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CHARACTERIZABILITY OF PSU(p + 1,q)
BY ITS ORDER COMPONENT(S)

AMIR KHOSRAVI AND BEHROOZ KHOSRAVI

ABSTRACT. Order components of a finite group were
introduced by Chen [5]. It was proved that some finite groups
are characterizable by their order components.

In this paper we prove that PSU(p + 1, q) is uniquely
determined by its order component(s) if and only if (q + 1) |
(p + 1). A main consequence of our results is the validity of
Thompson’s conjecture for the groups PSU(p + 1, q) where
(q + 1)|(p + 1).

1. Introduction. Let π(n) be the set of prime divisors of n, where
n is a positive integer. If G is a finite group, then π(G) is defined to be
π(|G|). By using the orders of elements in G, we construct the prime
graph of G as follows.

The prime graph Γ(G) of a group G is the graph whose vertex set is
π(G), and two distinct primes p and q are joined by an edge (we write
p ∼ q) if and only if G contains an element of order pq. Let t(G) be
the number of connected components of Γ(G) and let π1, π2, . . . , πt(G)

be the connected components of Γ(G). If 2 ∈ π(G), then we always
suppose 2 ∈ π1.

Now |G| can be expressed as a product of coprime positive integers
mi, i = 1, 2, . . . , t(G) where π(mi) = πi. These integers are called
the order components of G. The set of order components of G will
be denoted by OC(G). Also we call m2, . . . , mt(G) the odd order
components of G. The order components of non-abelian simple groups
having at least three prime graph components are obtained by Chen
[9, Tables 1 3]. Similarly the order components of non-abelian simple
groups with two order components can be obtained by using the tables
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in [28, 35], see [20]. By using these tables we know that

OC(PSU(p + 1, q))

=

{
m1 = qp(p+1)/2(qp+1 − 1)

p−1∏
i=2

(qi − (−1)i), m2 =
qp + 1
q + 1

}
.

The following groups are uniquely determined by their order compo-
nents: Suzuki-Ree groups [7], sporadic simple groups [4], almost spo-
radic simple groups, except Aut (McL) and Aut (J2) [22], E6(q) [27],
2E6(q) [26], E8(q) [8], G2(q) where q ≡ 0 (mod 3) [3], F4(q) where
q = 2n [19], C2(q) where q > 5 [20], 2Dn(q) where n = 2m ≥ 4 [24,
25], PSL(p, q) [9, 14, 15, 23] and PSU(p, q), where p = 3, 5, 7, 11
[16 18, 21].

In this paper, we prove the following theorem:

Main theorem. Let G be a finite group and M = PSU(p + 1, q),
where p is an odd prime number. Then

(a) if (q + 1) | (p + 1), then G ∼= M if and only if OC(G) = OC(M),

(b) if (q + 1) � (p + 1) then M is not characterizable by its order
component.

In this paper, all groups are finite and by simple groups we mean non-
abelian simple groups. All further unexplained notations are standard
and refer to [10], for example. Also frequently we use the results of
Williams [35] and Kondrat’ev [28] about the prime graph of simple
groups.

We denote by (a, b) the greatest common divisor of positive integers
a and b. Let m be a positive integer and p a prime number. Then |m|p
denotes the p−part of m. In other words, |m|p = pk if pk‖m, i.e., pk|m
but pk+1 � m.

We recall that a Mersenne prime is a prime number of the form 2n−1.

2. Preliminary results. The proof of the main theorem depends
on the classification of finite simple groups and the following lemmas.
We begin with an easy remark.
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Remark 2.1 [22]. Let N be a normal subgroup of G and p ∼ q in
Γ(G/N). Then p ∼ q in Γ(G). In fact, if xN ∈ G/N has order pq, then
there is a power of x which has order pq.

Definition 2.1 [13]. A finite group G is called a 2-Frobenius group
if it has a normal series 1 �H �K � G, where K and G/H are Frobenius
groups with kernels H and K/H, respectively.

We use the following unpublished result of Gruenberg and Kegel [12].

Lemma 2.1 [35, Theorem A]. If G is a finite group with its prime
graph having more than one component, then G is one of the following
groups :

(a) a Frobenius or a 2-Frobenius group;

(b) a simple group;

(c) an extension of a π1-group by a simple group;

(d) an extension of a simple group by a π1-solvable group;

(e) an extension of a π1-group by a simple group by a π1-group.

Lemma 2.2. [35, Lemma 3]. If G is a finite group with more
than one prime graph component and has a normal series 1 � H � K � G
such that H and G/K are π1-groups and K/H is simple, then H is a
nilpotent group.

The next lemma follows from Theorem 2 in [2]:

Lemma 2.3. Let G be a Frobenius group of even order, and let
H and K be the Frobenius complement and Frobenius kernel of G,
respectively. Then t(G) = 2, and the prime graph components of G are
π(H), π(K) and G has one of the following structures:

(a) 2 ∈ π(K) and all Sylow subgroups of H are cyclic;

(b) 2 ∈ π(H), K is an abelian group, H is a solvable group, the
Sylow subgroups of odd order of H are cyclic groups and the 2-Sylow
subgroups of H are cyclic or generalized quaternion groups;
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(c) 2 ∈ π(H), K is an abelian group and there exists H0 ≤ H such
that |H : H0| ≤ 2, H0 = Z × SL(2, 5), (|Z|, 2 × 3 × 5) = 1 and the
Sylow subgroups of Z are cyclic.

The next lemma follows from Theorem 2 in [2] and Lemma 2.2:

Lemma 2.4. Let G be a 2-Frobenius group of even order. Then
t(G) = 2 and G has a normal series 1 �H � K � G such that

(a) π1 = π(G/K) ∪ π(H) and π2 = π(K/H);

(b) G/K and K/H are cyclic, |G/K| divides |Aut (K/H)|, (|G/K|,
|K/H|) = 1 and |G/K| < |K/H|;

(c) H is nilpotent and G is a solvable group.

Lemma 2.5 [6, Lemma 8]. Let G be a finite group with t(G) ≥ 2 and
let N be a normal subgroup of G. If N is a πi−group for some prime
graph component of G and m1, m2, . . . , mr are some order components
of G but not πi-numbers, then m1m2 · · ·mr is a divisor of |N | − 1.

Lemma 2.6 [5, Lemma 1.4]. Let G and M be two finite groups satis-
fying t(M) ≥ 2, N(G) = N(M), where N(G) = {n | G has a conjugacy
class of size n}, and Z(G) = 1. Then |G| = |M |.

The next lemma follows from Lemma 1.5 in [5].

Lemma 2.7. Let G1 and G2 be finite groups satisfying |G1| = |G2|
and N(G1) = N(G2). Then t(G1) = t(G2) and OC(G1) = OC(G2).

Lemma 2.8 [22]. Let G be a finite group, and let M be a non-
abelian finite group with t(M) = 2 satisfying OC(G) = OC(M). Let
|M | = m1m2, OC(M) = {m1, m2} and π(mi) = πi for i = 1, 2. Then
|G| = m1m2, and one of the following holds :

(a) G is a Frobenius or a 2-Frobenius group;

(b) G has a normal series 1 �H �K � G such that G/K is a π1-
group, H is a nilpotent π1-group, and K/H is a non-abelian sim-
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ple group. Moreover, OC(K/H) = {m′
1, m

′
2, . . . , m′

s, m2}, |K/H| =
m′

1m
′
2 · · ·m′

sm2 and m′
1m

′
2 · · ·m′

s|m1 where π(m′
j) = πj(K/H), 1 ≤

j ≤ s. Also |G/K| divides |Out(K/H)|.

3. Some related results. As corollaries of the main theorem we
prove a conjecture which was put forward by Thompson and another
conjecture which arose by Shi and Bi, for the group PSU(p + 1, q),
where (q + 1)|(p + 1).

Thompson’s conjecture. If G is a finite group with Z(G) = 1
and M is a non-abelian simple group satisfying N(G) = N(M), then
G ∼= M .

We can give a positive answer to this conjecture for the groups
PSU(p + 1, q), where (q + 1)|(p + 1), by our characterization of these
groups.

Theorem 3.1. Let M = PSU(p + 1, q), where (q + 1)|(p + 1). If G
is a finite group with Z(G) = 1 and N(G) = N(M), then G ∼= M .

Proof. By using Lemmas 2.6 and 2.7 we conclude that the order
components of G and M are the same. So the result follows by using
the main theorem.

Also Shi and Bi in [32] put forward the following conjecture:

Conjecture. Let G be a group and M a finite simple group. Then
G ∼= M if and only if

(i) |G| = |M |,
(ii) πe(G) = πe(M), where πe(G) denotes the set of orders of

elements in G.

This conjecture is valid for sporadic simple groups [29], alternating
groups [33], some simple groups of Lie type [30 32] and some almost
simple groups [22]. As a consequence of the main theorem, we prove
the validity of this conjecture for the groups under discussion.
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Theorem 3.2. Let G be a finite group and M = PSU(p + 1, q),
where (q+1) | (p+1). If |G| = |M | and πe(G) = πe(M), then G ∼= M .

Proof. By assumption the prime graphs of G and H are the same and
also we have OC(G) = OC(M). Thus the result follows by the main
theorem.

4. Number theoretic lemmas. For the proof of the main theorem
we need some results about the numbers and specially about the
greatest common divisor of numbers. Hence in this section we state
a few number theoretical lemmas.

Lemma 4.1. Let p be a prime number and q a prime power. If
(q +1) | (p+1), then m2 −1 = (qp +1)/(q +1)−1 is not a power of 2.

Proof. If (qp + 1)/(q + 1) = 2t + 1, for some t > 0, then q(qp−1 −
1)/(q + 1) = 2t. But (q, (qp−1 − 1)/(q + 1)) = 1, which implies that
q = 2t and qp−1 − 1 = q + 1. Therefore q = 2 and p = 3, which is a
contradiction.

Lemma 4.2. If n is an integer and x is a prime number, then |n!|x
divides x[(n−1)/(x−1)].

Proof. Let xt ≤ n < xt+1. Then |n!|x = xk where

k =
[
n

x

]
+

[
n

x2

]
+ · · · +

[
n

xt

]
≤ n

x
+

n

x2
+ · · · + n

xt

=
n

x
× 1 − (1/xt)

1 − (1/x)
≤ n(1 − (1/n))

x(1 − (1/x))
=

n − 1
x − 1

.

The following result of Kondrat’ev will be used several times.

Lemma 4.3 [28, Lemma 3]. Let a, m and n be natural numbers.
Then

(a) (an − 1, am − 1) = a(m,n) − 1;



CHARACTERIZABILITY OF PSU(p + 1,q) 1561

(b) (a − 1, (an − 1)/(a − 1)) = (n, a − 1);

(c) ((an − 1)/(a(m,n) − 1), am − 1) = (n/(m, n), a(m,n) − 1).

Lemma 4.4. Let i and q > 1 be natural numbers.

(a) If i is odd, then (q + 1, (qi + 1)/(q + 1)) divides (i, q + 1);

(b) if i is even, then (q + 1, (qi − 1)/(q2 − 1)) divides (i/2, q + 1);

(c) if i is odd, then (q + 1, (qi − 1)/(q − 1)) = 1.

Proof. (a) We know that (q + 1) | (q2 − 1) and (qi + 1)/(q + 1) is a
divisor of (q2i − 1)/(q2 − 1). Therefore, if k = (q + 1, (qi + 1)/(q + 1)),
then k divides (q2 − 1, (q2i − 1)/(q2 − 1)). Hence k | (i, q2 − 1), by
Lemma 4.3. So k | (q + 1), k | i and k | (q2 − 1), which implies that
k | (i, q + 1), since i is odd.

(b) and (c). The proofs are similar to (a) and we omit them for
convenience.

Similarly we can prove the following lemma.

Lemma 4.5. Let i and q > 1 be natural numbers.

(a) If i is odd, then (q − 1, (qi + 1)/(q + 1)) divides (i, q − 1);

(b) if i is even, then (q − 1, (qi − 1)/(q2 − 1)) divides (i/2, q − 1).

Lemma 4.6. Let x be an odd prime number and n, q > 1 positive
integers.

(a) If x | (q − 1), then |(qn − 1)/(q − 1)|x divides |n|x;

(b) if x | (q + 1) and 2 | n, then |(qn − 1)/(q2 − 1)|x divides |n/2|x;

(c) if x | (qs − 1) and s | n, then |(qn − 1)/(qs − 1)|x divides |n/s|x.

Proof. (a) By using Lemma 4.3, we have x | n. Let q = kx + 1,
for some k > 0. Then (qn − 1)/(q − 1) =

∑n
r=1

(
n
r

)
(kx)r−1. Now

we claim that if xm | (qn − 1)/(q − 1) then xm | n. It is true for
m = 1. Now we use induction on m. Let xm+1 | (qn − 1)/(q − 1)
and so xm | n. If r ≤ 2 or r > m + 1, then xm+1 | (

n
r

)
(kx)r−1 and
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it is sufficient to prove this statement for 3 ≤ r ≤ m + 1. In fact, we
must prove that xm+1 | xm+r/(r + 1)!. By Lemma 4.2, we must prove
that m + 1 ≤ m + r − r/(x − 1), and it is true for r ≥ 3. Therefore
|(qn − 1)/(q − 1)|x | |n|x.

Part (b) is a special case of part (c).

For the proof of (c), let q′ = qs and then use part (a).

Lemma 4.7 [11]. The equation pm − qn = 1, where p and q are
primes and m, n > 1, has only one solution, namely 32 − 23 = 1.

5. Proof of the main theorem. First we prove part (a) of the
main theorem and then we discuss part (b).

If q = 2n, then (q − 1, q + 1) = 1 but if q = pn
0 , where p0 is an odd

prime number, then (q − 1, q + 1) = 2. Therefore we have to consider
two cases. First, let q be an odd prime power and (p, q) 	= (5, 2), (3, 3).
Hence, in the following lemmas and in the proof of the main theorem
we suppose that p is a prime number and q is an odd prime power. The
proof of the other case, i.e., q = 2n, is similar and is not so complicated.
Hence we omit the proof for convenience.

Lemma 5.1. Let q 	= 5 be an odd prime power which is not a
Mersenne prime and M = PSU(p + 1, q), where (q + 1) | (p + 1) and
(p, q) 	= (3, 3), (5, 2). Then the following holds:

(a) if x ∈ π1(M), then |Sx| ≤ qp(p+1)/2 where Sx ∈ Sylx(M);

(b) if x ∈ π1(M), xα | |M | and xα + 1 ≡ 0 (mod m2), then
xα = q(2k+1)p, where 1 ≤ 2k + 1 ≤ (p + 1)/2;

(c) if x ∈ π1(M), xα | |M | and xα−1 ≡ 0 (mod m2), then xα = q2kp,
where 1 ≤ 2k ≤ (p + 1)/2.

Proof. We will prove (a), (b) and (c), simultaneously. By an easy
calculation we can see that the results hold for p ≤ 19. So in the proof
of this lemma we let p > 19.
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Also, since we want to use the last lemmas, we need to factor m1 as
follows:

m1 = qp(p+1)/2(qp+1 − 1)
p−1∏
i=2

(qi − (−1)i)

= qp(p+1)/2(q − 1)(p+1)/2(q + 1)p−1 × qp+1 − 1
q2 − 1

×
p−1∏

i odd, i=2

qi + 1
q + 1

×
p−1∏

i even, i=2

qi − 1
q2 − 1

.

Now let x be a prime number and xα a divisor of m1. For the purpose
of using the above lemmas, we consider the following steps:

Step 1. If x = 2 and 4|(q−1), then 2‖(q+1), and hence (q+1, q−1) =
2. If k is odd, then |(q−1, (qk +1)/(q +1))|2 = 1, by using Lemma 4.5.
Also |(q− 1, (q2k − 1)/(q2 − 1))|2 divides |k|2. Therefore 2α is a divisor
of

2p−1 ×
∣∣∣∣p + 1

2

∣∣∣∣
2

×
∣∣∣∣p − 1

2

∣∣∣∣
2

× · · · × 1 × (q − 1)(p+1)/2

= 2p−1 × |((p + 1)/2)!|2 × (q − 1)(p+1)/2.

Then by using Lemma 4.2, we have 2α | 23(p−1)/2(q − 1)(p+1)/2.

If q − 1 = 2βA, where A ≥ 3 is odd, then obviously we have

2α ≤ 8(p−1)/2(q − 1)(p+1)/2

3(p+1)/2
< m2 − 1,

which implies that 2α ± 1 	≡ 0 (mod m2). So let q − 1 = 2β and
note that q ≥ 9. If q = 9, then 2α = 8p ≤ m2 = (9p + 1)/10, since
p ≥ 1/ log(9/8). If q > 9, then q ≥ 17 and hence 8 ≤ (q − 1)/2. But
then

(q + 1)(q − 1)p ≤ 2(p−1)/2(qp + 1),

which implies that 2α < m2 − 1 and hence 2α ± 1 	≡ 0 (mod m2).

Step 2. If x = 2 and 4|(q + 1), then 2‖(q − 1). Similar to Step 1
and by using Lemma 4.4, we have |(q + 1, (q2t+1 + 1)/(q + 1))|2 = 1
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and |(q + 1, (q2k − 1)/(q2 − 1))|2 divides |k|2, where 1 ≤ k ≤ (p + 1)/2.
Therefore 2α is a divisor of 2(p+1)/2×|((p + 1)/2)!|2×(q+1)p−1. Hence,
by using Lemma 4.2, we have 2α | 2p(q + 1)p−1.

Since q is not a Mersenne prime, q +1 = 2βA, where A ≥ 3 is an odd
number. Then 2α | 2p(2β)p−1 = 2p((q + 1)/A)p−1, which implies that

2α ≤ 2p

(
q + 1

A

)p−1

≤ 2p

(
q + 1

3

)p−1

≤ m2 − 1.

Therefore, 2α ± 1 	≡ 0 (mod m2).

Step 3. Let xα|qp(p+1)/2. Since q is a prime power, we have q = xn,
for some n > 0.

Now let xα|qp and xα + 1 ≡ 0 (mod m2), which implies that
(xα + 1)(q + 1) = t(qp + 1), for some t > 0. Also m2 ≤ xα +1 ≤ qp +1
and q + 1 < m2, which implies that q | xα. Therefore q | (t − 1), and
so q + 1 ≤ t. On the other hand, xα + 1 = t(qp + 1)/(q + 1) ≤ qp + 1
and so 1 ≤ t ≤ q + 1. Therefore, t = q + 1 and xα = qp.

If xα | qp and xα −1 ≡ 0 (mod m2), then (xα −1)(q +1) = t(qp +1),
for some t > 0. Also q | xα and hence q | (t + 1), which implies that
t ≥ q−1. Since t < q+1, we conclude that t = q−1 or t = q. Obviously
t 	= q, and hence t = q − 1. Then xα(q + 1) = q(qp − qp−1 + 2), which
is a contradiction, since q < xα.

It follows that, if xα is a divisor of qp, then xα − 1 	≡ 0 (mod m2),
but if xα + 1 ≡ 0 (mod m2), then xα = qp.

Let qp < xα ≤ q2p and xα | q2p. Similarly we can prove that
xα + 1 	≡ 0 (mod m2). Let xα − 1 ≡ 0 (mod m2). Since qp < xα,
we have xα = qpxt, for some t > 0, where 0 < xt ≤ qp. Therefore,

xα − 1 = qpxt + xt − xt − 1 = xt(q + 1)m2 − xt − 1,

which implies that m2 | (xt + 1). Hence xt = qp, and so xα = q2p.

By using this method and by induction on k, it is proved that if
q2kp < xα ≤ q(2k+1)p, then xα − 1 	≡ 0 (mod m2), and if xα + 1 ≡ 0
(mod m2), then xα = q(2k+1)p. Also if q(2k−1)p < xα ≤ q2kp, then
xα + 1 	≡ 0 (mod m2), and if xα − 1 ≡ 0 (mod m2), then xα = q2kp.
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Step 4. If x is an odd prime and x|(q+1), then let q+1 = xβA, where
x � A and β ≥ 1. Then A ≥ 2 is even, because q is an odd prime power,
so let A = 2k, for some k > 0. Again by using Lemmas 4.4 and 4.5, we
have (q+1, q) = 1, |(q+1, q−1)|x = 1, |(q+1, (qi +1)/(q+1))|x = |i|x,
where i is odd, and |(q + 1, (qi − 1)/(q2 − 1))|x = |i/2|x = |i|x, where i
is even. Hence xα divides |(p + 1)!|x × ((q + 1)/2)p−1. Now, by using
Lemma 4.2, we have xα|x[p/(x−1)]((q+1)/2)p−1. Suppose q+1 = 2xβk,
where β ≥ 1, k ≥ 1 and x � k. Now we consider two cases:

Case I. Let k = 1. Then xβ = (q + 1)/2. Note that q 	= 5. Hence we
split the proof into two subcases according to the following possibilities
for q:

(1) x = 3 and β ≥ 2,

(2) x ≥ 5 and β ≥ 1.

(I) If x = 3 and β ≥ 2, then q ≥ 17, since q 	= 5. Hence
16(q +1)/17 ≤ q. Also, since p ≥ q ≥ 17, we have 21/p

√
3 ≤ 21/17

√
3 ≤

2 × 16/17, which implies that
√

3
p

2p−1
≤

(
16
17

)p

=⇒ 3p/2(q + 1)p−1

2p−1
<

qp + 1
q + 1

− 1 =⇒ 3α < m2 − 1,

and hence 3α ± 1 	≡ 0 (mod m2).

(II) If x ≥ 5 and β ≥ 1, then q ≥ 9 and hence 8(q + 1)/9 ≤ q. If
f(t) = t1/(t−1) and g(t) = 21/t, where t ≥ 3, then f(t) and g(t) are
decreasing functions. So

21/px1/(x−1) ≤ 21/9×51/4 ≤ 16
9

=⇒ xp/(x−1)

2p−1
≤

(
8
9

)p

=⇒ xα < m2−1,

which implies that xα ± 1 	≡ 0 (mod m2).

Case II. Let k ≥ 2. Then p ≥ q ≥ 11 and, similar to Case (I), we
have x1/(x−1) × 2−2/p ≤ 2. Therefore

xα ≤ xp/(x−1)(q + 1)p−1

2p−1
≤ m2 − 1,

which implies that xα ± 1 	≡ 0 (mod m2).
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Step 5. If x is an odd prime and x|(q − 1), then let q − 1 = xβA,
where x does not divide A and β ≥ 1. Similar to the last steps A ≥ 2
is even, since q is odd and by using Lemmas 4.3 and 4.6 we conclude
that xα is a divisor of |((p + 1)/2)!|x× ((q−1)/2)(p+1)/2. Now by using
Lemma 4.2, we have

xα

∣∣∣∣ x[(p−1)/2(x−1)]

(
q − 1

2

)(p+1)/2

.

But easily we can see that

x[(p−1)/2(x−1)]

(
q − 1

2

)(p+1)/2

<
qp + 1
q + 1

− 1 = m2 − 1,

which implies that xα ± 1 	≡ 0 (mod m2).

Step 6. Let x|(qs + 1)/(q + 1), where 3 ≤ s ≤ p − 1 is an odd prime
number. Also let x � (q2−1), since the divisors of q2−1 were discussed
in the last steps. Obviously, (q, (qs + 1)/(q + 1)) = 1. If n is even and
s � n, then |((qs + 1)/(q + 1), (qn − 1)/(q2 − 1))|x = 1, since

(
qs + 1
q + 1

,
qn − 1
q2 − 1

) ∣∣∣∣
(

q2s − 1,
qn − 1
q2 − 1

)
=

(
q2 − 1,

n

2

)
.

If n is even and s | n, then (qs + 1)/(q + 1) divides (qn − 1)/(q2 − 1).
Hence (

qs + 1,
qn − 1
qs + 1

) ∣∣∣∣ n

2s
=⇒

∣∣∣∣
(

qs + 1,
qn − 1
qs + 1

)∣∣∣∣
x

∣∣∣∣
∣∣∣ n

2s

∣∣∣
x

.

If i is odd and s � i, then by using Lemma 4.3, we have

(
qs + 1,

qi + 1
q + 1

) ∣∣∣∣
(

q2s − 1,
q2i − 1
q2 − 1

)
= (i, q2 − 1),

since s is an odd prime number and (s, i) = 1. Therefore,

∣∣∣∣
(

qs + 1,
qi + 1
q + 1

)∣∣∣∣
x

=
∣∣∣∣
(

qs + 1,
q2i − 1
q2 − 1

)∣∣∣∣
x

= 1.
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If i is odd and s | i, then (qs + 1)/(q + 1) divides (qi + 1)/(q + 1). So
by using Lemma 4.6, we have |(qi + 1)/(qs + 1)|x | |i/s|x.

The above relations show that

xα

∣∣∣∣∣
∣∣∣∣
[
p − 1

s

]
!
∣∣∣∣
x

(
qs + 1
q + 1

)[(p−1)/s]

=⇒ xα|x[(p−1)/s(x−1)]

(
qs + 1
q + 1

)[(p−1)/s]

,

by Lemma 4.2. But then xα < m2 − 1, which implies that xα ± 1 	≡ 0
(mod m2).

Step 7. Let x|(qs + 1)/(q + 1), where s is odd but s is not a prime
number; or x|(qs − 1)/(q − 1), where s is odd; or x|(q2t

+ 1), where
t ≥ 1.

Then, similar to Step 6, we conclude that xα ± 1 	≡ 0 (mod m2). For
convenience we omit the proof of this step.

Now the proof of this lemma is completed.

Remark 5.1. The proof of Lemma 5.1 shows that if q = 5 or if q is a
Mersenne prime and x is an odd prime number, then again Lemma 5.1
holds. There might be some α > 0 such that 2α|m1 and 2α + 1 ≡ 0
(mod m2) or 2α−1 ≡ 0 (mod m2), for these q’s (but we strongly guess
that no such α exists). Therefore,

(a) If xα | m1 and xα − 1 ≡ 0 (mod m2), then xα = q2kp, where
1 ≤ 2k ≤ (p + 1)/2 or x = 2;

(b) if xα| m1 and xα + 1 ≡ 0 (mod m2), then xα = q(2k+1)p, where
1 ≤ 2k + 1 ≤ (p + 1)/2 or x = 2.

(c) Let q be a Mersenne prime. If 2α | |M | and 2α + ε ≡ 0
(mod m2), where ε = 1 or ε = −1, then 2α | 2p(q + 1)p−1. But
since 2p(q + 1)p−1 < m2

2 < 22α, we have 22α � |M |.
(d) If q = 5, 2α | |M | and 2α + ε ≡ 0 (mod m2), where ε = 1 or

ε = −1, then 2α | 25(p−1)/2. But then 22α � |M |.
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Lemma 5.2. Let G be a finite group and M = PSU(p+1, q), where
(q + 1) | (p + 1). If OC(G) = OC(M), then G is neither a Frobenius
group nor a 2-Frobenius group.

Proof. First let G be a Frobenius group, where H and K are the
Frobenius complement and Frobenius kernel of G, respectively. Then
OC(G) = {|H|, |K|}, by Lemma 2.3. Also |H| is a divisor of |K| − 1
and hence |H| < |K|. Since m1 > m2, we conclude that |H| = m2

and |K| = m1. We know that π(m1) ≥ 3. So let p0 be an odd prime
number which divides m1 and p0 � q. Let P0 be a Sylow p0-subgroup
of K. Then P0 � G, since K is nilpotent. Hence m2 divides |P0| − 1,
by Lemma 2.5. Therefore |P0| = q2kp, where 1 ≤ 2k ≤ (p + 1)/2, or
|P0| = 2α, by Lemma 5.1 and Remark 5.1, which is a contradiction. It
follows that G is not a Frobenius group.

Now let G be a 2-Frobenius group. So there exists a normal series
1 �H �K � G such that K is a Frobenius group with kernel H, and
G/H is a Frobenius group with kernel K/H. By using Lemma 2.4,
we have |K/H| = m2 and |G/K| < m2. Therefore |H| 	= 1, since
|G| = |G/K| · |K/H| · |H|. Now let p0 ∈ π1 be an odd prime number
such that p0 does not divide q. Also we can choose p0 such that
p0 | (q−1)(p+1)/2(q+1)p−1, since m2 < (q−1)(p+1)/2(q+1)p−1. If P0 is a
Sylow p0-subgroup of H, then P0 � K, since H is nilpotent. Therefore
m2 is a divisor of |P0| − 1, by Lemma 2.5, which is a contradiction.
Therefore G is not a 2-Frobenius group.

Lemma 5.3. Let G be a finite group and M = PSU(p + 1, q),
where (q + 1) | (p + 1). If OC(G) = OC(M), then G has a normal
series 1 �H � K � G such that H and G/K are π1−groups and K/H
is a simple group. Moreover, the odd order component of M is equal
to an odd order component of K/H. In particular, t(K/H) ≥ 2. Also
|G/H| divides |Aut (K/H)|, and in fact G/H ≤ Aut (K/H).

Proof. The proof is similar to the proof of Lemma 3.2 in [22].

Proof of the main theorem. We know that OC(G) = OC(PSU(p+1,
q)), so by using Lemma 5.3, there exists a normal series 1 �H �K � G,
such that K/H is a non-abelian simple group with non-connected prime
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graph, π(H) ∪ π(G/K) ⊂ π1 and the odd order component of G,
i.e., (qp + 1)/(q + 1), is an odd order component of K/H. Obviously
{2, m2} ⊆ π(K/H), since non-abelian simple groups have even order.
Now by using the classification of finite simple groups, the possibilities
for K/H are:

(a) sporadic simple groups,

(b) the alternating groups (An, n ≥ 5),

(c) simple groups of Lie type.

In the sequel, by using the results in Tables 1 3 in [20] we prove that
the only possibility for K/H is PSU(p + 1, q).

Step 1. Let K/H ∼= S, where S is a sporadic simple group.

Since (p, q) 	= (3, 3) and (5, 2), we have m2 ≥ 521. This is a
contradiction, since the odd order components of sporadic simple
groups are less than 521 and hence m2 < 521.

Therefore K/H is not a sporadic simple group.

Step 2. Let K/H ∼= An, where n = p′, p′ + 1, p′ + 2 and p′ ≥ 5 is a
prime number.

Then m2 = p′ or p′ − 2, where p′ ≥ 5 is an odd prime number.

If 2t‖ |Ap′ |, then t > [p′/2] + [p′/4] + [p′/8], where p′ ≥ m2, which
implies that t > 3m2/4. Hence 23m2/4| |K/H|. As we can see
from the proof of Lemma 5.1, if 2α‖ |G|, then 2α ≤ 2p(q + 1)p−1 or
2α ≤ 23(p−1)/2(q − 1)(p+1)/2. But it is obvious that

α ≤ p(1 + log2(q + 1)) <
3
4
× qp + 1

q + 1
,

which is a contradiction.

Therefore K/H is not an alternating group.

Step 3. If K/H is a simple group of Lie type, then K/H can be
isomorphic to one of the groups listed in Tables 1 3 in [21]. Since
the proofs are similar, we only do a few of them. For convenience let
X = {5} ∪ {x | x is a Mersenne prime}. In the sequel p′ will be an odd
prime number and q′ will be a prime power.
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• If K/H is isomorphic to A1(q′) where 4 | (q′ + 1), then m2 =
(q′ − 1)/2 or m2 = q′.

If m2 = q′, then we consider two cases:

If |A1(m2)| does not divide |G|, then obviously we get a contradiction.

If |A1(m2)| | |G|, then

|G|
|K/H| =

|G|
|A1(m2)| = |H| · |G/K| 	= 1.

By Lemma 5.3, |G/K| | |Out (K/H)|, and if q = pn
0 , then

|Out (A1(m2))| | 2n,

which implies that |H| 	= 1. Now let x be an odd prime number such
that x does not divide q and x | |H|. Then let T be a Sylow x−subgroup
of H. Since H is nilpotent, T� G. Hence m2 | (|T |−1), by Lemma 2.5.
Therefore |T | = q2kp, by Lemma 5.1, which is a contradiction.

If m2 = (q′−1)/2, then q′ = q2kp, where 1 ≤ 2k ≤ (p+1)/2, because
q′ is odd. Therefore

(q + 1)(q2kp − 1)/(qp + 1) = 2,

which is impossible, since q + 1 ≥ 3.

• If K/H is isomorphic to A1(q′) where 4|(q′−1), then m2 = (q′+1)/2
or m2 = q′. Again we get a contradiction, similar to the last case.

• If K/H is isomorphic to A1(q′) where 4|q′, then m2 = q′ + 1or
m2 = q′ − 1. Obviously m2 	= q′ + 1, by Lemma 4.1. If m2 = q′ + 1,
then we can proceed similar to the above case and get a contradiction.

• Also K/H is not isomorphic to Ap′(q′), where (q′ − 1)|(p′ + 1), or
Ap′−1(q′). For example, if K/H is isomorphic to Ap′−1(q′), then

(1)
q′p

′ − 1
(q′ − 1)(p′, q′ − 1)

=
qp + 1
q + 1

,

which implies that q′p
′
= q2kp, where 1 ≤ 2k ≤ (p + 1)/2, or q′p

′
= 2α,

for some α > 0.
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If q′p
′
= q2kp, where 1 ≤ 2k ≤ (p+1)/2, then by using Lemma 5.1(c),

we have (q2kp)(p
′−1)/2 ≤ qp(p+1)/2 which implies that 2k(p′−1) ≤ p+1

and hence p′ < p. Also (1) implies that

(q′ − 1)(p′, q′ − 1) = (qp − 1)(q + 1)(q2p(k−1) + · · · + q2p + 1).

But (q′ − 1)(p′, q′ − 1) ≤ (q′ − 1)2 < q′2 ≤ q4kp/3, because q′3 ≤ q′
p′

=
q2kp. If k ≥ 3, then q′2 ≤ q4kp/3 ≤ q2p(k−1) < (q+1)(q2kp−1)/(qp +1),
which is a contradiction by (1). Also, for k = 1, 2 we can easily get a
contradiction. For example, let k = 1. Suppose q = xs and q′ = xt,
where x is a prime number. Then tp′ = 2ps, which implies that s = p′α
and t = 2pα, for some α > 0, since p 	= p′. Therefore q = xp′α and
q′ = x2pα. Hence

(2)
xpp′α − 1

(x2pα − 1)(p′, x2pα − 1)
=

1
xp′α + 1

.

But it is straightforward to see that

(xpp′α − 1)(xp′α + 1) > (x2pα − 1)(p′, x2pα − 1),

and it is a contradiction.

If q′
p′

= 2α, then p′ = 3, by Remark 5.1. Again we get a contradic-
tion, similarly.

• If K/H is isomorphic to one of the following simple groups:

Bn(q′) where n = 2m ≥ 4, q′ odd;

Cn(q′) where n = 2m ≥ 2, q′ odd;
2Dn(q′) where n = 2m ≥ 4, q′ odd;

then m2 = (q′n + 1)/2, which implies that q′n = q(2k+1)p, where
1 ≤ 2k + 1 ≤ (p + 1)/2. Then 2 = (q + 1)(q(2k+1)p + 1)/(qp + 1),
which is a contradiction, since q ≥ 2.

• If K/H is isomorphic to one of the following simple groups:

Cn(q′), where n = 2m ≥ 2, q′ = 2t, t ≥ 1;
2Dn(q′), where n = 2m ≥ 4, q′ = 2t, t ≥ 1;
2Dn(2), where n = 2m + 1 ≥ 5, is not a prime number;
2Dp′+1(2) where p′ = 2n − 1, n ≥ 2,
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F4(q′), where q′ = 2t, t > 1;

then the odd order component(s) of K/H is (are) equal to 2s + 1, for
some s > 0. Hence 2s+1 = m2, which is a contradiction, by Lemma 4.1.

• If K/H is isomorphic to one of the following simple groups:
2Dp′(3) where p′ = 2m + 1 ≥ 5 is a prime number;
2Dn(3) where n = 2m + 1 ≥ 5 is not a prime number;
2Dp′(3) where p′ 	= 2m + 1, p′ ≥ 5 is a prime number,

then similarly we get a contradiction, by using the above lemmas. For
example, if K/H ∼= 2Dp′(3) where p′ = 2m + 1 ≥ 5 is a prime number,
then we consider two cases:

If m2 = (3p′
+ 1)/4, then 3p′

= q(2k+1)p, which implies that q = 3,
p = p′, by Lemma 5.1. Now 3p(p−1) divides |K/H|, which implies that
p = 3, since 3p(p+1)/2‖ |G|. But p = p′ ≥ 5, which is a contradiction.

If m2 = (3p′−1 + 1)/2, then 3p′−1 = q(2k+1)p, where 1 ≤ 2k + 1 ≤
(p+1)/2. Hence 2 = (q+1)(3p′−1+1)/(qp+1), which is a contradiction.

Therefore K/H 	∼= 2Dp′(3).

• If K/H ∼= Dp′(q′), where p′ ≥ 5 is a prime number and q′ = 2,
3 or 5, then q′p

′
= q2kp, 1 ≤ 2k ≤ (p + 1)/2, or q′p

′
= 2α. By using

Remark 5.1, q′p
′ 	= 2α, since p′ − 1 ≥ 2. If q′p

′
= q2kp, then q = q′ and

p′ = 2kp, which is a contradiction.

Similarly it follows that K/H is not isomorphic to Bp′(3); Cp′(q′),
where q′ = 2, 3; and Dp′+1(q′), where q′ = 2, 3.

• If K/H is isomorphic to E6(q′); F4(q′), where q′ is odd; 3D4(q′);
2E6(q′); or G2(q′), then we get a contradiction, similarly. For example,
if K/H ∼= E6(q′), then q′

9 − 1 ≡ 0 (mod m2), which implies that
q′9 = q2kp, 1 ≤ 2k ≤ (p + 1)/2, since q′36 | |G|. Also we have

(3) (qp − 1)(q2p(k−1) + · · · + q2p + 1)(q + 1) = (q′3 − 1)(3, q′ − 1).

If k > 1, then equality in (3) does not hold, since 3q′3 ≤ 3q2kp/3 <
(q + 1)q2p(k−1). If k = 1, then q′9 = q2p and again the equality does
not hold, since 3q′3 < 3q2p/3 < (q + 1)(qp − 1).

• If K/H is isomorphic to 2F4(2)′, 2A5(2), 2A3(2), 2A3(3), A2(2),
A2(4), 2E6(2), E7(2) or E7(3) then m2 = 3, 5, 7, 9, 11, 13, 17, 19, 757,
1093 which is a contradiction, since m2 > 1093.
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• If K/H is isomorphic to 2G2(q′), where q′ = 32n+1; 2F4(q′), where
q′ = 22n+1 > 2; E8(q′); 2Ap′−1(q′); or 2B2(q′), where q′ = 22n+1 > 2,
then we get a contradiction. Again the proof is similar for each type.
Thus we choose one type. For example, let K/H ∼= 2G2(q′), where
q′ = 32n+1. Then m2 = q′ + ε

√
3q′ + 1, where ε = 1 or ε = −1.

Therefore q′3 + 1 ≡ 0 (mod m2), which implies that q′ = q(2k+1)p/3.
Then 3n+1(3n ± 1) = q(qp−2 − qp−3 + · · · − 1). Hence q = 3n+1, but
qp(2k+1) = 3(n+1)(2k+1)p > 33(2n+1) = q′3, which is a contradiction.

• If K/H is isomorphic to 2Ap′(q′) where (q′ + 1) | (p′ + 1) and
(p′, q′) 	= (3, 3), (5, 2), then q′p

′
= qp(2k+1), 1 ≤ 2k + 1 ≤ (p + 1)/2. By

using Lemma 5.1 and Remark 5.1, it follows that p′ ≤ p. Also we have

(4) q′ + 1 = (q + 1)(q2kp − qp(2k−1) + · · · − qp + 1).

Then k = 0 and q = q′, otherwise q | q′ and q′/q = qA + 1, for some
A > 0, which is a contradiction. Since k = 0 and q = q′ it follows that
p = p′ and hence K/H ∼= PSU(p + 1, q).

Therefore K/H ∼= PSU(p+1, q). Now since |G| = |PSU(p+1, q)|, it
follows that |H| = 1, G = K and hence G ∼= PSU(p+1, q), as required.

Now we discuss part (b) of the main theorem. In fact it is obvious,
since OC(Z|PSU(p+1,q)|) = OC(PSU(p+1, q)), where (q +1) 	 | (p+1),
but Z|PSU(p+1,q)| 	∼= PSU(p + 1, q).

Therefore PSU(p+1, q), where (q+1) � (p+1), is not characterizable
with this method.

The proof of this theorem is now completed.

Remark 5.2. If q = 2n then the proof is exactly similar to the case
q = xn where x is an odd prime number. Therefore, by a small
modification of the above lemmas and the above proof, we can get
the result.
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