
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 36, Number 6, 2006

LOCALLY EUCLIDEAN METRICS ON S2 IN WHICH
SOME OPEN BALLS ARE NOT CONNECTED

YOUNG DEUK KIM

ABSTRACT. Let S2
r ⊂ R3 be the 2-sphere with center O

and radius r. For all 0 < s ≤ 1, we define a locally Euclidean
metric ds on S2

r which is equivalent to the Euclidean metric.
These metrics are invariant under Euclidean isometries, and if
0 < s < 1 then some open balls in (S2

r , ds) are not connected.

1. Introduction. Let S2
r ⊂ R3 be the 2-sphere with center

O = (0, 0, 0) and radius r > 0. We write dE to denote the Euclidean
metric on S2

r . A metric d on the set S2
r is called locally Euclidean if,

for all P ∈ S2
r , there exists t > 0 such that

d(Q, R) = dE(Q, R) for all Q, R ∈ Bt(P ) = {S ∈ S2
r | d(P, S) < t}.

As usual, two metrics d1 and d2 on the set S2
r are called equivalent

if the identity mapping of (S2
r , d1) onto (S2

r , d2) is a homeomorphism.
Notice that the following trivial metric dT is locally Euclidean but not
equivalent to dE .

dT (P, Q) =
{

0 if P = Q

1 if P �= Q.

In this paper we define a locally Euclidean metric ds, which is
equivalent to dE and invariant under Euclidean isometries. Notice
that the Euclidean metric dE is trivially locally Euclidean. In fact,
the metric d1 will turn out to be the Euclidean metric dE . Every open
ball in (S2

r , dE) is connected. However, if 0 < s < 1, then some open
balls in (S2

r , ds) are not connected.

Suppose that 0 < s ≤ 1. Let −P denote the antipodal point of
P ∈ S2

r . Let

α = sin−1

(√
2 − s2 − s

2

)
, where 0 ≤ α < π/4.
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FIGURE 1. S2
r .

Notice that sin α is a decreasing function of s and hence so is α. We
are going to use this function α to define the new metric ds on S2

r . For
all P, Q ∈ S2

r , let (see Figure 1)

ds(P, Q) =
{

dE(P, Q) if ∠POQ ≤ π − 2α

2rs + dE(−P, Q) if ∠POQ > π − 2α,

where α is defined as above. Notice that if s = 1 then d1 = dE and
d1(P,−P ) = 2r for all P ∈ S2

r .

In the next section we will prove

Theorem 1.1. For all 0 < s ≤ 1, ds is a metric on S2
r .

Notice that if ds(P, Q) < 2rs then ds(P, Q) = dE(P, Q) for all
P, Q ∈ S2

r . We write Bs
t (P ) to denote the open ball in (S2

r , ds) with
center P and radius t.

Suppose that P ∈ S2
r and Q, R ∈ Bs

rs(P ). Since ds(Q, R) ≤
ds(Q, P )+ds(P, R) < 2rs, we have ds(Q, R) = dE(Q, R). Therefore ds

is locally Euclidean for all 0 < s ≤ 1.
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The following theorem which is proven in the next section implies
that ds is equivalent to dE for all 0 < s ≤ 1.

Theorem 1.2. sdE(P, Q) ≤ ds(P, Q) ≤ dE(P, Q) for all P, Q ∈ S2
r .

Not all locally Euclidean metrics on S2
r , which are equivalent to dE ,

are invariant under Euclidean isometries. However, we can show

Proposition 1.3. ds is invariant under any Euclidean isometry, for
all 0 < s ≤ 1.

Proof. Suppose that φ : S2
r → S2

r is an Euclidean isometry and
P, Q ∈ S2

r . Notice that ∠φ(P )Oφ(Q) = ∠POQ. If ∠POQ ≤ π − 2α,
then

ds(φ(P ), φ(Q)) = dE(φ(P ), φ(Q)) = dE(P, Q) = ds(P, Q).

Suppose that ∠POQ > π − 2α. Since 2r = dE(P,−P ) =
dE(φ(P ), φ(−P )), we have φ(−P ) = −φ(P ). Therefore

ds(φ(P ), φ(Q)) = 2rs + dE(−φ(P ), φ(Q))
= 2rs + dE(φ(−P ), φ(Q)) = 2rs + dE(−P, Q) = ds(P, Q).

Notice that the trivial metric dT is invariant under any Euclidean
isometry but not equivalent to dE .

Suppose that 0 < s < 1. Notice that
√

2r2 − r2s2 > rs. By the
following theorem, some open balls in (S2

r , ds) are not connected.

Proposition 1.4. Let 0 < s < 1 and 2rs < t <
√

2r2 − r2s2 + rs.
Let P ∈ S2

r be arbitrary. Then the open ball Bs
t (P ) is not connected.

Proof. Let P ∈ S2
r , U = B1

t (P ) and V = B1
t−2rs(−P ). We will show

that U and V are nonempty disjoint open sets in (S2
r , ds) whose union

is Bs
t (P ). Notice that P ∈ U , −P ∈ V , hence U and V are nonempty

by Theorem 1.2. Since ds is equivalent to dE = d1, U and V are open
sets in (S2

r , ds).
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If Q ∈ U ∩ V , then 4r2 = dE(P,−P )2 = dE(P, Q)2 + dE(Q,−P )2 <
t2 + (t − 2rs)2 < 4r2. This is a contradiction. Therefore U ∩ V = ∅.

Suppose that Q ∈ Bs
t (P ). If ds(P, Q) = dE(P, Q), then dE(P, Q) < t.

If ds(P, Q) �= dE(P, Q), then dE(−P, Q) = ds(P, Q) − 2rs < t − 2rs.
Therefore Bs

t (P ) ⊂ U ∪ V .

If Q ∈ U then, by Theorem 1.2, we have Q ∈ Bs
t (P ). Suppose that

Q ∈ V . Since dE(−P, Q) < t−2rs <
√

2r2 − r2s2−rs, by Lemma 2.1 in
the next section, we have ∠(−P )OQ < 2α. Therefore, ∠POQ > π−2α
and ds(P, Q) = 2rs + dE(−P, Q) < t. Hence, Q ∈ Bs

t (P ). Thus,
U ∪ V ⊂ Bs

t (P ).

This paper is motivated by the Poincaré conjecture. In his work
on the Poincaré conjecture, the author was interested in discontinuous
functions from (S2

1 , dE) to the closed interval [0, a]. Any countable-to-
one function from (S2

1 , dE) to [0, a] is discontinuous. Let B3 be the
closed unit ball in R3 and dE the Euclidean metric on B3. Define
locally Euclidean metrics on the set B3 as on S2

r . Using the metric ds

on S2
r , the author [1] constructed a family of pseudo metrics on B3.

Some of these pseudo metrics are locally Euclidean metrics which are
equivalent to dE , and in which some open balls are not connected. As
an application of this construction, the author obtained a result on
countable-to-one functions from (S2

1 , dE) to [0, a], see [1] for details.

2. Proof of theorems. In this section we prove Theorem 1.1 and
Theorem 1.2. Recall that 0 ≤ α < π/4. If ∠POQ > π − 2α, then
∠(−P )OQ = π − ∠POQ < 2α < π − 2α and hence

(1) dE(P, Q) > dE(−P, Q).

Since dE(P, Q)2 = 2r2 − 2r2 cos ∠POQ, dE(P, Q) is an increasing
function of ∠POQ on the interval 0 ≤ ∠POQ ≤ π. We will make use
of the following lemma.

Lemma 2.1. If ∠POQ = π−2α, then dE(P, Q) =
√

2r2 − r2s2+rs.
If ∠POQ = 2α then dE(P, Q) =

√
2r2 − r2s2 − rs.
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Proof. Suppose that ∠POQ = π − 2α. Since 0 ≤ α < π/4 and

cos2 α = 1 − sin2 α = 1 − 2 − 2s
√

2 − s2

4
=
(√

2 − s2 + s

2

)2

,

we have

(2) cos α =
√

2 − s2 + s

2
.

Therefore dE(P, Q) = 2r cos α = r
(√

2 − s2 + s
)

=
√

2r2 − r2s2 + rs.
Note that

(3) dE(P, Q) − dE(−P, Q) = 2r(cosα − sin α) = 2rs.

Suppose that ∠POQ = 2α. Since ∠(−P )OQ = π−2α, from equation
(3), we have

dE(P, Q) = dE(−P, Q) − 2rs =
√

2r2 − r2s2 + rs − 2rs

=
√

2r2 − r2s2 − rs.

We will also make use of the following lemma.

Lemma 2.2. If P, Q, R, S ∈ S2
r and ∠POQ + ∠ROS ≥ 2α, then

dE(P, Q) + dE(R, S) ≥
√

2r2 − r2s2 − rs.

Proof. Notice that we may assume ∠ROS ≤ ∠POQ. Due to
Lemma 2.1, we may assume that 0 < ∠ROS ≤ ∠POQ < 2α. Since
0 ≤ α < π/4, we have 0 < ∠ROS ≤ ∠POQ < π/2. Consider the great
circle on S2

r through the two points P and Q. On this great circle, there
exist two points S0 and S1 such that ∠QOS0 = ∠QOS1 = ∠ROS,
∠POQ + ∠QOS0 = ∠POS0 and ∠POQ − ∠QOS1 = ∠POS1, see
Figure 2.
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FIGURE 2. dE(Q, S0) = dE(Q, S1) = dE(Q, ST ) = dE(R, S).

Fixing Q, rotate the arc QS0 clockwise toward the arc QS1 in the
time interval [0, 1], see Figure 2. Let QSt be the rotating arc at time
t. Notice that ∠POSt is a continuous function on [0, 1],

∠POS0 = ∠POQ + ∠QOS0 = ∠POQ + ∠ROS ≥ 2α

and
∠POS1 < 2α.

Therefore, by the intermediate value theorem, there exists ST ∈ S2
r

such that ∠POST = 2α for some T ∈ [0, 1]. From Lemma 2.1, we have
dE(P, ST ) =

√
2r2 − r2s2 − rs. Since dE(Q, ST ) = dE(R, S), we have

dE(P, Q) + dE(R, S) = dE(P, Q) + dE(Q, ST ) ≥ dE(P, ST )

=
√

2r2 − r2s2 − rs.

We will need the following theorem, see [2, Chapter VII] for a proof.

Theorem 2.3. For P, Q ∈ S2
r , let ρ(P, Q) = ∠POQ. Then ρ is a

metric on S2
r .
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Now we can prove Theorem 1.1.

Proof of Theorem 1.1. It is clear that ds is nonnegative. Since
∠POP = 0, we have ds(P, P ) = dE(P, P ) = 0 for all P ∈ S2

r . If
ds(P, Q) = 0, then dE(P, Q) = ds(P, Q) = 0 and hence P = Q.

Suppose that P, Q ∈ S2
r . If ∠POQ > π − 2α, then

ds(Q, P ) = 2rs + dE(−Q, P )
= 2rs + dE(Q,−P )
= 2rs + dE(−P, Q)
= ds(P, Q).

If ∠POQ ≤ π − 2α, then ds(Q, P ) = dE(Q, P ) = dE(P, Q) = ds(P, Q).

Suppose that P, Q, R ∈ S2
r . If ∠POQ, ∠QOR, ∠ROP ≤ π − 2α,

then the triangle inequality of ds is trivial from that of dE .

Suppose that only one angle, e.g. ∠POQ, is greater than π−2α. Then
ds(Q, R) = dE(Q, R) and ds(R, P ) = dE(R, P ). Since ∠(−P )OQ =
π − ∠POQ < 2α, from Lemma 2.1, we have

ds(Q, R) + ds(R, P ) = dE(Q, R) + dE(R, P )
≥ dE(P, Q)

>
√

2r2 − r2s2 + rs

> dE(−P, Q) + 2rs

= ds(P, Q).

By Theorem 2.3, ∠(−P )OQ + ∠QOR + ∠ROP ≥ ∠(−P )OP = π.
Since ∠QOR ≤ π − 2α, we have ∠(−P )OQ + ∠ROP ≥ 2α. Hence,
from Lemma 2.2, we have dE(−P, Q) + dE(R, P ) ≥ √

2r2 − r2s2 − rs.
Therefore,

ds(P, Q) + ds(R, P ) = 2rs + dE(−P, Q) + dE(R, P )

≥ 2rs +
√

2r2 − r2s2 − rs

≥ dE(Q, R)
= ds(Q, R).

Similarly we can show that ds(P, Q) + ds(Q, R) ≥ ds(R, P ).
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If two angles, e.g., ∠POQ and ∠QOR, are greater than π − 2α, then

ds(P, Q) = 2rs + dE(−P, Q) = 2rs + dE(P,−Q)
ds(Q, R) = 2rs + dE(−Q, R)
ds(R, P ) = dE(R, P ).

Therefore the triangle inequality of ds is trivial from that of dE .

If all of the three angles are greater than π − 2α, then from equation
(1), we have

ds(P, Q) + ds(Q, R) = 4rs + dE(−P, Q) + dE(−Q, R)
= 4rs + dE(P,−Q) + dE(−Q, R)
≥ 4rs + dE(P, R)
> 4rs + dE(−P, R)
> ds(P, R)
= ds(R, P ).

Similarly we can show that ds(Q, R) + ds(R, P ) ≥ ds(P, Q) and
ds(R, P ) + ds(P, Q) ≥ ds(Q, R).

We now prove Theorem 1.2.

Proof of Theorem 1.2. Let P, Q ∈ S2
r . We may assume that

∠POQ > π − 2α and s �= 1. Let ∠POQ = π − 2β. Notice that
0 ≤ β < α < π/4 and cosx− sin x is decreasing on 0 ≤ x < π/4. Since
dE(P, Q) = 2r cos β and dE(−P, Q) = 2r sin β, from equation (2), we
have

dE(P, Q) − ds(P, Q) = dE(P, Q) − 2rs − dE(−P, Q)
= 2r cos β − 2rs − 2r sin β

= 2r(cosβ − sin β − s)
≥ 2r(cosα − sin α − s)
= 0

ds(P, Q) − sdE(P, Q) = 2rs + dE(−P, Q) − sdE(P, Q)
= 2rs + 2r sin β − 2rs cosβ

= 2rs(1 − cos β) + 2r sin β

≥ 0.
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