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CONTINUOUS HOMOMORPHISMS
BETWEEN TOPOLOGICAL ALGEBRAS

OF HOLOMORPHIC GERMS

LUCIANO O. CONDORI AND M. LILIAN LOURENÇO

ABSTRACT. We study τw-continuous homomorphisms on
algebras of holomorphic germs. In this setting we give condi-
tions for these homomorphisms to be composition operators.
We also present equivalent conditions for the above homomor-
phisms to be Montel or reflexive.

1. Introduction. Let E be a Banach space, U an open subset of E
and H(U) the space of all holomorphic functions on U . A holomorphic
germ on a compact subset K of E is an equivalence class determined
in the set of all holomorphic functions on open neighborhoods of K by
the relation, f ∼= g if f and g coincide on an open neighborhood of K.
We will denote by H(K) the algebra of all holomorphic germs on K.
The natural topology on spaces of holomorphic germs is the Nachbin
ported topology τw. It is defined on H(U) by the family of all semi-
norms ported by the compact subsets of U . A semi-norm p on H(U)
is ported by the compact subset L of U if for every open subset V ,
L ⊂ V ⊂ U , there is a c > 0 such that p(f) ≤ c‖f‖V = c supx∈V |f(x)|
for every f ∈ H(U).

Now, the topology τw on H(K) is the locally convex topology defined
by the inductive limit of the spaces (H(U), τw), where U varies over
all open neighborhoods of K. We remark that the space (H(K), τw)
can be represented as an inductive limit of Banach spaces, namely
the inductive limit of the spaces H∞(U), where H∞(U) denotes the
Banach space of all bounded holomorphic functions on U . We are in-
terested in the study of continuous homomorphisms between locally
m-convex algebras of holomorphic germs. The continuous homomor-
phisms between topological algebras of holomophic functions have been
extensively studied lately. For example see [4 6]. In [16] Nicodemi has

2000 AMS Mathematics Subject Classification. Primary 46G20, 32A38, 47B33.
Key words and phrases. Holomorphic germs, continuous homomorphisms.
Research of the first author supported by a doctoral fellowship from CNPq,

Brazil.
Received by the editors on October 3, 2003, and in revised form on Feb. 18, 2004.

Copyright c©2006 Rocky Mountain Mathematics Consortium

1457



1458 CONTINUOUS HOMOMORPHISMS

studied the continuous homomorphisms between algebras of holomor-
phic germs with the compact open topology. She proved that, under
some conditions, the continuous homomorphisms A : H(K) → H(L),
where L is a compact subset of a Banach space F , are exactly those in-
duced by a holomorphic mapping Φ : V → E such that Φ(L) ⊂ K and
V is an open set in F containing L, in the sense that A(f) = f ◦Φ, for
every f ∈ H(K). It is natural to study the continuous homomorphisms
between algebras of holomorphic germs endowed with the τw-topology.

We show that every τw-continuous homomorphism between locally
m-convex algebras of holomorphic germs factors through a continuous
homomorphism between Fréchet algebras of holomorphic functions of
bounded type. Using this factorization we establish when the con-
tinuous homomorphisms between locally m-convex algebras of holo-
morphic germs are composition operators. As a consequence we get
that if E is a Tsirelson space each continuous homomorphism between
locally m-convex algebras of holomorphic germs is a composition op-
erator. Furthermore, this factorization also allows us to characterize
when continuous homomorphisms between locally m-convex algebras
of holomorphic germs are Montel or reflexive.

We refer to the books of Dineen [2] or Mujica [13] for background
information from infinite dimensional complex analysis.

2. The space of holomorphic germs. Let (H, τ ) = lim−→
i∈I

(Hi, τi)
denote the locally convex inductive limit of locally convex spaces
(Hi, τi). The inductive limit (H, τ ) is called regular if, for each bounded
set B in (H, τ ), there exists i = i(B) ∈ I such that B ⊂ Hi and B is
τi-bounded. The inductive limit (H, τ ) is called strongly boundedly
retractive if (H, τ ) is regular and, for each i ∈ I, there exists j > i such
that (H, τ ) and (Hj , τj) induce the same topology on each bounded
subset B of (Hi, τi).

Let τw denote the compact-ported topology introduced by Nachbin
[15] on the space H(U) of all holomorphic functions on an open subset
U of a complex Banach space E. Let H(K) denote the space of all
germs of holomorphic functions on a compact subset K of E and let us
also denote by τw the locally convex inductive limit topology on H(K)
which is defined by (H(K), τw) = lim −→

U⊃K
(H(U), τw).
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Let B1/n(0)={x∈ E : ||x||<1/n}. If we fix a decreasing fundamental
sequence of open neighborhoods (Un)n∈N in E with Un =K+B1/n(0)⊂
E, we remark that the space (H(K), τw) can be represented as an in-
ductive limit of Banach spaces, namely, (H(K), τw)=lim −→

Un⊃K
H∞(Un)

where H∞(Un) denotes the Banach space of all bounded holomorphic
functions on Un, with the supremum norm. Mujica showed in [10] that
the inductive limit (H(K), τw) = lim −→

n∈N
H∞(Un) is strongly boundedly

retractive, since all the spaces H∞(Un), n ∈ N, are normed spaces.

Before stating our results, let us fix some additional notation and
terminology. For m ∈ N we let JK

m denote the inclusion mapping from
H∞(Um) into H(K) given by JK

m (f) = [f ].

If U is an open subset of E, then a set A ⊂ U is said to be U -bounded
if A is bounded and is bounded away from the boundary of U . As usual
the space of all holomorphic mappings from an open set U of E into
C that are bounded on U -bounded subsets of U, endowed with the
topology τb of uniform convergence on U -bounded sets is denoted by
Hb(U).

Since H∞(Un) ↪→ Hb(Un) ↪→ (H(K), τw) for each n ∈ N, we have
(H(K), τw) = lim −→

n∈N
Hb(Un) and we define the natural inclusion from

Hb(Un) into (H(K), τw) by IK
n (f) = [f ], where [f ] is the equivalence

class determined by f .

Now, we are going to give some results about inductive limits, which
will be useful in Section 4.

Proposition 2.1. Let (Hn, τn)n∈N denote a sequence of locally
convex spaces and (H, τ ) = lim −→

n∈N
(Hn, τi) denote a strongly boundedly

retractive inductive limit. Then for each m ∈ N there exists n > m
such that σ(H,H ′) and σ(Hn, H

′
n) induce the same topology on each

bounded subset of (Hm, τm).

Proof. Given B ⊂ (Hm, τm) a bounded subset, the closed absolutely
convex hull of B will be denoted by Γ(B). Since (H, τ ) is a strongly
boundedly retractive limit, then there exists n > m such that (H, τ ) and
(Hn, τn) induce the same topology on Γ(B). Now, by Grothendieck’s
lemma [8, Proposition 3.11.1] we have that for each f ∈ H ′

n and ε > 0
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there exists g ∈ H ′ with |f(x) − g(x)| < ε, for all x ∈ Γ(B). Hence
given f1, . . . , fp ∈ H ′

n, there exist g1, . . . , gp ∈ H ′ such that

{x ∈ Γ(B) : |fj(x)| < 2ε for j = 1, . . . , p}
⊃ {x ∈ Γ(B) : |gj(x)| < ε for j = 1, . . . , p}

and therefore σ(Hn, H
′
n)|B ≤ σ(H,H ′)|B.

Since the opposite inequality is always true, we conclude that
σ(Hn, H

′
n)|B = σ(H,H ′)|B.

Proposition 2.2. Let E be a Banach space, and let K ⊂ E be a
compact subset. Then the inductive limit (H(K), τw) = lim −→

n∈N
Hb(Un)

is strongly boundedly retractive.

Proof. (H(K), τw) is the strongly boundedly retractive inductive limit
of an increasing sequence of Banach spaces

(1) (H(K), τw) = lim
−→

n∈N

H∞(Un).

Therefore, given X ⊂ H(K) bounded set there exists m0 ∈ N such
that X is a bounded subset of H∞(Um0). Since the inclusion mapping

H∞(Um0)
im0
↪→ Hb(Um0) is continuous, we have that X is a bounded

subset of Hb(Um0) and consequently (H(K), τw) = lim −→
n∈N

Hb(Un)

is a regular inductive limit. Now we can prove that (H(K), τw) =
lim −→

n∈N
Hb(Un) is strongly boundedly retractive. Let m ∈ N and let

X ⊂ Hb(Um) be bounded. So IK
m (X ) is a bounded subset of H(K). By

(1), we can find n > m such that (H(K), τw) and H∞(Un) induce the
same topology on the bounded set X of H∞(Um).

Now, it follows at once from the commutative diagram:

Hb(Um) � �
in,m

Hb(Un) � �
IK

n H(K)

H∞(Um)

�

�
im

� �
jn,m

H∞(Un)

�

�
in

��
�
���J K

n
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that (H(K), τw) and (Hb(Un), τb) induce the same topology on the
bounded subset X of Hb(Um).

An immediate consequence of Proposition 2.1 and Proposition 2.2 is
the following:

Corollary 2.3. Let E be a Banach space and let K ⊂ E be a compact
subset. Let (H(K), τw) = lim −→

n∈N
Hb(Un) denote a strongly boundedly

retractive inductive limit. Then for each n ∈ N there exists m > n
such that σ(H(K),H(K)′) and σ(Hb(Um), Hb(Um)′) induce the same
topology on each bounded set X of (Hb(Un), τb).

3. Homomorphisms between algebras of holomorphic germs.
A topological algebra is locally m-convex if its topology is defined by
the family of the convex 0-neighborhoods W with W 2 ⊂W .

For any compact subset K of a Banach space E, Mujica in [12]
showed that the inductive limit (H(K), τw) = lim −→

n∈N
H∞(Un) is a

locally m-convex algebra. From now on (H(K), τw) stands for a locally
m-convex algebra and (Hb(Un), τb) stands for a Fréchet algebra. By
a homomorphism between topological algebras we mean an algebra
homomorphism, which is not identically zero.

Next we show that each continuous homomorphism between locally
m-convex algebras of holomorphic germs factors through some continu-
ous homomorphism between Fréchet algebras of holomorphic functions
of bounded type.

Theorem 3.1. Let E and F be Banach spaces. Let K ⊂ E and
L ⊂ F be compact sets, and let A : (H(K), τw) → (H(L), τw) be
a continuous homomorphism. Then for each open subset Un ⊃ K
there exists an open subset Vmn

⊃ L and a continuous homomorphism
Ãn : Hb(Un) → Hb(Vmn

) such that IL
mn

◦ Ãn = A ◦ IK
n .

Proof. Given Un ⊃ K an open subset of E, we consider the continuous
homomorphism A◦IK

n : Hb(Un) → H(L). By Grothendieck’s theorem,
see [7, p. 16], there exist an open subset Vmn

⊃ L and a continuous
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linear mapping A ◦ IK
n : Hb(Un) → Hb(Vmn

) such that the diagram

H(K) �
A H(L)

Hb(Un)

�

�
IK

n

�
A◦IK

n Hb(Vmn
)

�

�
IL

mn

is commutative. Since A, IK
n and IL

mn
are continuous homomorphisms,

we have that

A ◦ IK
n (f · g) = A ◦ (IK

n (f) · IK
n (g))

and therefore A ◦ IK
n (f · g) ∼ A ◦ IK

n (f) · A ◦ IK
n (g), for all f, g ∈

Hb(Un). So, there exists an open set Vmln
⊂ Vmn

such that A ◦ IK
n (f ·

g)|Vmln

= (A ◦ IK
n (f) · A ◦ IK

n (g))|Vmln

. Since each connected compo-
nent of Vmn

contained an open set of Vmln
, by the Identity Principle for

holomorphic functions we have A ◦ IK
n (f · g) = (A ◦ IK

n (f) ·A ◦ IK
n (g))

on Vmn
for all f, g ∈ Hb(Un).

Now, the mapping Ãn : Hb(Un) → Hb(Vmn
) defined by Ãn(f) =

A ◦ IK
n (f) for each f ∈ Hb(Un) is clearly a continuous homomorphism

such that A ◦ IK
n = IL

mn
◦ Ãn. Thus, for every open set Un ⊃ K,

there exist an open set Vmn
⊃ L and a continuous homomorphism

Ãn : Hb(Un) → Hb(Vmn
) such that the diagram

H(K) �
A H(L)

Hb(Un)

�

�
IK

n

�
Ãn Hb(Vmn

)

�

�
IL

mn

is commutative.

Before stating and proving Theorem 3.2 we need some preparation.
Let U and V denote open subsets of complex Banach spaces E and F ,
respectively. Given a holomorphic mapping of bounded type Φ : V → E
such that Φ(V ) ⊂ U where Φ takes a V -bounded set in a U -bounded
set, the mapping AΦ : Hb(U) → Hb(V ) defined by AΦ(f) = f ◦ Φ is
called a composition operator.
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Let K and L be compact subsets of E and F respectively. A
homomorphism A : H(K) → H(L) is a composition operator if there
exist an open subset V ⊃ L and a holomorphic mapping Φ : V → E
such that Φ(L) ⊂ K and A([f ]) = [f ◦Φ] for each holomorphic function
f defined on a neighborhood of K. We denote a composition operator
A by AΦ.

Now, we give some conditions for τw-continuous homomorphisms
between algebras of holomorphic germs to be composition operators.

Theorem 3.2. Let E and F be Banach spaces. Let K ⊂ E and
L ⊂ F be compact subsets, and let A : (H(K), τw) → (H(L), τw)
be a continuous homomorphism. If, for each open subset Un ⊃ K
there exist an open subset Vmn

⊃ L and a composition operator
Ãn : Hb(Un) → Hb(Vmn

) such that IL
mn

◦ Ãn = A ◦ IK
n , then A is

a composition operator.

Proof. We suppose that for each open subset Un ⊃ K there exist
an open subset Vmn

⊃ L and Ãn : Hb(Un) → Hb(Vmn
) a composition

operator such that IL
mn

◦ Ãn = A ◦ IK
n . We shall prove that A is a

composition operator.

Without loss of generality we may assume that Vm1 ⊃ Vm2 ⊃ · · · .
Since Ãn : Hb(Un) → Hb(Vmn

) is a composition operator, then there
exists a mapping Φn ∈ Hb(Vmn

, E) such that Ãn(f) = f ◦Φn, for every
f ∈ Hb(Un) and for each n ∈ N. So,

(2) A([f ]) = (A◦IK
n )(f) = (IL

mn
◦ Ãn)(f) = [f ◦Φn], ∀ f ∈ Hb(Un),

for each n ∈ N.

Now, we consider the open subset Vm1 as above and define a mapping
Φ : Vm1 → E by Φ(y) = Φ1(y), for all y ∈ Vm1 . We claim that
Φ(y) = Φn(y) for all y ∈ Vmn

and A = AΦ. Since (E′, ‖ ‖) ↪→ Hb(Un),
for all n ∈ N, we have that by equality (2)

(3)
{
A([x′]) = [x′ ◦ Φ1], for every x′ ∈ E′ and
A([x′]) = [x′ ◦ Φn], for every x′ ∈ E′, for every n ∈ N;

consequently, [x′ ◦ Φ1] = [x′ ◦ Φn], for every x′ ∈ E′ and for every
n ∈ N. Then there exists an open subset W such that L ⊂ W ⊂ Vmn



1464 CONTINUOUS HOMOMORPHISMS

and (x′ ◦ Φ1)|W = (x′ ◦ Φn)|W for all x′ ∈ E′. Now, for each y ∈ Vmn

there exists z ∈ L such that y ∈ B1/mn
(z). Since L ⊂ W we have

that W ∩ B1/mn
(z) �= ∅ and consequently (x′ ◦ Φ1)|W∩B1/mn

(z)
=

(x′ ◦ Φn)|W∩B1/mn
(z)

for all x′ ∈ E′ and (x′ ◦ Φ1)(y) = (x′ ◦ Φn)(y)
for all y ∈ Vmn

and for all x′ ∈ E′. By the Hahn-Banach theorem we
have that

(4) Φ(y) = Φ1(y) = Φn(y), for every y ∈ Vmn
.

Thus to show our claim it suffices to prove that Φ(L) ⊂ K. By (4) we
have that Φ(L) ⊂ Un for all n ∈ N. So, for each y ∈ L, there is a ξn ∈ K
such that ‖Φ(y)− ξn‖ < 1/n, for each n ∈ N. Then d(Φ(y),K) = 0 for
each y ∈ L. Now the proof of the theorem is complete.

Our next corollary shows that in the case of the Banach space E to be
the Tsirelson space, defined by Tsirelson in [17], every continuous ho-
momorphism between algebras of holomorphic germs is a composition
operator.

Corollary 3.3. Let E be a Tsirelson space and F a Banach
space. Let K ⊂ E be an absolutely convex and compact subset and
L ⊂ F a compact subset. Then every continuous homomorphism
A : (H(K), τw) → (H(L), τw) is a composition operator.

Proof. LetK ⊂ E be an absolutely convex and compact subset. Since
Un = K +B1/n(0) for each n ∈ N, Un is also absolutely convex. Now,
by Theorem 3.1 there exist an open subset Vmn

⊃ L and a continuous
homomorphism Ãn : Hb(Un) → Hb(Vmn

) such that IL
mn

◦ Ãn = A◦IK
n .

By [4, Proposition 3] we have that Ãn is a composition operator. Now
it suffices to apply Theorem 3.2.

Before giving our next corollary we need additional notation. Let E
be a complex Banach space. We denote Pf (nE) the space generated
by all polynomials of the form P (x) = ψ(x)m, with ψ ∈ E′.

Corollary 3.4. Let E be a reflexive Banach space such that Pf (nE)
is dense in P(nE) for each n ∈ N. Let K ⊂ E be an absolutely
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convex and compact subset of E. Let F be a Banach space and L ⊂ F
be a compact subset. Then every continuous homomorphism A :
(H(K), τw) → (H(L), τw) is a composition operator.

Proof. The result follows arguing as in Corollary 3.3 and using a
result of Mujica [14, Theorem 1.6].

4. Montel and reflexive homomorphisms. Our purpose in this
section is to study the Montel and reflexive homomorphisms between
the algebras of holomorphic germs and their relationship.

Let U be an open subset of a complex Banach space E. We say
that a mapping g : U → F is compact, respectively weakly compact, if
it takes U -bounded sets into relatively compact, respectively weakly
compact, sets. A linear operator between locally convex spaces is
Montel, respectively reflexive, if it takes bounded subsets into relatively
compact, respectively weakly compact, subset. All these definition can
be found in the paper [1].

Let us recall that a linear mappings T : X → Y , where X and Y
are locally convex spaces, is called weakly compact, respectively com-
pact, if it maps some 0-neighborhood into relatively weakly compact,
respectively relatively compact sets. If X and Y are normed space T
is weakly compact, respectively compact, if and only if T is reflexive,
respectively Montel.

Theorem 4.1. Let E and F be Banach spaces. Let K ⊂ E and
L ⊂ F be compact subsets, and let A : (H(K), τw) → (H(L), τw) be a
continuous homomorphism. Then A is a Montel homomorphism if and
only if for each open subset Un ⊃ K there exist an open subset Vmn

⊃ L
and a Montel continuous homomorphism Ψn : Hb(Un) → Hb(Vmn

) such
that IL

mn
◦ Ψn = A ◦ IK

n .

Proof. Suppose A is a Montel homomorphism. Given Un ⊂ E an
open subset, by Theorem 3.1 there exist an open subset Vmrn

⊃ L

and a continuous homomorphism Ãn : Hb(Un) → Hb(Vmrn
) such that

IL
mrn

◦ Ãn = A ◦ IK
n .
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By Proposition 2.2 we can find mn > mrn
such that the spaces

(H(L), τw) and Hb(Vmn
) induce the same topology on each bounded

subset B of Hb(Vmrn
).

Since Hb(Vmrn
)

iL
mrn
↪→ Hb(Vmn

) and IL
mn

◦ iLmrn
= IL

mrn
, we can

define a continuous homomorphism Ψn : Hb(Un) → Hb(Vmn
) by

Ψn(f) = iLmrn
◦ Ãn(f) for each f ∈ Hb(Un). So A ◦IK

n = IL
mn

◦Ψn and
this means the following diagram

H(K) �
A H(L)

Hb(Un)

�

�
IK

n

�
Ãn Hb(Vmrn

)

�

�
IL

mrn

� �
iL
mrn Hb(Vmn

)

��
�
�
���

IL
mn

commutes. We claim that the homomorphism Ψn is Montel. Indeed,
let X ⊂ Hb(Un) be a bounded subset. Then Ãn(X ) ⊂ Hb(Vmrn

) is
a bounded subset. Since A is a Montel homomorphism, Ψn(X ) =
iLmrn

(Ãn(X )) ⊂ Hb(Vmn
) and the topology induced by (H(L), τw) and

Hb(Vmn
) on Ψn(X ) is the same. Then Ψn(X ) is a relatively compact

subset of Hb(Vmn
) and therefore Ψn is Montel.

Conversely, suppose that for each open subset Un ⊃ K there exist an
open subset Vmn

⊃ L and a Montel homomorphism Ψn : Hb(Un) →
Hb(Vmn

) such that IL
mn

◦ Ψn = A ◦ IK
n . We will prove that A is a

Montel homomorphism.

Let X ⊂ H(K) be a bounded subset. By Proposition 2.2 there exists
an r ∈ N such that X is a bounded subset of Hb(Ur). Then using
the hypothesis, there exist an open subset Vmr

⊃ L and a Montel
homomorphism Ψr : Hb(Ur) → Hb(Vmr

) such that IL
mr

◦Ψr = A ◦ IK
r .

As Ψr(X ) is relatively compact subset and A(X ) = IL
mr

(Ψr(X )), we
have that A is a Montel operator and the proof is complete.

We now discuss under which conditions a homomorphism between
algebras of holomorphic germs is reflexive.

Theorem 4.2. Let E and F be Banach spaces. Let K ⊂ E and
L ⊂ F be compact subsets, and let A : (H(K), τw) → (H(L), τw) be
a continuous homomorphism. Then A is reflexive if and only if for
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each open subset Un ⊃ K there exist an open subset Vmn
⊃ L and a

reflexive continuous homomorphism Ψn : Hb(Un) → Hb(Vmn
) such that

IL
mn

◦ Ψn = A ◦ IK
n .

Proof. Suppose A is reflexive. Given Un ⊂ E an open sub-
set, by Theorem 3.1, there exist an open subset Vmrn

⊃ L and
a continuous homomorphism Ãn : Hb(Un) → Hb(Vmrn

) such that
IL

mrn
◦ Ãn = A ◦ IK

n . By Corollary 2.3 there exists mn > mrn
such

that σ(H(L),H(L)′)|B = σ(Hb(Vmn
), Hb(Vmn

)′)|B , for each bounded
subset B of Hb(Vmrn

). Now, a slight modification of arguments from
Theorem 4.1 gives the proof.

Before proving Proposition 4.3 we need some preparation. Let P(E)
denote the algebra of all continuous polynomials on E. We denote
by (E, σ(E,P(E))) the space E endowed with the coarsest topology
making all P ∈ P(E) continuous. The topology σ(E,P(E)) is a
regular Hausdorff topology such that (E, ‖ · ‖) ≥ (E, σ(E,P(E))) ≥
(E, σ(E,E′)). Thus it follows that σ(E,P(E)) is angelic, see [3, Corol-
lary 1], and consequently the concepts (relatively) countably compact,
(relatively) sequentially compact and (relatively) compact all agree
with respect to this toplogy. A Banach space E is called a Λ-space,
if all null sequences in σ(E,P(E)) are norm convergent, and hence,
convergent sequences in σ(E,P(E)) are also norm convergent. All su-
perreflexive spaces and �1 are Λ-spaces [9].

Proposition 4.3. Let E be a Λ-space with the approximation
property and F be a Banach space. Let K ⊂ E be an absolutely convex
compact set, L ⊂ F a compact set and A : (H(K), τw) → (H(L), τw)
a continuous homomorphism. If for each open subset Un ⊃ K there
exist an open subset Vmn

⊃ L and a reflexive operator Ãn : Hb(Un) →
Hb(Vmn

) such that IL
mn

◦ Ãn = A ◦ IK
n , then A is a Montel operator.

Proof. Since Un = K + B1/n(0) is an absolutely convex subset and
E has the approximation property, by [4, Proposition 9] we have that
Φn maps Vmn

-bounded into σ(E,P(E))-relatively compact subsets in
Un ⊂ E. Since the topology σ(E,P(E)) is angelic, see [3, Corollary 1],
we have that Φn maps Vmn

-bounded subset into relatively compact
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subset in Un ⊂ E. Consequently Φn is Montel and ÃnΦn
: Hb(Un) →

Hb(Vmn
) is a Montel homomorphism by [4, Proposition 13]. Now, by

Theorem 4.1 the proof is complete.

The next example gives a non Montel composition operator which is
a reflexive composition operator.

Example 4.1. Let E be a Tsirelson space, and let Φ ∈ H(E,E)
be defined by Φ(z) = z/2 for all z ∈ E. If we take U and V as open
sets such that Φ(V ) ⊂ U , then it is not difficult to see that Φ takes V -
bounded sets in U -bounded sets. If K ⊂ E is a balanced compact set,
then the composition operator AΦ : (H(K), τw) → (H(K), τw) given
by AΦ(f) = f ◦ Φ is reflexive and however AΦ is not Montel.

Indeed, for each open subset Un ⊃ K by Theorem 3.1 there exist an
open subset Umn

⊃ K with mn ≥ n and a continuous homomorphism
Ãn : Hb(Un) → Hb(Umn

) such that IK
mn

◦ Ãn = AΦ ◦ IK
n . For each

n ∈ N, let Φn = Φ|Umn
. Then it is possible to prove Ãn(f) = f ◦ Φn,

for each f ∈ Hb(Un). As E is a Tsirelson space, we have that Hb(Un)
is reflexive and consequently Ãn is reflexive. Therefore, according to
Theorem 4.2, AΦ is a reflexive operator.

Now suppose that AΦ is a Montel operator. By Theorem 4.1 we have
that Ãn is a Montel operator. From Proposition 13 of [4] we have that
Φn is a compact operator. As mn > n, then Φ(Umn

) is Un-bounded
and so (1/4)BE ⊂ mn · Φn(Umn

) is a compact subset. Thus E has
a finite dimension. This is a contradiction; consequently, AΦ is not a
Montel operator.
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5. M. González and J. Gutiérrez, Schauder type theorems for differentiable and
holomorphic mappings, Math. Nachr. 122 (1996), 325 343.

6. , Gantmacher type theorems for holomorphic mappings, Math. Nachr.
186 (1997), 131 145.

7. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem.
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Fréchet, Publicaciones del Depto. de Teoria de Funciones, Universidad de Santiago

de Compostela, N
ro

1, 1978.

11. , Spaces of germs of holomorphic functions, Adv. Math. Suppl. Stud.,
vol. 4, Academic Press, New York, 1979, pp. 1 41.

12. , Ideals of holomorphic functions on Fréchet spaces, in Advances in
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