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SHARP ESTIMATES FOR SOME
ITERATED OPERATORS IN ORLICZ SPACES

ELEONOR HARBOURE, OSCAR SALINAS AND BEATRIZ VIVIANI

ABSTRACT. In [7] and [6] sharp Orlicz estimates for
the maximal and conjugate functions on the one-dimensional
torus were given. Starting from their results we describe the
pairs of growth functions (ψ, ϕ) such that modular Lψ → Lφ

estimates hold for both, the strong maximal function and the
nth-iteration of the Hilbert transform. We also show that our
conditions are sharp. These results are achieved in a setting
general enough to include both operators.

1. Introduction. The behavior of classical operators in Orlicz
spaces has been extensively studied by many authors, see, for instance,
[1 4, 8]. Whenever we have an operator bounded on Lp for p ranging
on some interval, usually it is not bounded on some of the end points
in the sense of the p-norm, although it satisfies some weaker estimates.
In such situation the behavior of the operator near those extreme
values is better understood when we refine the Lp-family of spaces
by introducing the richer class of Orlicz-spaces.

More precisely, the kind of questions to answer here are the following:
given an operator T and some Orlicz space, say Lψ, which is the optimal
local integrability for all the functions in T (Lψ)? Or further, when the
underlying measure space has finite measure, which is the optimal space
Lφ such that T is bounded from Lψ into Lφ?

Results in this direction may be found in [7] for the Hardy-Littlewood
maximal function on the torus, in [6] for fractional maximal and
integral operators in any dimension and the conjugate function, and
in [4] for generalized Hardy operators.

In this paper we shall be concerned with the “iterated” Hilbert
transform and the strong maximal function on the n-dimensional torus
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τn, defined for functions 2π-periodic in each variable, given respectively
by

(1.1) f̃n(x) =
1
πn

lim
ε→0

∫
D(x,ε)

f(y)
n∏
i=1

cot
(
xi − yi

2

)
dy,

where x=(x1, . . . , xn), ε=(ε1, . . . , εn) andD(x, ε)={y=(y1, . . . , yn) :
εi < |yi − xi| < π} and

(1.2) MSf(x) = sup
x∈R

1
|R|

∫
R

|f(y)| dy

where the sup is taken over all intervals R ⊂ τn containing x.

It is well known that the relation between f̃n and the convergence
of multiple Fourier series, see, for instance [10], and that of MSf
with the differentiation of the integral respect to the n-dimensional
intervals. The classical approach to solve each of these problems relies
upon boundedness properties of f̃n and MSf respectively, see [5].

Our purpose is to find necessary and sufficient conditions on pairs of
growth functions, (ψ, φ), such that the above operators are bounded
from the Orlicz space Lψ into the Orlicz space Lφ.

As it is known, see, for example [5, p. 161], the strong maximal
function may be equal to infinity almost everywhere for a function
in L1(τn). However, for the smaller space L(log+ L)n−1(τn), there
is an estimate for the distribution function of MSf , as the Jensen-
Marcinkiewicz-Zygmund theorem asserts; namely, there exists some
constant C such that

(1.3) |{MSf > λ}| ≤ C

∫
τn

|f |
λ

(
1 +

(
log+ |f |

λ

)n−1)
, λ > 0.

This kind of inequality is called “extra weak” with respect to the
function ϕ(t) = t(1 + log+ t) by some authors, see, for example, [8].
We have not found in the literature a reference on whether or not
an inequality as above holds true for the “iterated” Hilbert transform
defined by (1.1) if n > 1. Nevertheless, in [10] it is shown that f̃n is
finite almost everywhere for f ∈ L(log+ L)n−1(τn) by proving estimates
like

(1.4)
∫
τn

|f̃n(x)|δ ≤ Cδ + Cδ

∫
τn

|f(x)|(log+ |f(x)|)n−1 dx

for each δ ∈ (0, 1) which, by the way, are weaker than (1.3).
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Let us notice that in all the above-mentioned papers, the standard
technique to obtain boundedness on the Orlicz spaces is built upon
estimates on the “end points,” as in the Marcinkiewicz interpolation
theorem. However we will not pursue this approach here. Fortunately,
the “iterated” nature of our operators, allows us to skip the unfriendly
extra-weak inequality, (1.3), using instead the already known Orlicz
boundedness results for n = 1 given in [7] and [6]. Nevertheless, as we
will show, our technique will lead to sharp Orlicz modular estimates.

We shall use this approach in the general setting of what we will
call “iterated operators” whose precise definition is given in the next
section.

Now, we turn our attention to the function spaces under consid-
eration, fixing some notation. We recall that a growth function,
that is, a nonnegative increasing function φ defined on [0,∞) with
limt→0+ φ(t) = 0, is said to be of lower type p if there exists a constant
C such that

(1.5) φ(st) ≤ Cspφ(t)

holds for every s ∈ [0, 1] and t ≥ 0. Whenever there is a p > 0 satisfying
(1.5) we shall say that φ is of positive lower type. We will also say that
a nonnegative function η is Δ∞

2 if there exists a constant C and a
positive number t0 such that

(1.6) η(2t) ≤ Cη(t),

for any t ≥ t0.

Let Ω be a Lebesgue measurable subset of Rn. For a nonnegative and
nondecreasing function φ defined on [0,∞) with limt→0+ φ(t) = 0, we
denote by Lφ(Ω) the class of all measurable functions on Ω for which∫
Ω
φ(C |f |) <∞ for some positive constant C. It is clear that for Ω of

finite measure, the space Lφ(Ω) will remain the same if we change the
values of φ in a neighborhood of the origin since for any λ > 0∫

{x∈Ω:|f(x)|<λ}
φ(C |f |) ≤ φ(Cλ) |Ω| <∞.

The “Luxemburg norm” is introduced as the quantity

‖f‖
Lφ (Ω)

= inf
{
λ > 0 :

∫
Ω

φ(|f | /λ) ≤ 1
}
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That this quantity is finite for f ∈ Lφ(Ω) is a consequence of the
Lebesgue dominated convergence theorem. Moreover, when φ is a
convex growth function, it gives a norm on Lφ(Ω) which makes Lφ(Ω)
a Banach space. If we just know that φ is of positive lower type, the
quantity ‖ ‖Lφ defines a translation invariant quasi-metric, turning
Lφ(Ω) into a metrizable topological vector space. Moreover the metric
can be chosen to be invariant under translations. We notice that when
φ(t) = tp, p ≥ 1, we obtain the Lebesgue spaces. We will keep the
classical notation Lp(Ω) when we need to refer to these specific cases.

The paper is organized as follows. The next section contains the
statements of our main results. In Section 3, proofs of the general
theorems are given, whereas in the fourth section we derive results
relative to MSf and f̃n.

2. Main theorems. In the sequel we will consider the following
type of growth functions:

(2.1) φ(t) =
∫ t

0

a(s) ds and ψ(t) =
∫ t

0

b(s) ds

for t ≥ 0, where a and b are positive continuous functions defined on
[0,∞). In addition we suppose that b(s) is nondecreasing.

For n ≥ 1 let τn be the n-dimensional torus. We denote by Mn the
class of measurable real functions defined on τn.

Let T be an operator from a subspaceD of M = M1 into M. Related
to T , we consider the iterated operator Tn acting on functions f in a
subset of Mn and given by

Tnf(x) = T1 ◦ T2 ◦ · · · ◦ Tnf(x),

where by Tj we mean the operator T acting on the xj-variable, that is,

Tjf(x) = T (f(x1, . . . , xj−1, · , xj+1, . . . , xn))(xj) for j = 1, . . . , n.

It is clear that, if T is linear and well defined on D, then Tn is linear
and well defined on linear combinations of products of n functions in
D, each acting on a different variable, that is functions that can be
written as

∏n
i=1 fi(xi) with fi ∈ D. Also, Tn is well defined over such
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class of functions if we start with any sublinear operator that “depends
on |f |,” in the sense |T (f)| ≤ T (|f |), and its domain D satisfies the
property: |f | ≤ g, g ∈ D implies f ∈ D. Certainly the operators we
are interested in, that is those defined by (1.1) and (1.2), fall in one of
the above categories.

In order to state our first result we introduce further classes of growth
functions. By Cn we shall mean the class of pairs (ψ, φ) with ψ and
φ as in (2.1) and for which there exists a constant C such that the
inequality

(2.2)
∫ t

1

a(λ)
λ

logn−1

(
t

λ

)
dλ ≤ Cb(Ct)

holds for every t ≥ 1. On the other hand, we set

C′
n = {(ψ, ϕ) ∈ Cn/a is Δ∞

2 }.

Theorem 2.3. If for each pair (η, ρ) in C1, respectively C′
1, there

exists a constant C such that

(2.4)
∫
τ

ρ(|Tf(t)|) dt ≤ C + C

∫
τ

η(C|f(t)|) dt

for every f in Lη, then, for any given (ψ, φ) in Cn, respectively C′
n,

there exist a constant C such that

(2.5)
∫
τn
φ(|Tnf(x)|) dx ≤ C + C

∫
τn
ψ(C|f(x)|) dx

for every f in Lψ such that Tnf is well defined.

Remark 2.6. We would like to remark that if (ρ, η) is a pair in C1,
respectively C′

1, then the one-dimensional Hardy-Littlewood maximal
function, respectively the one-dimensional Hilbert transform, satisfies
an inequality of the type (1.4). This follows by Theorem (2.1) in [7],
respectively Theorem (2.18) in [6]. In fact, a careful look at the proofs
there shows that the extra hypothesis b(s) → ∞ is not needed for (i)
⇒ (ii), respectively (2.19) ⇒ (2.20).
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The next theorems establish that, under some extra conditions,
Theorem 2.3 is sharp in the sense that for some specific operators the
requirements (ψ, ϕ) ∈ Cn and (ψ, ϕ) ∈ C′

n are needed.

Theorem 2.7. Suppose that the function ta(et) is of positive lower
type and that there exist positive constants δ0 < π, ξ, c1 and c2, such
that for δ ∈ (0, δ0) the estimate

(2.8)
c1
θ

≤
∣∣∣∣T

(
1
δ
X[−δ,δ]

)
(θ)

∣∣∣∣ ≤ c2
θ

holds for every θ in [ξδ, (π/2)]. Then, if the modular inequality

(2.9)
∫
τn
φ(|Tnf(x)|) dx ≤ C0 + C0

∫
τn
ψ(C0|f(x)|) dx

holds for every f of separate variables in Lψ(τn), there exists a constant
C such that

(2.10)
∫ t

1

a(λ)
λ

logn−1

(
t

λ

)
dλ ≤ Cb(Ct)

for every t ≥ 1.

The above theorems can be applied to obtain sharp boundedness
results for MS and f̃n, defined in (1.2) and (1.1) respectively.

Theorem 2.11. Assume that the function ta(et) is of positive lower
type and that a is Δ∞

2 . Then the following statements are equivalent.

(2.12) The pair (ψ, φ) belongs to Cn.

(2.13) There exists C such that

∫
τn
φ(MSf(x)) dx ≤ C + C

∫
τn
ψ(C|f(x)|) dx

for every f in Lψ(τn).
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Theorem 2.14. Assume that the function ta(et) is of positive lower
type and that a is Δ∞

2 . Then the following statements are equivalent.

The pair (ψ, φ) belongs to C′
n.(2.15) ∫

τn
φ(|f̃n(x)|) dx ≤ C + C

∫
τn
ψ(C|f(x)|) dx(2.16)

holds for every f such that f̃n is well defined.

Corollary 2.17. If (ψ, φ) is in C′
n and if in addition, ψ is Δ2 and

φ of positive lower type, then f̃n is well defined for every f in Lψ(τn)
and the inequality

||f̃n||Lφ(τn) ≤ C||f ||Lψ(τn)

holds, with C independent on f .

Remark 2.18. In [10], Zygmund proved that f̃n is well defined
for every f in L logn−1 L(τn). Then, applying Theorem 2.14, we
can get inequality (2.16) for every f in Lψ(τn), whenever Lψ(τn) ⊂
L logn−1 L(τn). This inequality improves estimate (1.4) appearing in
that paper. In fact, it is easy to check that for any ε > 1 the pair
(ψ, φε) belongs to C′

n for ψ(t) � t(log+ t)n−1 and φε(t) � t(log+ t)−ε

and satisfies all the general requirements of that theorem.

3. Proof of Theorems 2.3 and 2.7.

Proof of Theorem 2.3. We proceed by induction on the dimension.
The case n = 1 is assumed by hypothesis. Now, suppose that 2.5 holds
for n = m− 1 and let us check the case n = m. Let (ψ, φ) ∈ Cm. Since

Cb(Ct) ≥
∫ t

1

a(s)
s

logm−1

(
t

s

)
ds

= C

∫ t

1

a(s)
s

( ∫ t

s

logm−2(t/r)
r

dr

)
ds

= C

∫ t

1

logm−2(t/r)
r

( ∫ r

1

a(s)
s

ds

)
dr

= C

∫ t

1

b1(r)
r

logm−2

(
t

r

)
dr
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where

(3.1) b1(r) =
∫ r

1

a(s)
s

ds, r > 1 and b(r) = 0, 0 < r ≤ 1,

it is immediate that the pair (ψ, ψ1), with ψ′[1(t) = b1(t), belongs to
Cm−1. In addition, from (3.1) , clearly we have that (ψ1, φ) ∈ C1. So,
using the inductive hypothesis and denoting (x1, x2, . . . , xm) = (x1, x

′),
we get∫

τm
φ (|Tmf(x1, . . . , xm)|) dx1 . . . dxm

=
∫
τm−1

( ∫
τ

φ(|T (T2 ◦ · · · ◦ Tmf)(·, x′)(x1)|) dx1

)
dx′

≤ C + C

∫
τm−1

( ∫
τ

ψ1(|(T2 ◦ · · · ◦ Tmf)(x1, x
′)|) dx1

)
dx′

= C + C

∫
τ

( ∫
τm−1

ψ1(|(Tm−1f(x1, ·))(x′)|) dx′
)
dx1

≤ C + C

∫
τ

( ∫
τm−1

ψ(|f(x1, x
′)|) dx′

)
dx1

= C + C

∫
τm

ψ(|f(x1, . . . , xm)|) dx1, . . . , dxm,

proving the theorem for the class Cn. For the case (ψ, φ) ∈ C′
n, we only

need to check that the function given by (3.1) is Δ∞
2 . We know that

a(t) satisfies (1.6) for t ≥ t0, which we may assume greater than one.
Then, taking t ≥ 2t0 and using the continuity of a, it is straightforward
to check that b1 satisfies (1.6) for such values of t.

In order to prove Theorem 2.7 we shall need two technical lemmas.

Lemma 3.2. Let a(t) be a nonnegative continuous function defined
for t > 1. Then the following statements are equivalent

(i) The function ta(et) is of positive lower type;

(ii) There exists a constant C such that
∫ δ
1
(a(λ)/λ) dλ ≤ Ca(δ) log δ;

(iii) There exists ε > 0 such that (1/ log t)ε
∫ t
1
(a(λ)/λ) dλ is nonde-

creasing.

(iv) There exists β < 1 such that a(t) logβ t is quasi-increasing.
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Proof. First, we prove that (i) is equivalent to (ii). By an obvious
change of variable,

∫ δ

1

a(λ)
λ

dλ =
∫ log δ

0

ta(et)
dt

t

Then, denoting f(t) = ta(et), we have to prove that the inequality

∫ s

0

f(t)
dt

t
≤ Cf(s)

is equivalent to the fact that f is of positive lower type. But this result
follows easily from Lemma 2.3 in [9, p. 515].

Next, to see that (ii) is equivalent to (iii), we just need to note that the
derivative of the function g(t) = (1/ logε t)

∫ t
1
(a(λ)/λ) dλ is nonnegative

for some ε > 0 if and only if (ii) holds. A straightforward calculation
of the derivative gives the desired equivalence.

Now suppose that (i) is true. Using that a function η(t) is of positive
lower type if and only if η(t)/tα is quasi increasing for some α > 0, (iv)
follows easily. Finally assuming (iv) we have

∫ δ

1

a(t)
t
dt =

∫ δ

1

a(t)(log t)β

t(log t)β
dt

≤ Ca(δ)(log δ)β
∫ δ

1

dt

t(log t)β

= ca(δ)(log δ)β(log δ)1−β

= ca(δ) log δ,

which proves (ii).

Lemma 3.3. If the function ta(et) is of positive lower type, then for
any n ∈ N, n ≥ 2, there exists a constant C such that

(3.4) (log δ)n−1

∫ δ

1

a(λ)
λ

dλ ≤ C

∫ δ

1

a(λ)
λ

(logλ)n−1 dλ, δ > 1.
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Proof. By integrating by parts, we have

∫ δ

1

a(λ)
λ

(logλ)n−1dλ = (log δ)n−1

∫ δ

1

a(λ)
λ

dλ

− (n− 1)
∫ δ

1

( ∫ λ

1

a(s)
s

ds

)
(logλ)n−2

λ
dλ.

Then, in order to obtain (3.4) we only need to show that there exists
α ∈ (0, 1) such that

∫ δ

1

(log λ)n−2

λ

( ∫ λ

1

a(s)
s

ds

)
dλ ≤ α

n− 1
(log δ)n−1

∫ δ

1

a(λ)
λ

dλ.

But this inequality follows from the hypothesis and Lemma 3.2. In
fact, by that lemma, there exists ε > 0 such that the function

h(λ) =
1

(log λ)ε

∫ λ

1

a(s)
s

ds

is nondecreasing. Therefore

∫ δ

1

(log λ)n−2

λ

(∫ λ

1

a(s)
s

ds

)
dλ =

∫ δ

1

(log λ)n−2+ε

λ
h(λ) dλ

≤ h(δ)
∫ δ

1

(log λ)n−2+ε

λ
dλ

=
(log δ)n−1

n− 1 + ε

∫ δ

1

a(s)
s

ds

=
α

n− 1
(log δ)n−1

∫ δ

1

a(s)
s

ds,

where α = (n− 1)/(n− 1 + ε). This concludes the proof of the lemma.

Now, we are in position to proceed with the proof of Theorem 2.7.
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Proof of Theorem 2.7. From 2.8, we have
(3.5)∣∣∣∣

{
θ ∈ τ :

∣∣∣T(1
δ
X[−δ,δ]

)
(θ)

∣∣∣ > γ

}∣∣∣∣ ≥
∣∣∣∣
{
θ ∈

[
ξδ,

π

2

]
and θ <

c1
γ

}∣∣∣∣
=
c1
γ

− ξδ >
c1
2γ

whenever γ ∈ (2c1/π, c1/(2ξδ)).

Let Fδ(θ1, . . . , θn) =
∏n
i=1 fδ(θi) with fδ(s) = (1/δ)X[−δ,δ](s). Notice

that

Tn(Fδ)(θ̄) =
n∏
i=1

T (fδ)(θi) = T (fδ)(θ1)Gδ(θ′),

where θ̄ = (θ1, . . . , θn) and Gδ(θ′) =
∏n
i=2 T (fδ)(θi) with θ′ =

(θ2, . . . , θn). Then, from (3.5) and for C0 a positive constant to be
determined later, we get

(3.6)

∫
τn
φ

(
C0

∣∣Tn(Fδ)(θ̄)∣∣) dθ̄
= C0

∫ ∞

0

a(C0λ)|{θ̄ ∈ τn : |Tn(Fδ)(θ̄)| > λ}| dλ

= C0

∫ ∞

0

a(C0λ)
∣∣∣∣
{
θ̄ ∈ τn : |Tfδ(θ1)| > λ

Gj(θ′)

}∣∣∣∣ dλ
= C0

∫ ∞

0

a(C0λ)
∫
τn−1

∣∣∣∣
{
θ ∈ τ : |Tfδ(θ)| > λ

|Gδ(θ′)|
}∣∣∣∣ dθ′ dλ

≥ C

∫ ∞

0

a(C0λ)
λ

( ∫
τn−1

XAδ (λ, θ′)|Gδ(θ′)| dθ′
)
dλ,

where

Aδ =
{

(λ, θ′) ∈ (0,∞) × τn−1 :
2c1
π

<
λ

|Gδ(θ′)| <
c1
2ξδ

}
.

Setting

Aλδ =
{
θ′ ∈ τn :

2ξδ
c1

λ < |Gδ(θ′)| < π

2c1
λ

}

we have (Iλδ )n−1 ⊂ Aλδ , where

Iλδ =
{
θ ∈ τ :

(
2ξδλ
c1

)1/(n−1)

< |Tfδ(θ)| <
(
πλ

2c1

)1/(n−1)}
.
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Therefore, from (3.6), we obtain

(3.7)
∫
τn
φ

(
C0

∣∣Tn(Fδ)(θ̄)∣∣) dθ̄ ≥ C

∫ ∞

0

a(C0λ)
λ

( ∫
Iλ
δ

|Tfδ(θ)| dθ
)n−1

dλ.

Now, since (2.8) holds, we have

Iλδ ⊃
{
θ ∈

[
ξδ,

π

2

]
:
(

2ξδλ
c1

)1/n−1 1
c1

≤ 1
θ
≤ 1
c2

(
π

2c1
λ

)1/(n−1)}

⊃
[
ξδ,

π

2

]
∩

[
a

λ1/(n−1)
,

b

(λδ)1/(n−1)

]

with δ<(b/a)n−1, where a=c2(2c1/π)1/n−1 and b=c1(c1/(2ξ))1/(n−1).

It is not difficult to see that the above intersection will give only three
nonempty results:

(i) [a/(λ1/(n−1)), (π/2)] when λ ∈ [b0, (b1/δ)]

(ii) [a/(λ1/(n−1)), (b/(δ1/(n−1)λ1/(n−1))] when λ ∈ [(b1/δ), (b2/δn−1)]

(iii) [ξδ, (b/λ1/(n−1)δ1/(n−1))] when λ ∈ [(b2)/(δn−1), (b3)/(δn)],

where b0, b1, b2 and b3 are constants depending on c1, c2, n and ξ.
Therefore, splitting the integral over λ, we have

(3.8)

∫
τn
φ

(
C0

∣∣Tn(Fδ)(θ̄)
∣∣) dθ̄

≥ C

(∫ b1/δ

b0

a(C0λ)
λ

logn−1(α1λ) dλ

+
∫ b2/δ

n−1

b1/δ

a(C0λ)
λ

logn−1

(
α2

δ

)
dλ

+
∫ b3/δ

n

b2/δn−1

a(C0λ)
λ

logn−1

(
α3

λδn

)
dλ

)
.

Now, taking C0 = α1 and changing α1λ = t in the first integral, the
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sum of the three integrals can be written as

(3.9)

∫ α1b1/δ

α1b0

a(t)
t

logn−1(t) dt+
∫ α1b2/δ

n−1

α1b1/δ

a(t)
t

logn−1

(
α2

δ

)
dt

+
∫ α1b3/δ

n

α1b2/δn−1

a(t)
t

logn−1

(
α3α1

tδn

)
dt.

Without loss of generality, we may assume that α1b0 = 1. Then,
applying Lemma 3.3 to the first integral, we get∫ α1b1/δ

1

a(t)
t

logn−1(t) dt ≥ logn−1

(
α1b1
δ

) ∫ α1b1/δ

1

a(t)
t
dt.

Therefore (3.9) is bounded from below by

logn−1 (α1b1)
δ

∫ α1b1/δ

1

a(t)
t
dt+ logn−1

(
α2

δ

) ∫ α1b2/δ
n−1

α1b1/δ

a(t)
t
dt

+
∫ α1b3/δ

n

α1b2/δn−1

a(t)
t

logn−1

(
α3α1

tδn

)
dt.

Since all the integrands are positive, from (3.8), taking α0 = min{α1b1,
α2, α1α3, α1b3}, we obtain
∫
τn
φ(α1|Tn(Fδ(θ̄))|) dθ̄ ≥ C

(
log+(n−1)

(
α0

δ

) ∫ α1b2/δ
n−1

1

a(t)
t
dt

+
∫ α1b3/δ

n

α1b2/δn−1

a(t)
t

log+(n−1)
(
α0

tδn

)
dt

)

≥ C

∫ α1b3/δ
n

1

a(t)
t

log+(n−1)
(
α0

tδn

)
dt

= C

∫ α0/δ
n

1

a(t)
t

log+n−1
(
α0

tδn

)
dt.

On the other hand,∫
τn
ψ(α1Fδ(θ̄)) dθ̄ = ψ

(
α1

δn

) ∫
[−δ,δ]n

dθ̄

= cδnψ

(
α1

δn

)

≤ cb

(
α1

δn

)
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Finally, this inequality together with (2.9) and (3.10) give
∫ α0/δ

n

1

a(t)
t

logn−1(
α0

tδn
) dt ≤ c+ cb

(
α1

δn

)

≤ cb

(
c

δn

)
,

for δ small enough, since b is nondecreasing. Clearly, the latter
inequality implies (2.10) by taking s = α0/δ

n.

4. Proofs of Theorems 2.11, 2.14 and Corollary 2.17.

Proof of Theorem 2.11. To see that (2.12) implies (2.13), we first
note that hypothesis (2.4) of Theorem 2.3 is satisfied by the one-
dimensional Hardy-Littlewood maximal function as was pointed out
in Remark 2.6. So, by that theorem, we get (2.13) for every bounded
f . Since MSf ≤ Mnf , the result for every f in Lψ follows by the
monotone convergence theorem.

Now, assume that (2.13) holds. It is clear that MSf = Mnf for every
f of separate variables. On the other hand, an easy calculation shows
that the Hardy-Littlewood maximal function satisfies (2.8). Then from
Theorem 2.7 we get (2.12).

Proof of Theorem 2.14. Again by Remark 2.6, hypothesis (2.4) of
Theorem 2.3 is satisfied by the one-dimensional Hilbert transform. So,
from that theorem, (2.16) follows. The reciprocal is a consequence of
Theorem 2.7, since f̃ satisfies (2.8) as is shown in [6, see Lemma (3.8)].

Proof of Corollary 2.17. As it was pointed out in Section 2 for
the general operator Tn, being f̃ linear, f̃n is well defined for linear
combinations of functions that can be written as

∏n
i=1 fi(xi) with

fi = XIi , where Ii are intervals in τ . Then, from Theorem 2.14 we
get (2.16) for those functions. Since φ is of positive lower type, it is
immediate that the inequality

(4.1) ‖f̃n‖Lφ(τn) ≤ c‖f‖Lψ(τn),

holds for such class of functions. But, being ψ in the Δ2 class these
functions are dense in Lψ(τn) by just following the same argument used
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for Lebesgue spaces. So, the results stated in the corollary follow easily
from this fact and (4.1).
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