ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 6, 2006

LOCALLY EUCLIDEAN METRICS ON S^2 IN WHICH SOME OPEN BALLS ARE NOT CONNECTED

YOUNG DEUK KIM

ABSTRACT. Let $S_r^2 \subset \mathbf{R}^3$ be the 2-sphere with center O and radius r. For all $0 < s \leq 1$, we define a locally Euclidean metric d^s on S_r^2 which is equivalent to the Euclidean metric. These metrics are invariant under Euclidean isometries, and if 0 < s < 1 then some open balls in (S_r^2, d^s) are not connected.

1. Introduction. Let $S_r^2 \subset \mathbf{R}^3$ be the 2-sphere with center O = (0,0,0) and radius r > 0. We write d_E to denote the Euclidean metric on S_r^2 . A metric d on the set S_r^2 is called *locally Euclidean* if, for all $P \in S_r^2$, there exists t > 0 such that

$$d(Q, R) = d_E(Q, R)$$
 for all $Q, R \in B_t(P) = \{S \in S_r^2 \mid d(P, S) < t\}.$

As usual, two metrics d_1 and d_2 on the set S_r^2 are called *equivalent* if the identity mapping of (S_r^2, d_1) onto (S_r^2, d_2) is a homeomorphism. Notice that the following trivial metric d_T is locally Euclidean but not equivalent to d_E .

$$d_T(P,Q) = \begin{cases} 0 & \text{if } P = Q\\ 1 & \text{if } P \neq Q. \end{cases}$$

In this paper we define a locally Euclidean metric d^s , which is equivalent to d_E and invariant under Euclidean isometries. Notice that the Euclidean metric d_E is trivially locally Euclidean. In fact, the metric d^1 will turn out to be the Euclidean metric d_E . Every open ball in (S_r^2, d_E) is connected. However, if 0 < s < 1, then some open balls in (S_r^2, d^s) are not connected.

Suppose that $0 < s \leq 1$. Let -P denote the antipodal point of $P \in S_r^2$. Let

$$\alpha = \sin^{-1}\left(\frac{\sqrt{2-s^2}-s}{2}\right), \text{ where } 0 \le \alpha < \pi/4.$$

Received by the editors on September 17, 2003.

Copyright ©2006 Rocky Mountain Mathematics Consortium

FIGURE 1. S_r^2 .

Notice that $\sin \alpha$ is a decreasing function of s and hence so is α . We are going to use this function α to define the new metric d^s on S_r^2 . For all $P, Q \in S_r^2$, let (see Figure 1)

$$d^{s}(P,Q) = \begin{cases} d_{E}(P,Q) & \text{if } \angle POQ \le \pi - 2\alpha \\ 2rs + d_{E}(-P,Q) & \text{if } \angle POQ > \pi - 2\alpha. \end{cases}$$

where α is defined as above. Notice that if s = 1 then $d^1 = d_E$ and $d^1(P, -P) = 2r$ for all $P \in S_r^2$.

In the next section we will prove

Theorem 1.1. For all $0 < s \le 1$, d^s is a metric on S_r^2 .

Notice that if $d^s(P,Q) < 2rs$ then $d^s(P,Q) = d_E(P,Q)$ for all $P,Q \in S_r^2$. We write $B_t^s(P)$ to denote the open ball in (S_r^2, d^s) with center P and radius t.

Suppose that $P \in S_r^2$ and $Q, R \in B_{rs}^s(P)$. Since $d^s(Q, R) \leq d^s(Q, P) + d^s(P, R) < 2rs$, we have $d^s(Q, R) = d_E(Q, R)$. Therefore d^s is locally Euclidean for all $0 < s \leq 1$.

The following theorem which is proven in the next section implies that d^s is equivalent to d_E for all $0 < s \le 1$.

Theorem 1.2. $sd_E(P,Q) \leq d^s(P,Q) \leq d_E(P,Q)$ for all $P,Q \in S_r^2$.

Not all locally Euclidean metrics on S_r^2 , which are equivalent to d_E , are invariant under Euclidean isometries. However, we can show

Proposition 1.3. d^s is invariant under any Euclidean isometry, for all $0 < s \le 1$.

Proof. Suppose that $\phi : S_r^2 \to S_r^2$ is an Euclidean isometry and $P, Q \in S_r^2$. Notice that $\angle \phi(P) O \phi(Q) = \angle POQ$. If $\angle POQ \leq \pi - 2\alpha$, then

$$d^{s}(\phi(P),\phi(Q)) = d_{E}(\phi(P),\phi(Q)) = d_{E}(P,Q) = d^{s}(P,Q).$$

Suppose that $\angle POQ > \pi - 2\alpha$. Since $2r = d_E(P, -P) = d_E(\phi(P), \phi(-P))$, we have $\phi(-P) = -\phi(P)$. Therefore

$$\begin{split} &d^s(\phi(P),\phi(Q)) = 2rs + d_E(-\phi(P),\phi(Q)) \\ &= 2rs + d_E(\phi(-P),\phi(Q)) = 2rs + d_E(-P,Q) = d^s(P,Q). \quad \ \Box \end{split}$$

Notice that the trivial metric d_T is invariant under any Euclidean isometry but not equivalent to d_E .

Suppose that 0 < s < 1. Notice that $\sqrt{2r^2 - r^2s^2} > rs$. By the following theorem, some open balls in (S_r^2, d^s) are not connected.

Proposition 1.4. Let 0 < s < 1 and $2rs < t < \sqrt{2r^2 - r^2s^2} + rs$. Let $P \in S_r^2$ be arbitrary. Then the open ball $B_t^s(P)$ is not connected.

Proof. Let $P \in S_r^2$, $U = B_t^1(P)$ and $V = B_{t-2rs}^1(-P)$. We will show that U and V are nonempty disjoint open sets in (S_r^2, d^s) whose union is $B_t^s(P)$. Notice that $P \in U$, $-P \in V$, hence U and V are nonempty by Theorem 1.2. Since d^s is equivalent to $d_E = d^1$, U and V are open sets in (S_r^2, d^s) .

If $Q \in U \cap V$, then $4r^2 = d_E(P, -P)^2 = d_E(P, Q)^2 + d_E(Q, -P)^2 < t^2 + (t - 2rs)^2 < 4r^2$. This is a contradiction. Therefore $U \cap V = \emptyset$.

Suppose that $Q \in B_t^s(P)$. If $d^s(P,Q) = d_E(P,Q)$, then $d_E(P,Q) < t$. If $d^s(P,Q) \neq d_E(P,Q)$, then $d_E(-P,Q) = d^s(P,Q) - 2rs < t - 2rs$. Therefore $B_t^s(P) \subset U \cup V$.

If $Q \in U$ then, by Theorem 1.2, we have $Q \in B_t^s(P)$. Suppose that $Q \in V$. Since $d_E(-P,Q) < t-2rs < \sqrt{2r^2 - r^2s^2} - rs$, by Lemma 2.1 in the next section, we have $\angle (-P)OQ < 2\alpha$. Therefore, $\angle POQ > \pi - 2\alpha$ and $d^s(P,Q) = 2rs + d_E(-P,Q) < t$. Hence, $Q \in B_t^s(P)$. Thus, $U \cup V \subset B_t^s(P)$.

This paper is motivated by the Poincaré conjecture. In his work on the Poincaré conjecture, the author was interested in discontinuous functions from (S_1^2, d_E) to the closed interval [0, a]. Any countable-toone function from (S_1^2, d_E) to [0, a] is discontinuous. Let B^3 be the closed unit ball in \mathbf{R}^3 and d_E the Euclidean metric on B^3 . Define locally Euclidean metrics on the set B^3 as on S_r^2 . Using the metric d^s on S_r^2 , the author [1] constructed a family of pseudo metrics on B^3 . Some of these pseudo metrics are locally Euclidean metrics which are equivalent to d_E , and in which some open balls are not connected. As an application of this construction, the author obtained a result on countable-to-one functions from (S_1^2, d_E) to [0, a], see [1] for details.

2. Proof of theorems. In this section we prove Theorem 1.1 and Theorem 1.2. Recall that $0 \le \alpha < \pi/4$. If $\angle POQ > \pi - 2\alpha$, then $\angle (-P)OQ = \pi - \angle POQ < 2\alpha < \pi - 2\alpha$ and hence

(1)
$$d_E(P,Q) > d_E(-P,Q).$$

Since $d_E(P,Q)^2 = 2r^2 - 2r^2 \cos \angle POQ$, $d_E(P,Q)$ is an increasing function of $\angle POQ$ on the interval $0 \leq \angle POQ \leq \pi$. We will make use of the following lemma.

Lemma 2.1. If $\angle POQ = \pi - 2\alpha$, then $d_E(P,Q) = \sqrt{2r^2 - r^2s^2} + rs$. If $\angle POQ = 2\alpha$ then $d_E(P,Q) = \sqrt{2r^2 - r^2s^2} - rs$.

Proof. Suppose that $\angle POQ = \pi - 2\alpha$. Since $0 \le \alpha < \pi/4$ and

$$\cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \frac{2 - 2s\sqrt{2 - s^2}}{4} = \left(\frac{\sqrt{2 - s^2} + s}{2}\right)^2,$$

we have

(2)
$$\cos \alpha = \frac{\sqrt{2-s^2}+s}{2}.$$

Therefore $d_E(P,Q) = 2r \cos \alpha = r \left(\sqrt{2-s^2}+s\right) = \sqrt{2r^2-r^2s^2}+rs$. Note that

(3)
$$d_E(P,Q) - d_E(-P,Q) = 2r(\cos\alpha - \sin\alpha) = 2rs.$$

Suppose that $\angle POQ = 2\alpha$. Since $\angle (-P)OQ = \pi - 2\alpha$, from equation (3), we have

$$\begin{aligned} d_E(P,Q) &= d_E(-P,Q) - 2rs = \sqrt{2r^2 - r^2s^2} + rs - 2rs \\ &= \sqrt{2r^2 - r^2s^2} - rs. \quad \Box \end{aligned}$$

We will also make use of the following lemma.

Lemma 2.2. If $P, Q, R, S \in S_r^2$ and $\angle POQ + \angle ROS \ge 2\alpha$, then

$$d_E(P,Q) + d_E(R,S) \ge \sqrt{2r^2 - r^2s^2} - rs.$$

Proof. Notice that we may assume $\angle ROS \leq \angle POQ$. Due to Lemma 2.1, we may assume that $0 < \angle ROS \leq \angle POQ < 2\alpha$. Since $0 \leq \alpha < \pi/4$, we have $0 < \angle ROS \leq \angle POQ < \pi/2$. Consider the great circle on S_r^2 through the two points P and Q. On this great circle, there exist two points S_0 and S_1 such that $\angle QOS_0 = \angle QOS_1 = \angle ROS$, $\angle POQ + \angle QOS_0 = \angle POS_0$ and $\angle POQ - \angle QOS_1 = \angle POS_1$, see Figure 2.

FIGURE 2. $d_E(Q, S_0) = d_E(Q, S_1) = d_E(Q, S_T) = d_E(R, S).$

Fixing Q, rotate the arc QS_0 clockwise toward the arc QS_1 in the time interval [0, 1], see Figure 2. Let QS_t be the rotating arc at time t. Notice that $\angle POS_t$ is a continuous function on [0, 1],

$$\angle POS_0 = \angle POQ + \angle QOS_0 = \angle POQ + \angle ROS \ge 2\alpha$$

and

$$\angle POS_1 < 2\alpha$$

Therefore, by the intermediate value theorem, there exists $S_T \in S_r^2$ such that $\angle POS_T = 2\alpha$ for some $T \in [0, 1]$. From Lemma 2.1, we have $d_E(P, S_T) = \sqrt{2r^2 - r^2s^2} - rs$. Since $d_E(Q, S_T) = d_E(R, S)$, we have

$$\begin{split} d_E(P,Q) + d_E(R,S) &= d_E(P,Q) + d_E(Q,S_T) \geq d_E(P,S_T) \\ &= \sqrt{2r^2 - r^2s^2} - rs. \quad \Box \end{split}$$

We will need the following theorem, see [2, Chapter VII] for a proof.

Theorem 2.3. For $P, Q \in S_r^2$, let $\rho(P, Q) = \angle POQ$. Then ρ is a metric on S_r^2 .

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. It is clear that d^s is nonnegative. Since $\angle POP = 0$, we have $d^s(P, P) = d_E(P, P) = 0$ for all $P \in S_r^2$. If $d^s(P,Q) = 0$, then $d_E(P,Q) = d^s(P,Q) = 0$ and hence P = Q.

Suppose that $P, Q \in S_r^2$. If $\angle POQ > \pi - 2\alpha$, then

$$d^{s}(Q, P) = 2rs + d_{E}(-Q, P)$$
$$= 2rs + d_{E}(Q, -P)$$
$$= 2rs + d_{E}(-P, Q)$$
$$= d^{s}(P, Q).$$

If $\angle POQ \leq \pi - 2\alpha$, then $d^s(Q, P) = d_E(Q, P) = d_E(P, Q) = d^s(P, Q)$.

Suppose that $P, Q, R \in S_r^2$. If $\angle POQ$, $\angle QOR$, $\angle ROP \leq \pi - 2\alpha$, then the triangle inequality of d^s is trivial from that of d_E .

Suppose that only one angle, e.g. $\angle POQ$, is greater than $\pi - 2\alpha$. Then $d^s(Q, R) = d_E(Q, R)$ and $d^s(R, P) = d_E(R, P)$. Since $\angle (-P)OQ = \pi - \angle POQ < 2\alpha$, from Lemma 2.1, we have

$$\begin{aligned} d^{s}(Q,R) + d^{s}(R,P) &= d_{E}(Q,R) + d_{E}(R,P) \\ &\geq d_{E}(P,Q) \\ &> \sqrt{2r^{2} - r^{2}s^{2}} + rs \\ &> d_{E}(-P,Q) + 2rs \\ &= d^{s}(P,Q). \end{aligned}$$

By Theorem 2.3, $\angle (-P)OQ + \angle QOR + \angle ROP \ge \angle (-P)OP = \pi$. Since $\angle QOR \le \pi - 2\alpha$, we have $\angle (-P)OQ + \angle ROP \ge 2\alpha$. Hence, from Lemma 2.2, we have $d_E(-P,Q) + d_E(R,P) \ge \sqrt{2r^2 - r^2s^2} - rs$. Therefore,

$$d^{s}(P,Q) + d^{s}(R,P) = 2rs + d_{E}(-P,Q) + d_{E}(R,P)$$

$$\geq 2rs + \sqrt{2r^{2} - r^{2}s^{2}} - rs$$

$$\geq d_{E}(Q,R)$$

$$= d^{s}(Q,R).$$

Similarly we can show that $d^s(P,Q) + d^s(Q,R) \ge d^s(R,P)$.

If two angles, e.g., $\angle POQ$ and $\angle QOR$, are greater than $\pi - 2\alpha$, then $d^{s}(P,Q) = 2rs + d_{E}(-P,Q) = 2rs + d_{E}(P,-Q)$ $d^{s}(Q,R) = 2rs + d_{E}(-Q,R)$ $d^{s}(R,P) = d_{E}(R,P).$

Therefore the triangle inequality of d^s is trivial from that of d_E .

If all of the three angles are greater than $\pi - 2\alpha$, then from equation (1), we have

$$d^{s}(P,Q) + d^{s}(Q,R) = 4rs + d_{E}(-P,Q) + d_{E}(-Q,R)$$

= $4rs + d_{E}(P,-Q) + d_{E}(-Q,R)$
 $\geq 4rs + d_{E}(P,R)$
 $> 4rs + d_{E}(-P,R)$
 $> d^{s}(P,R)$
 $= d^{s}(R,P).$

Similarly we can show that $d^s(Q, R) + d^s(R, P) \ge d^s(P, Q)$ and $d^s(R, P) + d^s(P, Q) \ge d^s(Q, R)$.

We now prove Theorem 1.2.

Proof of Theorem 1.2. Let $P, Q \in S_r^2$. We may assume that $\angle POQ > \pi - 2\alpha$ and $s \neq 1$. Let $\angle POQ = \pi - 2\beta$. Notice that $0 \leq \beta < \alpha < \pi/4$ and $\cos x - \sin x$ is decreasing on $0 \leq x < \pi/4$. Since $d_E(P,Q) = 2r \cos \beta$ and $d_E(-P,Q) = 2r \sin \beta$, from equation (2), we have

$$\begin{split} d_E(P,Q) - d^s(P,Q) &= d_E(P,Q) - 2rs - d_E(-P,Q) \\ &= 2r\cos\beta - 2rs - 2r\sin\beta \\ &= 2r(\cos\beta - \sin\beta - s) \\ &\geq 2r(\cos\alpha - \sin\alpha - s) \\ &= 0 \\ d^s(P,Q) - sd_E(P,Q) &= 2rs + d_E(-P,Q) - sd_E(P,Q) \\ &= 2rs + 2r\sin\beta - 2rs\cos\beta \\ &= 2rs(1 - \cos\beta) + 2r\sin\beta \\ &\geq 0. \quad \Box \end{split}$$

Acknowledgment. The author would like to thank the referee for his careful reading of the manuscript, and his detailed and very useful comments which improved this paper substantially.

REFERENCES

1. Y.D. Kim, A family of pseudo metrics on B^3 and its application, preprint, arXiv:math.GN/0201077.

2. B. O'Neill, *Elementary differential geometry*, Academic Press, New York, 1966.

BK21 SNU MATHEMATICAL SCIENCES DIVISION, SCHOOL OF MATHEMATICAL SCIENCES, SEOUL NATIONAL UNIVERSITY, SEOUL 151-747, KOREA *E-mail address:* ydkim@math.sunysb.edu, ydkimus@yahoo.com