f, P ) − w) < ε.

We denote by McS([0, 1], X), respectively KH([0, 1], X), the family
of all McS-integrable, respectively KH-integrable, functions on [0, 1],
and we set w = (McS)

∫ 1

0
f , respectively w = (KH)

∫ 1

0
f . If f :

[0, 1] → X is McS-integrable, respectively KH-integrable, and if
0 ≤ a < b ≤ 1, then the function fχ[a,b] is McS-integrable, respectively
KH-integrable, see [12, Lemma 1]. Moreover every Bochner integrable
function is McS-integrable and the two integrals coincide, see [12,
Corollary 1].

To simplify the notation, in the following we write |x∗| ≤ p instead
of |x∗(x)| ≤ p(x) for each x ∈ X, and we denote by X∗

p the set
{x∗ ∈ X∗ : |x∗| ≤ p}. We recall that a seminorm p ∈ P (X) is called
representable if

(1) p(x) = sup
X∗

p

|x∗(x)|

for all x ∈ X. If (1) holds for all p ∈ P(X), the space X is said to
be representable by seminorm. If a space X is separable by seminorm,
then it is representable by seminorm, see [7, p. 185].

3. Properties of McShane and Pettis integrable functions.
In this section we extend to locally convex spaces some results known
for Banach spaces.

From now on X will be a complete locally convex space.

We need the following lemmata.

Lemma 1 [15, Lemma 7]. There exists a positive McS-integrable
function ϕ : [0, 1] → (0,∞) and a gauge δϕ such that 0 ≤ σ(ϕ, P ) ≤ 1
for every δϕ-fine partition P of [0, 1].
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Lemma 2 [12, Lemma 2]. Let f : [0, 1] → X be an McS-integrable
function. Then to each ε > 0 and to each p ∈ P(X) there corresponds
a gauge δp such that

p

( s∑
i=1

(
|Ii| f(ti) − (McS)

∫
Ii

f

))
< ε

for each partition δp-fine P = {(Ii, ti) : i = 1, . . . , s} in [0, 1].

The following proposition when the range is a Banach space, has been
proved in [9, Theorem 15] with a different technique.

Proposition 1. Let (En)n be a sequence of disjoint measurable sets
in [0, 1] and let (xn)n be a sequence in X and let f : [0, 1] → X be
defined by

f(t) =
∑

n

xnχEn
(t).

If the series
∑

n |En|xn is unconditionally convergent, then the function
f is McS-integrable on [0, 1] and

(McS)
∫ 1

0

f =
∑

n

|En|xn.

Proof. The function f is countably valued, so f([0, 1]) is separable and
without loss of generality we can restrict our domain to f([0, 1]). There-
fore for every p ∈ P(X) and y ∈ X, we have p(y) = sup{|x∗|≤p} |x∗(y)|.
Fix p ∈ P(X) and ε > 0. Since the series

∑∞
n=1 |En|xn is uncondition-

ally convergent there is a natural number N such that for n > N

(2)
∞∑

k=n

|x∗(xk)| |Ek| <
ε

4

uniformly with respect to x∗ ∈ X∗
p , [14, p. 120]. Moreover for each

natural number n the function fn =
∑n

k=1 xkχEk
is Bochner integrable,
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therefore it is McS-integrable and (McS)
∫ 1

0
fn =

∑n
k=1 |Ek|xk. So by

Lemma 2 there is a gauge δn
p = δn such that

(3) p

( s∑
i=1

(
|Ii| fn(ti) − (McS)

∫
Ii

fn

))
<

ε

2n+1

for each δn-fine partition P = {(Ii, ti) : i = 1, . . . , s} in [0, 1]. Also
limn→∞(McS)

∫ 1

0
fn =

∑∞
n=1 |En|xn and (fn)n converges to f point-

wise. Thus for every t ∈ [0, 1] there exists n(t) ≥ N such that if
k > n(t)

(4) p(fk(t) − f(t)) <
ε

4
ϕ(t)

where ϕ(t) is an McS-integrable function satisfying Lemma 1. Let
gk(t) = xkχEk

. Define δϕ(t) related to the real valued function ϕ(t) as
in Lemma 1 and put δp(t) = min{δn(t)(t), δϕ(t)}. If P = {(Ii, ti) : i =
1, . . . , s} is a δp-fine partition of [0, 1], we have

(5)

p

(
σ(f, P )−

∞∑
n=1

|En|xn

)

= p

( s∑
i=1

|Ii| f(ti) −
∞∑

n=1

|En|xn

)

= p

( s∑
i=1

{ ∞∑
k=1

|Ii| gk(ti) −
∞∑

k=1

(McS)
∫

Ii

gk

})

≤ p

( s∑
i=1

{ ∞∑
k=n(ti)+1

|Ii| gk(ti)
})

+ p

( s∑
i=1

{ n(ti)∑
k=1

|Ii| gk(ti) −
n(ti)∑
k=1

(McS)
∫

Ii

gk

})

+ p

( s∑
i=1

∞∑
k=n(ti)+1

(McS)
∫

Ii

gk

)

= A1 + A2 + A3,
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where the definitions for Aj are obvious. We estimate each Aj .
Applying (4) and Lemma 1 to A1, we get

(6)

A1 ≤
s∑

i=1

p

( ∞∑
k=n(ti)+1

|Ii| gk(ti)
)

≤
s∑

i=1

|Ii| p
( ∞∑

k=n(ti)+1

gk(ti)
)

<
s∑

i=1

|Ii|
ε

4
ϕ(ti) =

ε

4
σ(ϕ, P ) ≤ ε

4
.

For estimating A2, let r = max{n(t1), . . . , n(ts)}. By (3) we obtain

(7)

A2 = p

( s∑
i=1

{
|Ii| fn(ti)(ti) − (McS)

∫
Ii

fn(ti)

})

= p

( r∑
k=1

∑
{i:n(ti)=k}

{
|Ii| fn(ti)(ti) − (McS)

∫
Ii

fn(ti)

})

≤
r∑

k=1

p

( ∑
{i:n(ti)=k}

{
|Ii| fn(ti)(ti) − (McS)

∫
Ii

fn(ti)

})

≤
r∑

k=1

ε

2k+1
<

ε

2
.

For A3, by (2) we get

(8)

A3 ≤ sup
{|x∗|≤p}

s∑
i=1

∞∑
k=n(ti)+1

∫
Ii

|x∗gk|

≤ sup
{|x∗|≤p}

s∑
i=1

∞∑
k=N+1

∫
Ii

|x∗gk|

≤ sup
{|x∗|≤p}

∞∑
k=N+1

∫ 1

0

|x∗gk|

≤ sup
{|x∗|≤p}

∞∑
k=N+1

|x∗(xk)| |Ek| <
ε

4
.
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Applying (6), (7) and (8) in (5) we obtain

p

(
σ(f, P ) −

∞∑
n=1

|En|xn

)
≤ ε

4
+

ε

4
+

ε

2
= ε,

and the assertion follows.

In the sequel we shall use the fact that every separated convex space is
a projective limit of normed spaces, see [13, p. 86]. For each continuous
seminorm p on the convex space X, p−1(0) is a vector subspace and
p defines a norm on X/p−1(0). Xp is the associated Banach space,
namely the completion of the normed linear space X/p−1(0) and πp is
the canonical mapping of X into Xp. Then X is the projective limit
of the spaces Xp by the canonical mapping πp of X onto Xp. For a
function f : [0, 1] → X and for each p ∈ P(X), define the function
fp : [0, 1] → Xp by

fp(t) = (πp ◦ f)(t) = πp(f(t))

for t ∈ [0, 1].

We characterize measurable by seminorm Pettis integrable functions.
The analogous result in the case in which the range is a Banach space,
has been proved in [3, Theorem 1].

Theorem 1. Let f : [0, 1] → X be a measurable by seminorm Pettis
integrable function. Then, for each p ∈ P(X), there are two functions
g and h such that f = g + h, with h(t) =

∑
n xnχEn

(t), where the sets
En are disjoint, the series

∑
n |En|xn is unconditionally convergent in

Xp and the function g is bounded in Xp. If f is integrable by seminorm,
then the series

∑
n |En|xn is absolutely convergent in Xp.

Proof. Let p ∈ P(X) and ε > 0. Since f is measurable by
seminorm, we can assume that f([0, 1]) is separable for p, so there exists
a countable subset {x1, x2, . . . } dense for p in f([0, 1]). The collection

Up
n = {t ∈ [0, 1] : p(f(t) − xn) < ε} n = 1, 2, . . .

covers f([0, 1]). Put
E1 = U1
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and

En = Un \
n−1⋃
i=1

Ui, n > 1

and define the function h(t) = xn for t ∈ En. The function h is a
countably valued strongly measurable function, then g(t) = f(t)−h(t)
is measurable by seminorm and p(g(t)) < ε. Moreover the function

gp = πp ◦ g : [0, 1] → Xp

is strongly measurable and has an essentially bounded range. Therefore
it is Bochner integrable; in particular, it is Pettis integrable, see [4].

Being h is the difference of two Pettis integrable functions, it is
scalarly integrable. Then for each x∗ ∈ X∗, x∗h ∈ L1([0, 1]) and for
every E ∈ M ∫

E

x∗h =
∑

n

x∗(xn)|E ∩ En|

and

(9)
∫

E

|x∗h| =
∑

n

|x∗(xn)| |E ∩ En| < ∞.

Moreover, there is a νh(E) such that

x∗(νh(E)) =
∫

E

x∗h.

To prove that the series

(10)
∑

n

xn|E ∩ En|

converges unconditionally in the Banach space Xp for every E ∈ M,
by the Pettis-Orlicz theorem it suffices to show that every subseries of
it converges weakly to an element in Xp. If (nk)k is a subsequence of
natural numbers and A = ∪kEnk

, then

x∗(νh(E ∩ A)) =
∫

E∩A

x∗h =
∑

n

x∗(xn)|E ∩ En ∩ A|

=
∑

k

x∗(xnk
)|E ∩ Enk

|.
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By (9) the last series converges for all x∗ ∈ X∗, thus (10) converges
unconditionally in Xp.

If the function f is integrable by seminorm, then the same is true
for h(t) = f(t) − g(t). Since the sets En are disjoint

∫
E

p(h) =∑∞
n=1 p(xn)|E ∩ En| and the series

∑∞
n=1 xn|En| is absolutely conver-

gent in Xp.

Corollary 1. Let f : [0, 1] → X be a measurable Pettis integrable
function. Then there are two functions g and h such that f = g + h,
with h(t) =

∑
n xnχEn

(t), where the sets En are disjoint, the series∑
n |En|xn is unconditionally convergent in X and the function g is

bounded in X. If f is strongly integrable then the series
∑

n |En|xn is
absolutely convergent in X.

Proof. The function f is measurable, so we can assume that f([0, 1])
is separable. If {x1, x2, . . . } is a countable subset dense in f([0, 1]) the
proof follows as in Theorem 1 with slight changes.

Theorem 2. Let X be a locally convex space whose topology is
generated by a sequence of seminorms, and let f : [0, 1] → X be a
measurable by seminorm Pettis integrable function. Then there are two
functions g and h such that f = g + h, with h(t) =

∑
n xnχEn

(t),
where the sets En are disjoint, the series

∑
n |En|xn is unconditionally

convergent in X and the function g is bounded in X.

Proof. If X is a locally convex space with a countable family of
seminorms, then a measurable by seminorm function is measurable, [8,
p. 247]. Therefore the assertion follows from Corollary 1.

4. Relations between McShane, Pettis and Kurzweil-Henstock
integrals. We now proceed to prove that every measurable by semi-
norm, Pettis integrable function is McShane integrable.

Theorem 3. Let f : [0, 1] → X be a function which is Pettis
integrable and measurable by seminorm, then it is McS-integrable (then
KH-integrable) and the two integrals coincide.
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Proof. Let f be a function which is Pettis integrable and measurable
by seminorm and let p ∈ P(X). Then

fp = πp ◦ f : [0, 1] −→ Xp

is a measurable Pettis integrable function, so by [9, Theorem 17], we get
that fp(t) is McS-integrable with integral (McS)

∫ 1

0
fp = πp(νf ([0, 1])).

Let ε > 0 be fixed; then there is a gauge δp such that if P = {(Ii, ti) :
i = 1, . . . , s} is a δp-fine partition of [0, 1], we have

(11) p

(
σ(fp, P ) − (McS)

∫ 1

0

fp

)
< ε.

Since

p

(
σ(fp, P ) − (McS)

∫ 1

0

fp

)
= p

(
πp (σ(f, P ) − νf ([0, 1]))

)

we obtain by (11)

p
(
πp (σ(f, P ) − νf ([0, 1]))

)
= p

(
σ(f, P ) − νf ([0, 1])

)
< ε,

and the assertion holds true.

Remark 1. By the Pettis measurability theorem [2, Theorem 2.2], it
follows that in separable by seminorm spaces every Pettis integrable
function is McShane integrable.

When the range is a Banach space, the following proposition has been
proved in [5, Theorem 8].

Proposition 2. Let f : [0, 1] → X. Then f is McS-integrable if and
only if f is Pettis integrable and KH-integrable.

Proof. If f is McS-integrable, then it is KH-integrable. The Pettis
integrability follows by [12, Theorem 2]. To prove the converse, let
f be a function which is Pettis integrable and KH-integrable and let
p ∈ P(X) be fixed. Then the function

fp = πp ◦ f : [0, 1] −→ Xp
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is Pettis integrable and KH-integrable. So, by [5, Theorem 8],
we get that fp(t) is McS-integrable with integral (McS)

∫ 1

0
fp =

πp((KH)
∫ 1

0
f). With the same computation of Theorem 3 it follows

that the function f is McS-integrable and the assertion holds true.

Proposition 3. Let f : [0, 1] → X be a KH-integrable function. If,
for every p ∈ P(X), the real valued function p(f) is KH-integrable,
then f is Pettis integrable.

Proof. Since f is KH-integrable, for all x∗ ∈ X∗ the real valued
function x∗f is KH-integrable [12, Proposition 1], therefore it is mea-
surable, see [10, Theorem 9.12). Moreover being p(f) KH-integrable
for all p ∈ P(X), it is also Lebesgue integrable, see [10, Theorem 9.13].
For each p ∈ P(X), for all sets E ∈ M and for every x∗ ∈ X∗

p , it follows∫
E

|x∗f | ≤
∫

E

p(f) < ∞.

Thus f is equiscalarly integrable, see [1, Definition 2.5]. If [a, b] ⊂ [0, 1],
the Kurzweil-Henstock integrability of f implies (KH)

∫ b

a
f = ν(a, b) ∈

X. Fix ε > 0. The Lebesgue integrability of p(f) implies the existence
of a positive number η such that if |E| < η then

∫
E

p(f) < ε. Thus, if
|E| < η, we get

(12) sup
x∗∈V 0

p

∣∣∣∣
∫

E

x∗f
∣∣∣∣ ≤ sup

x∗∈V 0
p

∫
E

|x∗f | ≤
∫

E

p(f) ≤ ε.

Considering [6, Proposition 2B], by (12) we get that the function
fp = πp ◦ f : [0, 1] → Xp is Pettis integrable. Since the space is
complete, applying [1, Lemma 2.9], we get that the function f is Pettis
integrable.

Corollary 2. Let f : [0, 1] → X be a KH-integrable function. If, for
every p ∈ P(X), the real valued function p(f) is KH-integrable, then
f is McS-integrable.

Proof. By Proposition 3 f is Pettis integrable, then by Proposition 2
it is McS-integrable.
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5. A convergence theorem. We will prove a convergence theorem
for the KH-integral.

Definition 5. Let {fα ∈ KH([0, 1], X)}α be a family of KH-
integrable functions. The family {fα} is said to be uniformly KH-
integrable on [0, 1] if, for each ε > 0 and p ∈ P(X), there exists a
gauge δp on [0, 1] such that, for each δp-fine partition P = {(Ii, ti) : i =
1, . . . , s} of [0, 1], we have

sup
α

p

(
σ(fα, P ) − (KH)

∫ 1

0

fα

)
< ε.

The following result is due to James [11].

Theorem 4 [11, Theorem 1]. Let X be a complete locally convex
space and let C be a bounded weakly closed subset of X. Then the
following are equivalent:

(i) C is weakly compact.

(ii) There does not exist a positive number θ, a sequence {zn} in C,
and an equicontinuous sequence {gn} of linear functionals such that

gn(zk) > θ if n ≤ k, gn(zk) = 0 if n > k.

Theorem 5. Let (fn ∈ KH([0, 1], X))n be a sequence of KH-
integrable functions. Suppose that {fn}n converges to f weakly in [0, 1].
If the family {fn}n is uniformly KH-integrable on [0, 1], then f is KH-
integrable on [0, 1] and

(KH)
∫ 1

0

f = lim
n→∞(KH)

∫ 1

0

fn weakly.

Proof. According to the uniform KH-integrability for each ε > 0 and
p ∈ P(X), there exists a gauge δp on [0, 1] such that, for each δp-fine
Perron partition P = {(Ii, ti) : i = 1, . . . , s} of [0, 1], we have

sup
n∈N

p

(
σ(fn, P ) − (KH)

∫ 1

0

fn

)
<

ε

3
.
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Then if x∗ ∈ X∗
p we have

(13) sup
n∈N

∣∣∣∣
(

σ(x∗fn, P ) − x∗(KH)
∫ 1

0

fn

)∣∣∣∣ <
ε

3

for every δp-fine Perron partition P of [0, 1]. Since, if x∗ ∈ X∗, there
exist a positive constant C and a seminorm p such that |x∗(y)| ≤ Cp(y)
for all y ∈ X, see [7, p. 158], it follows that (x∗fn)n is a sequence of
real valued uniformly KH-integrable functions. Thus by [10, Theorem
13.16], x∗f is a real valued KH-integrable function and

x∗(KH)
∫ 1

0

fn = (KH)
∫ 1

0

x∗fn → (KH)
∫ 1

0

x∗f.

Fix t0 ∈ [0, 1] and denote by C the weak closure of the set ((KH)
∫ t0
0

fn)n.
Since ((KH)

∫ t0
0

fn)n is a weakly Cauchy sequence, it is bounded. More-
over C \ {(KH)

∫ t0
0

fn : n ∈ N} contains at most one point. We want
to prove that C is weakly compact. Assume by contradiction that C
is not weakly compact. Then applying Theorem 4, there are θ > 0,
(xm) ⊂ C and a sequence (y∗

m) of equicontinuous functionals of X∗

such that 〈y∗
k, xm〉 = 0 if k > m and 〈y∗

k, xm〉 > θ if k ≤ m. Thus we
can find a subsequence (gm) of (fn) such that:

(i) (KH)
∫ t0
0

y∗
kgm = 0 if k > m;

(ii) (KH)
∫ t0
0

y∗
kgm > θ if k ≤ m;

(iii) limm→∞(KH)
∫ t0
0

x∗gm = (KH)
∫ t0
0

x∗f for each x∗ ∈ X∗.

Now we are going to prove that the sequence (y∗
mf)m is uniformly

KH-integrable. Since the sequence (y∗
m)m is equicontinuous, it is also

equibounded. So by (13), the family {y∗
mgn : n, m ∈ N} is uniformly

KH-integrable. Moreover, for each Perron partition P = {(Ai, ti) :
i = 1, . . . , p} and for each m ∈ N we have

∣∣∣∣
(

σ(y∗
mf, P ) − (KH)

∫ t0

0

y∗
mf

)∣∣∣∣
= lim

n→∞

∣∣∣∣
(

σ(y∗
mgn, P ) − (KH)

∫ t0

0

y∗
mgn

)∣∣∣∣ <
ε

3
.

Then also the sequence (y∗
mf)m is uniformly KH-integrable.
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Thus there exists a KH-integrable function h : [0, t0] → R such that

(14) lim
m→∞(KH)

∫ t0

0

y∗
mf = (KH)

∫ t0

0

h.

By (iii) and (ii), (KH)
∫ t0
0

y∗
mf = limn→∞(KH)

∫ t0
0

y∗
mgn ≥ θ for all m;

then

(15) (KH)
∫ t0

0

h ≥ θ.

Let z∗0 be a weak∗-cluster point of the sequence (y∗
m)m and let (w∗

s)s

be a subnet weakly∗ converging to z∗0 . Then, for each n and for each
t ∈ [0, t0], we have

(16) lim
s

w∗
sgn(t) = z∗0gn(t).

Moreover by (13) the family (w∗
sgn)s is uniformly KH-integrable in

[0, t0], for each n. Thus, by [10, Theorem 13.16] and by (i) we get

lim
s

(KH)
∫ t0

0

w∗
sgn = (KH)

∫ t0

0

z∗0gn = 0.

Therefore, by (iii), we infer

(17) (KH)
∫ t0

0

z∗0f = 0.

As (y∗
mf)m is uniformly KH-integrable in [0, t0], the same holds for

the family (w∗
sf)s. Moreover for almost each t ∈ [0, t0], lims w∗

sf(t) =
z∗0f(t).

So, applying once again the convergence theorem for uniformly inte-
grable real valued functions, we have

lim
s

(KH)
∫ t0

0

w∗
sf = (KH)

∫ t0

0

z∗0f.

Then by (14) it follows that (KH)
∫ t0
0

z∗0f = (KH)
∫ t0
0

h. Hence by (15)
we get

(KH)
∫ t0

0

z∗0f ≥ θ,
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in contradiction with (17). Thus the set C is weakly compact.
Since t0 is arbitrary, there is F : [0, 1] → X such that x∗(F (t)) =
limn→∞(KH)

∫ t

0
x∗fn = (KH)

∫ t

0
x∗f , for all t ∈ [0, 1] and for all

x∗ ∈ X∗. We want to prove that F (1) = (KH)
∫ 1

0
f .

Let P = {(Ii, ti) : i = 1, . . . , s} be a δp-fine Perron partition of [0, 1].
Fix x∗ ∈ V p

o . Since (x∗fn)n converges to x∗f choose a natural number
k such that

(18) |σ(x∗fk, P ) − σ(x∗f, P )| <
ε

3

and

(19)
∣∣∣∣(KH)

∫ 1

0

x∗fk − (KH)
∫ 1

0

x∗f
∣∣∣∣ <

ε

3
.

By (18), (13) and (19) we get

|x∗(σ(f, P ) − F (1))| = |σ(x∗f, P ) − x∗F (1)|

=
∣∣∣∣σ(x∗f, P ) − (KH)

∫ 1

0

x∗f
∣∣∣∣

≤ |σ(x∗f, P ) − σ(x∗fk, P )|

+
∣∣∣∣σ(x∗fk, P ) − (KH)

∫ 1

0

x∗fk

∣∣∣∣
+

∣∣∣∣(KH)
∫ 1

0

x∗fk − (KH)
∫ 1

0

x∗f
∣∣∣∣

<
ε

3
+

ε

3
+

ε

3
= ε.

By the arbitrariness of x∗ ∈ V p
o , it follows that

p(σ(f, P )− F (1)) ≤ ε

and the assertion holds true.
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