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DIFFERENTIAL OPERATORS AND
WEIGHTED ISOBARIC POLYNOMIALS

TRUEMAN MACHENRY AND GEANINA TUDOSE

ABSTRACT. We characterize those sequences of weighted
isobaric polynomials which belong to the kernel of the linear

operator D11 −
∑k

j=1
ajtjD2j −mD2, m ≥ 1, k ≥ 2, and we

characterize those linear operators of this form which have a
nonzero kernel in terms of the coefficients aj .

1. Introduction. In [5] the following linear operator:

Tm = D11 −
k∑

j=1

tjD2j − mD2,

where m ∈ Z and Dij = ∂/∂ti∂tj , acting on a ring of polynomials
Z[t1, t2, . . . , tk], was introduced. In [6] the ring of isobaric polynomials
was discussed, and a certain proper subset, the weighted isobaric
polynomials (WIP’s) was defined. In this paper we shall consider the
effect of the operator Tm on sequences of WIP’s.

An isobaric polynomial of degree n, see [6, Definition 1], is a poly-
nomial of the form Pk,n =

∑
α Aαtα, where α = (α1, . . . , αk), tα =

tα1
1 · · · tαk

k and (1α1 , . . . , kαk) is a partition of n; thus,
∑k

j=1 jαj = n.
(The monomials of Pk,n can be thought of as indexed by Young dia-
grams.) The isobaric polynomials form a graded ring, with the grading
induced by deg ti = i. In fact, this ring is isomorphic to the ring of
symmetric polynomials with the isomorphism given by ti ↔ (−1)i−1ei,
where ei is the ith elementary symmetric polynomial. We will refer to
this isomorphism as the isobaric reflection. The weighted isobaric poly-
nomials Pk,n,ω are distinguished by the fact that their coefficients de-
pend on a fixed vector ω. It is the effect of Tm on sequences, {Pk,n,ω}n,
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of the weighted isobaric polynomials that we are interested in here.
These sequences of WIP’s form a Z-module in the natural way which
we call the WIP-module [6].

The purpose of our paper is to discuss the portion of the kernel of
Tm lying in the WIP-module. In other words, we are concerned with
those “weighted” sequences of polynomials such that every term of the
sequence lies in the kernel of the above operator.

The interest in this question came with the realization in [3] that
some well-known sequences of polynomials (which belong to the WIP-
module) arising in number theory satisfy this equation. They are
the generalized Fibonacci polynomials (GFP), {Fn}n, for m = 2,
and the sequence of generalized Lucas polynomials (GLP), {Gn}n,
for m = 1. In terms of symmetric polynomials (via the reflection
isomorphism defined above) they are, respectively, the isobaric reflects
of the complete symmetric polynomials (CSP) and the power symmetric
polynomials (PSP), see also [2 4]. And since these two families of
polynomials are particular cases of weighted isobaric polynomials it
is natural to ask whether any other family is annihilated by this
differential operator. In this paper we shall answer the following
questions.

(1) Are there any other WIP sequences which lie in the kernel of the
operator for these two values of m?

(2) Are there any other WIP sequences which lie in the kernel of the
operator for other integer values of m?

(3) Are there any reasonable generalizations of these operators with
nontrivial kernels in the WIP-module?

The answer to these questions is rather surprising: only families that
have weights close enough to the GFP and GLP satisfy Tm = 0 for
m = 1 or m = 2 and none for other m’s (or slightly more general
operators).

The paper is organized as follows. In the next section we make precise
the definition of the weighted isobaric polynomials and recall a few
results that were proved in [6]. In Section 3 we answer the first question,
i.e., by considering the operators T1 and T2 which admit nontrivial
WIP-kernels. Section 4 is concerned with the last two questions for
which, as we shall see, the answers are somewhat intertwined.
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The results contained in this paper are a far-reaching generalization
of a result for Fibonacci and Lucas Polynomials in [1] and are of special
interest as a result of the weighted isobaric structures involving Schur
polynomials introduced in [6].

2. Weighted isobaric polynomials. Most of the definitions
and results of this section are taken from [6]. We say that α =
(α1, α2, . . . , αk) with αi ∈ Z≥0 a partition of n if

k∑
i=1

i αi = n,

and we denote this by α �k n, i.e., α is a partition with at most k parts.
(This is an abbreviation of the usual notation, (1α1 , 2α2 , . . . , kαk), for
a partition of n).

Definition 1. A weight ω is a vector ω = (ω1, ω2, . . . , ωk) ∈ Zk.
In [6] we also worked with countably many variables t1, t2, . . . , and
infinite vectors as weights. In this paper, however, we shall work with
finitely many variables. For a fixed weight ω we introduce a weight
function (wt)ω on monomials tα = tα1

1 tα2
2 · · · tαk

k defined inductively by

(wt)ω(ti) := ωi, i = 1, . . . , k,

(wt)ω(tα1
1 tα2

2 · · · tαk

k ) :=
k∑

i=1
αi>0

(wt)ω(tα1
1 tα2

2 · · · tαi−1
i · · · tαk

k ).

A weighted isobaric polynomial of weight ω is an isobaric polynomial
defined by

Pk,n,ω :=
∑

α�kn

(wt)ω(tα)tα.

Note. We shall omit the subscript k in the remainder of the paper.

The definition of the weight of a monomial and the isobaric poly-
nomial can be easily understood by considering the lattice of mono-
mials, also called the differential lattice denoted by L(t). The cov-
ering relations are given by α � β if there exists an i such that
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βi = αi + 1 and βj = αj for j �= i. The rank of the lattice is given
by rank (tα) =

∑k
i=1 αi =: |α|. The name differential is appropriate

because, as is obvious, the lattice is formed by partial differentiation
(forgetting the differentiation constant).

Remark 1. This lattice is isomorphic to the lattice of natural numbers
where the partial order is given by divisibility. The isomorphism is
given by identifying tj with pj , the jth rational prime. The join and
the meet of two numbers are therefore the lcm and gcd, respectively.

We will denote by L((tα)) the portion of L(t) with tα as the top
element.

Example 1. The lattice L(t1t22t23). (We omit the variables and write
the corresponding exponent).

(1,1,1)

(1,2,2)

(1,1,2)

(0,1,2) (1,0,2) (0,2,1) (1,2,0)

(0.1.1)     (0,0,2)     (1,0,1) (1,1,0) (0,2,0)

(0,2,2) (1,2,1)

(0,0,1)   (1,0,0) (0,1,0)

1

FIGURE 1.

Let us compute the weight of t1t
2
2t

2
3, written (1,2,2) as mentioned in

Example 1, assuming k = 3 and ω = (ω1, ω2, ω3). After assigning the
weights ωj to the variable tj in the previous example, the monomial
(whose exponent vector is) (1, 0, 1) gets the weight ω1 + ω3, while
the monomial (0, 2, 0) gets the weight ω2, and, after a rather tedious
calculation using the assignment rule, the monomial (1, 2, 2) gets the
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weight 6(ω1 + 2ω2 + 2ω3). Fortunately, we can avoid this calculation
using the following theorem [6, Theorem 1].

Theorem 2.1. Given a weight vector ω = (ω1, ω2, . . . , ωk), the
weight assigned to the monomial whose exponent vector is (α1, . . . , αk)
is

(2.1) (wt)ω(tα) =
(

|α|
α1 · · ·αk

)∑k
j=1 αjωj∑k

j=1 αj

.

Each weight vector determines a unique sequence of WIP’s. Two such
sequences are the generalized Fibonacci polynomials {Fn}n and the
generalized Lucas polynomials {Gn}n; they are the weighted isobaric
sequences for the weight vector ωF = (1, 1, . . . , 1) (the unit vector)
for the F -sequence, and ωG = (1, 2, . . . , k) (the natural vector) for the
G-sequence. The coefficients for the F -sequence are given by

(wt)ωF
(tα) =

(
|α|

α1 · · ·αk

)

and for the G-sequence

(wt)ωG
(tα) =

(|α| − 1)!∏k
j=1 αj !

n.

In [6, Theorem 2.3], it is shown that the sequences of weighted
isobaric polynomials form a free Z-module where addition is defined
as addition of weight vectors, that is, the sum of two sequences of
weights ω and ω′ is the sequence of weight ω′′ = ω + ω′. It is also
shown there that isobaric reflects of hook Schur polynomials, i.e., the
Schur polynomials determined by hook Young diagrams, are in the
WIP-module. (The weight of the hook reflect determined by the hook
partition (n − r, 1r) is (−1)r(0, . . . , 0, 1, 1, . . . ) with r 0’s.) The hook
reflects in fact form a basis for the WIP-module, [6, Theorem 3.5].
As an application of the WIP-module structure we have the following
isobaric version of a well-known theorem of symmetric polynomials.
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Theorem 2.2. Gn =
∑

r(−1)rHr, where Hr is the reflect of the
hook Schur polynomial S(n−r,1r).

The symmetric polynomial version of this is the statement that a
complete symmetric polynomial is an alternating sum of hook Schur
polynomials.

3. The kernel of Tm. We now turn our attention to the linear
operator Tm and find that for certain choices of the parameter m, the
F -sequence and the G-sequence belong to the kernel of Tm.

Theorem 3.1 [5,Theorem 4]. Tm(Fn) = (D11 −
∑k

j=1 tjD2j−mD2)
(Fn) = 0 for m = 2, and Tm(Gn) = (D11 −

∑
j tjD2j−mD2)(Gn) = 0

for m = 1.

This theorem will follow from Theorem 3.2 below. Theorem 3.1 tells
us that the F - and G-sequences are solutions to the operator equation
when the parameter is m = 1 in the case of the G-polynomials and
m = 2 in the case of the F -polynomials, but it turns out that these
solutions are determined by other more basic solutions which, while
dependent on the weights of the F - and G-sequences, are not themselves
WIP’s. We might refer to these isobaric polynomials as satellites. They
will contain certain monomials that we call strings.

Definition 2. We first define the concept of string. For a given n
we first choose exponent vectors of the following two kinds:

(1) Vectors of type (0, α2, α3, . . . , αk), where α3, . . . , αk is a fixed
(k − 2)-tuple and α2 is the largest second element with respect to the
condition that α �k n, i.e.,

∑
i iαi = n.

(2) Vectors of type (1, α2, α3, . . . , αk) where α3, . . . , αk is a fixed
(k − 2)-tuple and α2 is the largest second element with respect to the
same condition as in (1).
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Then we select sequences of these vectors of the following form

(0,α2, α3, . . . , αk) (1,α2, α3, . . . , αk)
(2,α2 − 1, α3, . . . , αk) (3,α2 − 1, α3, . . . , αk)

. . . . . .

(2j, α2 − j, α3, . . . , αk) (2j + 1, α2 − j, α3, . . . , αk)
. . . . . .

(2α2, 0, α3, . . . , αk) (2α2 + 1, 0, α3, . . . , αk)

j = 0, 1, . . . , α2.

Such a sequence is called a string (of n). The first element in the
sequence is the string generator. If the string generator starts with
0, we call it an even string, and if it starts with 1, we call it an odd
string. The left-hand column above is an even string, while the right-
hand column is an odd string. We say that two elements in a string are
adjacent if they are adjacent in the ordering of the string.

A string is generated by starting with the string generator and
increasing the first entry by 2 at each stage and decreasing the second
entry by 1 until the second entry becomes 0. For example, if (1, 3, 1) is
a string generator, then the ordered set of the vectors

{(1, 3, 1), (3, 2, 1), (5, 1, 1), (7, 0, 1)}

is an odd string. It is not difficult to see that for a given n all of the
exponent vectors that arise from partitions of n occur in some even
or odd string. Thus, every isobaric polynomial is just the sum of its
strings with “remembered” coefficients. In particular, for a sequence
of weighted isobaric polynomials, each polynomial is just the weighted
sum of its strings. Theorem 3.1 will follow from this fact. We shall
say that a string belongs to a weighted isobaric polynomial if it is a
weighted string in that polynomial.

Example 2. For example, the (three) strings that belong to F4,
where F4 = t41 +3t21t2 + t22 +2t1t3 + t4, are (0,2,0,0), (2,1,0,0), (4,0,0,0);
and (1,0,1,0); and (0,0,0,1).
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Definition 3. Assume S is a given string, i.e., a sequence of vectors
as above. Given a weight vector ω we consider the following isobaric
polynomial PS,ω :=

∑
α∈S(wt)ω(tα)tα. We call such a polynomial a

satellite.

From these definitions and observations we have that a weighted
isobaric polynomials is the sum of its satellites:

Pn,ω =
∑
S

PS,ω.

Example 3. In the previous example the satellites of F4 are
t41 + 3t1t2; 2t1t3; and t4.

We will denote by PS,F a satellite belonging to a polynomial in the
sequence F and by PS,G a satellite belonging to a polynomial in the
sequence G. The remark made after Theorem 3.1 says

Theorem 3.2.

1. If PS,F is a satellite belonging to F , then T2(PS,F ) = 0.

2. If PS,G is a satellite belonging to G, then T1(PS,G) = 0.

This theorem will follow from

Lemma 3.3.

a) (2j + 2, α2 − j − 1, α3, . . . , αk) and (2j, α2 − j, α3, . . . , αk) are
adjacent elements in the even string generated by (0, α2, α3, . . . , αk).
The coefficient of D11(2j+2, α2−j−1, α3, . . . , αk) equals the coefficient
of −(Tm − D11)(2j, α2 − j, α3, . . . , αk) whenever the weight vector is
(1, 1, . . . , 1) and m = 2, or the weight vector is (1, 2, . . . , k) and m = 1.
D11 applied to the string generator is 0 and (Tm − D11) applied to the
last element in the string is also 0.

b) (2j + 3, α2 − j − 1, α3, . . . , αk) and (2j + 1, α2 − j, α3, . . . , αk)
are adjacent elements in the odd string generated by (1, α2, α3, . . . , αk).
The coefficient of D11(2j+3, α2−j−1, α3, . . . , αk) equals the coefficient
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of −(Tm−D11)(2j+1, α2−j, α3, . . . , αk) whenever the weight vector is
(1, 1, . . . , 1) and m = 2, or the weight vector is (1, 2, . . . , k) and m = 1.
D11 applied to the string generator is 0 and (Tm − D11) applied to the
last element in the string is also 0.

Proof of Lemma.

a) That the elements mentioned in the lemma belong to the string and
are adjacent is obvious. The fact that the first and last elements of the
string are mapped to 0 by the operators D11 and (Tm−D11) as claimed
is also obvious. We shall prove then that the coefficients of the elements
D11(2j+2, α2−j−1, α3, . . . , αk) and (Tm−D11)(2j, α2−j, α3, . . . , αk)
are negatives of one another.

By Theorem 2.1 we have that

(wt)ω(ts2j+2) =
(
∑k

i=2 αi + j)!

(2j + 2)!(α2 − j − 1)!
∏k

i=3 αi!

×
[
(2j + 2)ω1 + (α2 − j − 1)ω2 +

k∑
i=3

αiωi

]
(3.1)

(wt)ω(ts2j ) =
(
∑k

i=2 αi + j − 1)!

(2j)!(α2 − j)!
∏k

i=3 αi!

×
[
(2j)ω1 + (α2 − j)ω2 +

k∑
i=3

αiωi

]
,(3.2)

where s2j+2 = (2j+2, α2−j−1, . . . , αk) and s2j = (2j, α2−j, . . . , αk).
The coefficient due to D11 applied to ts2j+2 is

(3.3) (2j + 2)(2j + 1),

and the coefficient due to Tm − D11 applied to ts2j is

(3.4) (α2 − j)
( k∑

i=2

αi + j + m − 1
)

.

Multiplying equation (3.1) by (3.3) and equation (3.2) by (3.4) and
using the values given by the hypothesis of the lemma for m and for
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the weight vector and comparing gives the result. It is useful to record
the last steps in the computation, beginning just before the hypotheses
on m and the weight vectors are applied. We have this expression

(3.5)
( k∑

i=2

αi + j

)(
(2j + 2)ω1 + (α2 − j − 1)ω2 +

k∑
i=3

αiωi

)

−
( k∑

i=1

αi + j + m − 1
)(

(2j)ω1 + (α2 − j)ω2 +
k∑

i=3

αiωi

)
.

Letting m = 1 gives 2ω1 −ω2 = 0, after applying the hypothesis on the
weights, which gives the result required no matter what the weights ωj

are for j > 2. Thus we have proved more in this case, that is, we have
infinitely many WIP sequences as solutions. Letting m = 2 gives the
expression

(3.6)
( k∑

i=1

αi + j

)
(2ω1 − ω2) −

(
(2j)ω1 + (α2 − j)ω2 +

k∑
i=3

αiωi

)
,

but now we need our weight hypothesis on all of the weights to achieve
the cancelation, thus this expression is 0 if we assume that ωj = ω1,
for all j.

b) The proof of part b) is similar to that of part a) and will be
omitted.

But then Theorem 3.2 now follows from Lemma 3.3. Theorem 3.1
follows from Theorem 3.2 by linearity.

It is an interesting consequence of the proof that the lattices of
the string elements intersect for the first time exactly at the nodes
determined by D11 operating on the string. We give an example.

Example 4. Consider the string generated by (0, 2, 1), n = 7, k = 3.
The lattices are given by
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(2,1,1)

(2,0,1) (2,1,0)

(1,0,0)                  (0,0,1)  (0,1,0)

    1

      (3,0,0)                

(2,0,0)                (1,0,1)                  (1,1,0)     (0,1,1)       (0,2,0)

(0,2,1)        (1,1,1)

Rank 5                                 (4,0,1)  

Rank 4                (4,0,0)                              (3,0,1)           

Rank 3

Rank  2

Rank  1

(string)(string)

  

(2,1,1)

(2,0,1) (2,1,0)

(1,0,0)                  (0,0,1)  (0,1,0)

    1

      (3,0,0)                

(2,0,0)                (1,0,1)                  (1,1,0)     (0,1,1)       (0,2,0)

(0,2,1)        (1,1,1)

Rank 5                                 (4,0,1)  

Rank 4                (4,0,0)                              (3,0,1)           

Rank 3

Rank  2

Rank  1

FIGURE 2.

In this case the intersection nodes are (2, 0, 1) and (0, 1, 1). The string
consists of the three nodes (4, 0, 1), (2, 1, 1) and the string generator
(0, 2, 1). Note that this is consistent with the remark made previously
that the intersection of sublattices is determined by the gcd associated
with relevant nodes of the divisor lattice of natural numbers. It is also
the case that the intersection nodes again form a string, this time for
polynomials of degree n − 2.

4. Other solutions. We stress here that what we mean by a
solution to our problem is the entire sequence of WIP’s determined by a
particular weight vector ω; calling such a sequence Pω, Pω = {Pn,ω}n,
we have as solutions the polynomials generated by the satellites of
WIP-solutions. We claim that the WIP sequences of solutions of the
PDE T=0, that is, for m = 1, are exactly those solutions generated by
linearity from the satellites in which 2ω1 = ω2 with the ωj arbitrary for
j > 2, but fixed throughout the string: G-polynomials, for example.

When m = 2, the solutions of T2 = 0 consist just of the scalar
multiples of the F -polynomials. The kernel of the operator operating
on the WIP-module is 0 when m �= 1, 2.

We prove these assertions now.

Proposition 4.1. Let ω be a weight vector and suppose {Pn,ω} lies
in the kernel of Tm, where Pn,ω is a WIP-sequence, then either
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(1) m = 1 and 2ω1 = ω2 or

(2) m = 2 and ω1 = ω2.

Proof. It is only necessary to look at the second and third terms of
the sequence, namely, at

P2,ω = ω1t
2
1 + ω2t2,

P3,ω = ω1t
3
1 + (ω1 + ω2)t1t2 + ω3t3.

Requiring that P2,ω satisfies the operator equation implies that mω2 =
2ω1; requiring that P3,ω satisfies the operator equation yields m(ω1 +
ω2) = (5ω1 − ω2).

Setting the two values equal and solving the resultant quadratic in
Z gives the two possibilities 2ω1 = ω2, ω1 = ω2 or ω = 0. Solving for
m in each case gives m = 1 and m = 2, or the trivial case for any m,
respectively. And we know that the first two cases are realized with the
G-polynomial sequence and the F -polynomial sequence respectively.

We have the following important result which says that looking at
WIP solutions is in fact equivalent to looking at their satellites.

Theorem 4.2. Pn,ω is a solution of Tm = 0 if and only if the
satellites belonging to Pn,ω are solutions.

Before we proceed we introduce some notation and prove a lemma.

Notation. If α = (α1, α2, . . . , αk) is a vector we denote by Tm(α) the
set of exponents of t appearing in Tm(tα).

More precisely, Tm(α)={(α1−2, α2, . . . , αk), (α1, α2−1, α3, . . . , αk)},
if the vectors listed are nonnegative. If S is a string we denote by

Tm(S) := ∪s∈S Tm(s).

Lemma 4.3.

1. Tm(S) is a string of degree n − 2.

2. If S and T are two different strings then Tm(S) ∩ Tm(T ) = ∅.
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Proof.

1. Assume that (S) = {(2j, α2 − j, α3, . . . , αk)}j=1,... ,α2 is an even
string. An easy computation yields that Tm((S)) = {(2j, α2 − j −
1, α3, . . . , αk)}j=1,... ,α2−1. (Here we assume that α2 �= 0).

2. Clearly the new string of n − 2 preserves the initial parity. So we
can assume that S and T have the same parity (say even) generated
by (0, α2, α3, . . . , αk) and (0, α′

2, α
′
3, . . . , α′

k). If Tm(S) ∩ Tm(T ) is
nonempty, then there exists i, j such that (2i, α2 − i, α3, . . . , αk) =
(2j, α′

2 − j, α′
3, . . . , α′

k). In particular α3 = α′
3, . . . αk = α′

k and since
the elements are partitions of n we have α2 = α′

2, and thus the two
strings are the same.

Proof of Theorem 4.2. Clearly since Pn,ω is the sum of its satellites
we need only prove necessity. Since the monomials appearing in each
Tm((S)) for every satellite are disjoint (previous lemma), we must have
that cancelation of the operator holds at the level of each satellite.

Moreover, we note that the ranks of elements in a string S form
a strictly monotonic increasing sequence and that the monomials
Tm(PS,ω) form also a string. Therefore, if Tm(PS,ω) = 0 then cance-
lation must occur for the coefficient of every monomial, which means
that the conditions in Lemma 3.3 are satisfied. We call these conditions
domino conditions. We therefore have

Lemma 4.4. A satellite is a solution of Tm = 0 if and only if the
“domino” conditions of Lemma 3.3 hold.

We can now use the previous results (Proposition 4.1, Theorem 3.2
and Lemma 4.4) to determine completely the general WIP solutions
for our operator in case m = 1, 2. We have

Theorem 4.5.

1. The WIP sequence {Pn,ω}n is a solution for T1 = 0 if and only
if 2ω1 = ω2.

2. The WIP sequence {Pn,ω}n is a solution for T2 = 0 if and only
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if ωi = a, for all i = 1, . . . , k. That is, all such WIP-solutions are of
the form aFn, n ∈ N, and all solutions are exactly those generated in
the WIP-module by F -satellites.

Proof. In both cases we look at the necessary condition only, as
sufficiency was proved in Theorem 3.1. In both cases looking at
the WIP solution is equivalent to looking at the satellite solution
(Theorem 4.2) and requiring that domino cancelations hold.

1. The proof consists of looking at the proof of Lemma 3.3 more
carefully and noting that in light of Proposition 4.1 (1), the cancelation
occurs independently of the choice of ωj for j > 2.

2. In this case the proof in Lemma 3.3 arrives at the equation∑
j aαj =

∑
j αjωj with ω1 = ω2 = a, which must hold for all exponent

vectors α and for a fixed weight vector ω; thus, ωj = a for all j.

So now we come to the three questions posed in the Introduction. It
turns out that we shall be able to answer these questions completely
once we have answered the third one. So our aim is to prove

Theorem 4.6. The partial differential equation D11−
∑

j ajtjDi,j −
mD2 = 0, where aj ∈ Z, has WIP-sequence solutions only when aj = 1
and m = 1 or m = 2, where the aj and m are assumed to be arbitrary
real numbers, not all zero. (Though, they could be taken from any field
of characteristic 0 as far as the proof is concerned).

The statement of this theorem makes clear what we have chosen to
mean by a generalized operator. When one tries to find the other
second order, linear partial differential equations that have sufficient
resemblance to the one at hand, the lack of left-right symmetry among
the partitions of n as n increases becomes more apparent. This is due
to the fact that 1’s will appear in the decompositions of n many times,
but n itself can appear only once; small numbers have the advantage
over big ones. This is reflected in the futility of trying to find new
PDE’s by varying the suffixes of the operators, Di,j . However, a
tack that appears promising is to provide Tm with arbitrary (real)
coefficients. Thus, we want to ask what is the kernel of any operator of
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the sort D11 −
∑

j ajtjD2,j − mD2, aj arbitrary (real) scalars? (Here
we assume that the coefficient of D11 is not 0, so we can, without loss
of generality, assume that it is 1.) By the way, the resemblance of
the operator equation Tm = 0 to the “Newton identity” satisfied by
the WIP-polynomials, see [5, Theorem 4.1], is striking, and probably
significant, though the anomalous role of the D2-term is puzzling.

Before we prove the theorem we note that the proof of Proposition 4.1
contains the following fact which, together with its proof, also holds in
the generalized operator case.

Lemma 4.7. If P2,ω satisfies the generalized operator equation, then
mω2 = 2ω1.

Proof of Theorem 4.6. We have seen that Theorem 4.2 and Lemma 4.4
imply that Pn,ω satisfies the operator equation if and only if the
domino conditions of Lemma 3.3 hold. Let α = (α1, α2, α3, . . . , αk)
be an arbitrary element in a string S. If α is the only element of the
string, then clearly the corresponding satellite satisfies the operator
equation. So suppose that α is not an element of least rank, that is,
it is not the generating element of the string. In this case, there is
an element of rank one less than the rank of α. Let us suppose that
D11((wt)ω(tα)tα) = (Tm − D11)((wt)ω(tβ)tβ), that is, suppose that
the “domino” proof applies. (Note that if α is an element of greatest
rank, then D11(tα) = 0.) The picture looks like this:

(α1, α2, α3, . . . , αk) = α

|

(α1 − 1, α2, α3, . . . , αk) (α1 − 2, α2 + 1, α3, . . . , αk) = β

| /

(α1 − 2, α2, α3, . . . , αk)

Recalling the proof of Theorem 3.2 at this point, we needed to
equate the product of the coefficient (wt)ω(tα) of tα and the coefficient
of D11(tα) with the product of the coefficient (wt)ω(tβ) of tβ and
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(Tm − D11)(tβ). The new ingredient here is the coefficient of (Tm −
D11)(tβ) which is (α2 + 1)(

∑
j ajαj + m − 2a1)tβ

′
, where β′ = (α1 −

2, α2, α3, . . . , αk). After making the calculation indicated above and
allowing the dust to settle, this gives
(4.1)( k∑

j=1

αj−1
)( k∑

j=1

αjωj

)
=

( k∑
j=1

αjωj+ω2−2ω1

)( k∑
j=1

ajαj+m−2a1

)

as a necessary condition for the generalized operator to have a solution.
We shall assume throughout that Pω is not trivial, that is, that ω �= 0.
Equation (4.1) can be rewritten as

(4.2)

( k∑
j=1

αj − 1
)( k∑

j=1

αjωj

)
−

( k∑
j=1

αjωj

)( k∑
j=1

ajαj + m − 2a1

)

− (ω2 − 2ω1)
( k∑

j=1

ajαj

)
= (ω2 − 2ω1)(m − 2a1).

The left-hand side of (4.2) depends on α, which is a variable, while the
right-hand side depends only on the choice of ω and the constants a1

and m. Hence, the left-hand side and the right-hand side of (4.2) are
independently 0. And hence, either ω2 − 2ω1 = 0 or m − 2a1 = 0.

In the first case, we have then that ω2 = 2ω1 and, by Lemma 4.4,
m = 1. The left-hand side of (4.2) becomes

(4.3)
( k∑

j=1

αjωj

)( k∑
j=1

αj −
k∑

j=1

ajαj + 2 − 2a1

)
= 0.

(
∑k

j=1 αjωj) = 0 implies that ω = 0, that is, the solution is trivial.
Thus, (

∑k
j=1 αj −

∑k
j=1 ajαj + 2 − 2a1) = 0, and so we have as above

that
∑k

j=1 αj −
∑k

j=1 ajαj = 0 and 2 − 2a1 = 0. And so we have that

(4.4) a1 = 1 and
k∑

j=1

αj =
k∑

j=1

ajαj .
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From these equations we have that aj = 1 for j = 1, . . . , k. This is
just the case of the original operator for which the G-polynomials were
solutions.

In the second case, from m − 2a1 = 0, we have m = 2a1, and from
(4.1) we have

(4.5)
k∑

j=1

αjωj

( k∑
j=1

αj −
k∑

j=1

αjaj − 1
)

= (ω2 − 2ω1)
( k∑

j=1

αjaj

)
.

We first suppose that aj �= 0 for all 1 ≤ j ≤ k and for all k. Consider
the monomial ωntn. It follows from the definition of a string that ωntn
is a string, or, in the case that n = 2, is the generator of a two element
string, so we apply Theorem 4.2. Here αn = 1 and αj = 0 otherwise.
From (4.5) we arrive at

(4.6) ωnan = (2ω1 − ω2)(an).

In particular, when n = 2, we have that ω2 = ω1, and thus ωn = ω1 for
all n. From (4.1) it then follows that

ω1

( k∑
j=1

αj − 1
)( k∑

j=1

αj

)
=

( k∑
j=1

αj − 1
)( k∑

j=1

ajαj

)
ω1.

If ω �= 0, that is, if the solution is not the trivial solution, we have
that

∑k
j=1 αj =

∑k
j=1 ajαj from which it follows that aj = 1 for

j = 1, . . . , k. Moreover, m = 2; and this is just the case of solutions
generated by the strings of F -polynomials and the original operator.

Finally, we show the assumption that no aj = 0 is justified if we are
to have a nontrivial kernel for the generalized operator. First note that
for our case 2 assumption, a1 = 0 implies that m = 0, and so (4.1)
becomes

k∑
j=1

(αj − 1)
( k∑

j=1

αjωj

)
=

( k∑
j=1

αjωj + ω2 − 2ω1

)( k∑
j=1

αjaj

)
.

Thus, if both a1 = 0 and a2 = 0, then
∑k

j=1(αj − 1)(
∑k

j=1 αjωj) = 0
for suitable choices of values for the αj (say, α1 = 2, α2 = 1, αj = 0
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otherwise) and hence ωj = 0 for j = 1, 2, and for any k > 1. Thus, we
have arrived at the equation

k∑
j=1

(αj − 1)
( k∑

j=1

αjωj

)
=

( k∑
j=1

αjωj

)( k∑
j=1

αjaj

)
.

But then, either ωj = 0 for all j (the trivial solution), or
∑k

1 αj −1 =∑k
1 αjaj , which implies that aj = 0 for all j. And there are no solutions

of the type we have required for such a partial differential equation.
Thus, either a1 �= 0 or a2 �= 0, but then ω2 = ω1. If a1 = 0, we can
again choose αj ’s to show that ω1 = 0. Thus, ωj = 0 or aj = 0, and
again we arrive at the conclusion that either all of the aj ’s = 0, or the
solution is the trivial solution. Thus, both a1 and a2 are different from
zero. So suppose that k is the earliest subscript for which ak = 0; then
the last result tells us that for sequences of isobaric degree k, the only
solutions for the partial differential equation Tm,k, are those which are
already solutions of Tm,k−1. So we are back to the case m = 2, aj = 1,
1 ≤ j ≤ k.

Remark 2. It is rather interesting that if Pω is a solution of the
operator equation and if ω2 = 0, then either ωj = 0 for all j, or
m = 1. This follows easily by applying Theorem 4.2, Lemma 4.4 and
the assumptions to the strings generated by first (0, 1, . . . , 1, 0, 0) and
then the string generated by (1, 1, . . . , 1, 0, 0, 0), with the last 1 being
the exponent of tn in each case.

We have then that the answer to question (3) is that the only WIP
solutions for the generalized operator equation occur when aj = 1 for all
j ∈ N, and m = 1 or 2. Thus, the generalized operator has a zero kernel
except in the case we started with, thus generalizing the operator does
not produce new solutions. Clearly, we have also answered question
(2); allowing m to vary beyond 1 and 2, in fact, over any field of
characteristic 0, produces no new solutions. The answer to question
(1), we learn here, is yes and no. If m = 2, then the answer is unique
up to a scalar multiple, that is, all WIP-solutions are scalar multiples
of the F -sequence; but, if m = 1, then not only are scalar multiples of
the G-sequence solutions, but also so is the sequence Pω anytime that
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2ω1 = ω2, the remaining weights being arbitrary. However, we also
have the satellite solutions that get their life from the WIP’s, but are
not themselves WIP’s.

It is tempting to think that a weight vector for an initial string of
Pn,ω , i.e., the “degree” string (the string whose terminal element is
(n, 0, α3, . . . , αk)), might be weighted as (ω1, ω2, 0, . . . , 0, . . . ), while
the ω = (ωj), where ωj is different from 0. The following example
shows what goes wrong here.

Example 5. Consider Pn,ω = ω1t
4
1 + (2ω1 + ω2)t21t2 + ω2t

2
2 + (ω1 +

ω3)t1t3 + ω4t4. The strings are:

Initial String⎧⎨
⎩

(0, 2, 0, 0)
(2, 1, 0, 0)
(4, 0, 0, 0)

{
(1, 0, 1, 0)

{
(0, 0, 0, 1)

Try weight vector (ω1, ω2, 0, 0). But now by Theorem 3.1, if the
satellite of the initial string is a WIP, the monomial t1t3, has coefficient
ω1 + ω3, while t1t3 has weight ω1 in the new weighting; recall, we have
to assign a weight to each of the monomials induced by a partition of n,
thus t1t3 would appear in the initial string if ω1 �= 0. This contradiction
would appear more generally. We omit the proof.

It is also interesting to note the rather special companionable role that
the F -sequences and G-sequences play among the isobaric polynomials,
especially among the WIP’s. In addition to the properties shown in
this paper, we have, for example, that the G’s are related to the F ’s
by partial differentiation as follows: ∂/∂tj(Gn) = nFn−j . In general,
∂/∂tj(Pω) is not a WIP, and, in fact, there is good reason to believe
that this is the only case. We pursue this observation in a later paper.
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