LOCALLY EUCLIDEAN METRICS ON S^{2} IN WHICH SOME OPEN BALLS ARE NOT CONNECTED

YOUNG DEUK KIM

Abstract

Let $S_{r}^{2} \subset \mathbf{R}^{3}$ be the 2 -sphere with center O and radius r. For all $0<s \leq 1$, we define a locally Euclidean metric d^{s} on S_{r}^{2} which is equivalent to the Euclidean metric. These metrics are invariant under Euclidean isometries, and if $0<s<1$ then some open balls in $\left(S_{r}^{2}, d^{s}\right)$ are not connected.

1. Introduction. Let $S_{r}^{2} \subset \mathbf{R}^{3}$ be the 2-sphere with center $O=(0,0,0)$ and radius $r>0$. We write d_{E} to denote the Euclidean metric on S_{r}^{2}. A metric d on the set S_{r}^{2} is called locally Euclidean if, for all $P \in S_{r}^{2}$, there exists $t>0$ such that
$d(Q, R)=d_{E}(Q, R) \quad$ for all $\quad Q, R \in B_{t}(P)=\left\{S \in S_{r}^{2} \mid d(P, S)<t\right\}$.
As usual, two metrics d_{1} and d_{2} on the set S_{r}^{2} are called equivalent if the identity mapping of $\left(S_{r}^{2}, d_{1}\right)$ onto $\left(S_{r}^{2}, d_{2}\right)$ is a homeomorphism. Notice that the following trivial metric d_{T} is locally Euclidean but not equivalent to d_{E}.

$$
d_{T}(P, Q)= \begin{cases}0 & \text { if } P=Q \\ 1 & \text { if } P \neq Q\end{cases}
$$

In this paper we define a locally Euclidean metric d^{s}, which is equivalent to d_{E} and invariant under Euclidean isometries. Notice that the Euclidean metric d_{E} is trivially locally Euclidean. In fact, the metric d^{1} will turn out to be the Euclidean metric d_{E}. Every open ball in $\left(S_{r}^{2}, d_{E}\right)$ is connected. However, if $0<s<1$, then some open balls in $\left(S_{r}^{2}, d^{s}\right)$ are not connected.

Suppose that $0<s \leq 1$. Let $-P$ denote the antipodal point of $P \in S_{r}^{2}$. Let

$$
\alpha=\sin ^{-1}\left(\frac{\sqrt{2-s^{2}}-s}{2}\right), \quad \text { where } \quad 0 \leq \alpha<\pi / 4 .
$$

[^0]

FIGURE 1. S_{r}^{2}.

Notice that $\sin \alpha$ is a decreasing function of s and hence so is α. We are going to use this function α to define the new metric d^{s} on S_{r}^{2}. For all $P, Q \in S_{r}^{2}$, let (see Figure 1)

$$
d^{s}(P, Q)= \begin{cases}d_{E}(P, Q) & \text { if } \angle P O Q \leq \pi-2 \alpha \\ 2 r s+d_{E}(-P, Q) & \text { if } \angle P O Q>\pi-2 \alpha\end{cases}
$$

where α is defined as above. Notice that if $s=1$ then $d^{1}=d_{E}$ and $d^{1}(P,-P)=2 r$ for all $P \in S_{r}^{2}$.

In the next section we will prove

Theorem 1.1. For all $0<s \leq 1$, d^{s} is a metric on S_{r}^{2}.

Notice that if $d^{s}(P, Q)<2 r s$ then $d^{s}(P, Q)=d_{E}(P, Q)$ for all $P, Q \in S_{r}^{2}$. We write $B_{t}^{s}(P)$ to denote the open ball in $\left(S_{r}^{2}, d^{s}\right)$ with center P and radius t.
Suppose that $P \in S_{r}^{2}$ and $Q, R \in B_{r s}^{s}(P)$. Since $d^{s}(Q, R) \leq$ $d^{s}(Q, P)+d^{s}(P, R)<2 r s$, we have $d^{s}(Q, R)=d_{E}(Q, R)$. Therefore d^{s} is locally Euclidean for all $0<s \leq 1$.

The following theorem which is proven in the next section implies that d^{s} is equivalent to d_{E} for all $0<s \leq 1$.

Theorem 1.2. $\operatorname{sd}_{E}(P, Q) \leq d^{s}(P, Q) \leq d_{E}(P, Q)$ for all $P, Q \in S_{r}^{2}$.

Not all locally Euclidean metrics on S_{r}^{2}, which are equivalent to d_{E}, are invariant under Euclidean isometries. However, we can show

Proposition 1.3. d^{s} is invariant under any Euclidean isometry, for all $0<s \leq 1$.

Proof. Suppose that $\phi: S_{r}^{2} \rightarrow S_{r}^{2}$ is an Euclidean isometry and $P, Q \in S_{r}^{2}$. Notice that $\angle \phi(P) O \phi(Q)=\angle P O Q$. If $\angle P O Q \leq \pi-2 \alpha$, then

$$
d^{s}(\phi(P), \phi(Q))=d_{E}(\phi(P), \phi(Q))=d_{E}(P, Q)=d^{s}(P, Q)
$$

Suppose that $\angle P O Q>\pi-2 \alpha$. Since $2 r=d_{E}(P,-P)=$ $d_{E}(\phi(P), \phi(-P))$, we have $\phi(-P)=-\phi(P)$. Therefore

$$
\begin{aligned}
& d^{s}(\phi(P), \phi(Q))=2 r s+d_{E}(-\phi(P), \phi(Q)) \\
& \quad=2 r s+d_{E}(\phi(-P), \phi(Q))=2 r s+d_{E}(-P, Q)=d^{s}(P, Q)
\end{aligned}
$$

Notice that the trivial metric d_{T} is invariant under any Euclidean isometry but not equivalent to d_{E}.
Suppose that $0<s<1$. Notice that $\sqrt{2 r^{2}-r^{2} s^{2}}>r s$. By the following theorem, some open balls in $\left(S_{r}^{2}, d^{s}\right)$ are not connected.

Proposition 1.4. Let $0<s<1$ and $2 r s<t<\sqrt{2 r^{2}-r^{2} s^{2}}+r s$. Let $P \in S_{r}^{2}$ be arbitrary. Then the open ball $B_{t}^{s}(P)$ is not connected.

Proof. Let $P \in S_{r}^{2}, U=B_{t}^{1}(P)$ and $V=B_{t-2 r s}^{1}(-P)$. We will show that U and V are nonempty disjoint open sets in $\left(S_{r}^{2}, d^{s}\right)$ whose union is $B_{t}^{s}(P)$. Notice that $P \in U,-P \in V$, hence U and V are nonempty by Theorem 1.2. Since d^{s} is equivalent to $d_{E}=d^{1}, U$ and V are open sets in $\left(S_{r}^{2}, d^{s}\right)$.

If $Q \in U \cap V$, then $4 r^{2}=d_{E}(P,-P)^{2}=d_{E}(P, Q)^{2}+d_{E}(Q,-P)^{2}<$ $t^{2}+(t-2 r s)^{2}<4 r^{2}$. This is a contradiction. Therefore $U \cap V=\varnothing$.

Suppose that $Q \in B_{t}^{s}(P)$. If $d^{s}(P, Q)=d_{E}(P, Q)$, then $d_{E}(P, Q)<t$. If $d^{s}(P, Q) \neq d_{E}(P, Q)$, then $d_{E}(-P, Q)=d^{s}(P, Q)-2 r s<t-2 r s$. Therefore $B_{t}^{s}(P) \subset U \cup V$.
If $Q \in U$ then, by Theorem 1.2, we have $Q \in B_{t}^{s}(P)$. Suppose that $Q \in V$. Since $d_{E}(-P, Q)<t-2 r s<\sqrt{2 r^{2}-r^{2} s^{2}}-r s$, by Lemma 2.1 in the next section, we have $\angle(-P) O Q<2 \alpha$. Therefore, $\angle P O Q>\pi-2 \alpha$ and $d^{s}(P, Q)=2 r s+d_{E}(-P, Q)<t$. Hence, $Q \in B_{t}^{s}(P)$. Thus, $U \cup V \subset B_{t}^{s}(P)$.

This paper is motivated by the Poincaré conjecture. In his work on the Poincaré conjecture, the author was interested in discontinuous functions from $\left(S_{1}^{2}, d_{E}\right)$ to the closed interval $[0, a]$. Any countable-toone function from $\left(S_{1}^{2}, d_{E}\right)$ to $[0, a]$ is discontinuous. Let B^{3} be the closed unit ball in \mathbf{R}^{3} and d_{E} the Euclidean metric on B^{3}. Define locally Euclidean metrics on the set B^{3} as on S_{r}^{2}. Using the metric d^{s} on S_{r}^{2}, the author [1] constructed a family of pseudo metrics on B^{3}. Some of these pseudo metrics are locally Euclidean metrics which are equivalent to d_{E}, and in which some open balls are not connected. As an application of this construction, the author obtained a result on countable-to-one functions from $\left(S_{1}^{2}, d_{E}\right)$ to $[0, a]$, see $[\mathbf{1}]$ for details.
2. Proof of theorems. In this section we prove Theorem 1.1 and Theorem 1.2. Recall that $0 \leq \alpha<\pi / 4$. If $\angle P O Q>\pi-2 \alpha$, then $\angle(-P) O Q=\pi-\angle P O Q<2 \alpha<\pi-2 \alpha$ and hence

$$
\begin{equation*}
d_{E}(P, Q)>d_{E}(-P, Q) \tag{1}
\end{equation*}
$$

Since $d_{E}(P, Q)^{2}=2 r^{2}-2 r^{2} \cos \angle P O Q, d_{E}(P, Q)$ is an increasing function of $\angle P O Q$ on the interval $0 \leq \angle P O Q \leq \pi$. We will make use of the following lemma.

Lemma 2.1. If $\angle P O Q=\pi-2 \alpha$, then $d_{E}(P, Q)=\sqrt{2 r^{2}-r^{2} s^{2}}+r s$. If $\angle P O Q=2 \alpha$ then $d_{E}(P, Q)=\sqrt{2 r^{2}-r^{2} s^{2}}-r s$.

Proof. Suppose that $\angle P O Q=\pi-2 \alpha$. Since $0 \leq \alpha<\pi / 4$ and

$$
\cos ^{2} \alpha=1-\sin ^{2} \alpha=1-\frac{2-2 s \sqrt{2-s^{2}}}{4}=\left(\frac{\sqrt{2-s^{2}}+s}{2}\right)^{2}
$$

we have

$$
\begin{equation*}
\cos \alpha=\frac{\sqrt{2-s^{2}}+s}{2} \tag{2}
\end{equation*}
$$

Therefore $d_{E}(P, Q)=2 r \cos \alpha=r\left(\sqrt{2-s^{2}}+s\right)=\sqrt{2 r^{2}-r^{2} s^{2}}+r s$. Note that

$$
\begin{equation*}
d_{E}(P, Q)-d_{E}(-P, Q)=2 r(\cos \alpha-\sin \alpha)=2 r s \tag{3}
\end{equation*}
$$

Suppose that $\angle P O Q=2 \alpha$. Since $\angle(-P) O Q=\pi-2 \alpha$, from equation (3), we have

$$
\begin{aligned}
d_{E}(P, Q) & =d_{E}(-P, Q)-2 r s=\sqrt{2 r^{2}-r^{2} s^{2}}+r s-2 r s \\
& =\sqrt{2 r^{2}-r^{2} s^{2}}-r s .
\end{aligned}
$$

We will also make use of the following lemma.

Lemma 2.2. If $P, Q, R, S \in S_{r}^{2}$ and $\angle P O Q+\angle R O S \geq 2 \alpha$, then

$$
d_{E}(P, Q)+d_{E}(R, S) \geq \sqrt{2 r^{2}-r^{2} s^{2}}-r s
$$

Proof. Notice that we may assume $\angle R O S \leq \angle P O Q$. Due to Lemma 2.1, we may assume that $0<\angle R O S \leq \angle P O Q<2 \alpha$. Since $0 \leq \alpha<\pi / 4$, we have $0<\angle R O S \leq \angle P O Q<\pi / 2$. Consider the great circle on S_{r}^{2} through the two points P and Q. On this great circle, there exist two points S_{0} and S_{1} such that $\angle Q O S_{0}=\angle Q O S_{1}=\angle R O S$, $\angle P O Q+\angle Q O S_{0}=\angle P O S_{0}$ and $\angle P O Q-\angle Q O S_{1}=\angle P O S_{1}$, see Figure 2.

FIGURE 2. $\quad d_{E}\left(Q, S_{0}\right)=d_{E}\left(Q, S_{1}\right)=d_{E}\left(Q, S_{T}\right)=d_{E}(R, S)$.

Fixing Q, rotate the arc $Q S_{0}$ clockwise toward the arc $Q S_{1}$ in the time interval $[0,1]$, see Figure 2. Let $Q S_{t}$ be the rotating arc at time t. Notice that $\angle P O S_{t}$ is a continuous function on $[0,1]$,

$$
\angle P O S_{0}=\angle P O Q+\angle Q O S_{0}=\angle P O Q+\angle R O S \geq 2 \alpha
$$

and

$$
\angle P O S_{1}<2 \alpha
$$

Therefore, by the intermediate value theorem, there exists $S_{T} \in S_{r}^{2}$ such that $\angle P O S_{T}=2 \alpha$ for some $T \in[0,1]$. From Lemma 2.1, we have $d_{E}\left(P, S_{T}\right)=\sqrt{2 r^{2}-r^{2} s^{2}}-r s$. Since $d_{E}\left(Q, S_{T}\right)=d_{E}(R, S)$, we have

$$
\begin{aligned}
d_{E}(P, Q)+d_{E}(R, S) & =d_{E}(P, Q)+d_{E}\left(Q, S_{T}\right) \geq d_{E}\left(P, S_{T}\right) \\
& =\sqrt{2 r^{2}-r^{2} s^{2}}-r s .
\end{aligned}
$$

We will need the following theorem, see [2, Chapter VII] for a proof.

Theorem 2.3. For $P, Q \in S_{r}^{2}$, let $\rho(P, Q)=\angle P O Q$. Then ρ is a metric on S_{r}^{2}.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. It is clear that d^{s} is nonnegative. Since $\angle P O P=0$, we have $d^{s}(P, P)=d_{E}(P, P)=0$ for all $P \in S_{r}^{2}$. If $d^{s}(P, Q)=0$, then $d_{E}(P, Q)=d^{s}(P, Q)=0$ and hence $P=Q$.

Suppose that $P, Q \in S_{r}^{2}$. If $\angle P O Q>\pi-2 \alpha$, then

$$
\begin{aligned}
d^{s}(Q, P) & =2 r s+d_{E}(-Q, P) \\
& =2 r s+d_{E}(Q,-P) \\
& =2 r s+d_{E}(-P, Q) \\
& =d^{s}(P, Q)
\end{aligned}
$$

If $\angle P O Q \leq \pi-2 \alpha$, then $d^{s}(Q, P)=d_{E}(Q, P)=d_{E}(P, Q)=d^{s}(P, Q)$.
Suppose that $P, Q, R \in S_{r}^{2}$. If $\angle P O Q, \angle Q O R, \angle R O P \leq \pi-2 \alpha$, then the triangle inequality of d^{s} is trivial from that of d_{E}.

Suppose that only one angle, e.g. $\angle P O Q$, is greater than $\pi-2 \alpha$. Then $d^{s}(Q, R)=d_{E}(Q, R)$ and $d^{s}(R, P)=d_{E}(R, P)$. Since $\angle(-P) O Q=$ $\pi-\angle P O Q<2 \alpha$, from Lemma 2.1, we have

$$
\begin{aligned}
d^{s}(Q, R)+d^{s}(R, P) & =d_{E}(Q, R)+d_{E}(R, P) \\
& \geq d_{E}(P, Q) \\
& >\sqrt{2 r^{2}-r^{2} s^{2}}+r s \\
& >d_{E}(-P, Q)+2 r s \\
& =d^{s}(P, Q)
\end{aligned}
$$

By Theorem 2.3, $\angle(-P) O Q+\angle Q O R+\angle R O P \geq \angle(-P) O P=\pi$. Since $\angle Q O R \leq \pi-2 \alpha$, we have $\angle(-P) O Q+\angle R O P \geq 2 \alpha$. Hence, from Lemma 2.2, we have $d_{E}(-P, Q)+d_{E}(R, P) \geq \sqrt{2 r^{2}-r^{2} s^{2}}-r s$. Therefore,

$$
\begin{aligned}
d^{s}(P, Q)+d^{s}(R, P) & =2 r s+d_{E}(-P, Q)+d_{E}(R, P) \\
& \geq 2 r s+\sqrt{2 r^{2}-r^{2} s^{2}}-r s \\
& \geq d_{E}(Q, R) \\
& =d^{s}(Q, R)
\end{aligned}
$$

Similarly we can show that $d^{s}(P, Q)+d^{s}(Q, R) \geq d^{s}(R, P)$.

If two angles, e.g., $\angle P O Q$ and $\angle Q O R$, are greater than $\pi-2 \alpha$, then

$$
\begin{aligned}
d^{s}(P, Q) & =2 r s+d_{E}(-P, Q)=2 r s+d_{E}(P,-Q) \\
d^{s}(Q, R) & =2 r s+d_{E}(-Q, R) \\
d^{s}(R, P) & =d_{E}(R, P)
\end{aligned}
$$

Therefore the triangle inequality of d^{s} is trivial from that of d_{E}.
If all of the three angles are greater than $\pi-2 \alpha$, then from equation (1), we have

$$
\begin{aligned}
d^{s}(P, Q)+d^{s}(Q, R) & =4 r s+d_{E}(-P, Q)+d_{E}(-Q, R) \\
& =4 r s+d_{E}(P,-Q)+d_{E}(-Q, R) \\
& \geq 4 r s+d_{E}(P, R) \\
& >4 r s+d_{E}(-P, R) \\
& >d^{s}(P, R) \\
& =d^{s}(R, P)
\end{aligned}
$$

Similarly we can show that $d^{s}(Q, R)+d^{s}(R, P) \geq d^{s}(P, Q)$ and $d^{s}(R, P)+d^{s}(P, Q) \geq d^{s}(Q, R)$.

We now prove Theorem 1.2.

Proof of Theorem 1.2. Let $P, Q \in S_{r}^{2}$. We may assume that $\angle P O Q>\pi-2 \alpha$ and $s \neq 1$. Let $\angle P O Q=\pi-2 \beta$. Notice that $0 \leq \beta<\alpha<\pi / 4$ and $\cos x-\sin x$ is decreasing on $0 \leq x<\pi / 4$. Since $d_{E}(P, Q)=2 r \cos \beta$ and $d_{E}(-P, Q)=2 r \sin \beta$, from equation (2), we have

$$
\begin{aligned}
d_{E}(P, Q)-d^{s}(P, Q) & =d_{E}(P, Q)-2 r s-d_{E}(-P, Q) \\
& =2 r \cos \beta-2 r s-2 r \sin \beta \\
& =2 r(\cos \beta-\sin \beta-s) \\
& \geq 2 r(\cos \alpha-\sin \alpha-s) \\
& =0 \\
d^{s}(P, Q)-s d_{E}(P, Q) & =2 r s+d_{E}(-P, Q)-s d_{E}(P, Q) \\
& =2 r s+2 r \sin \beta-2 r s \cos \beta \\
& =2 r s(1-\cos \beta)+2 r \sin \beta \\
& \geq 0 .
\end{aligned}
$$

Acknowledgment. The author would like to thank the referee for his careful reading of the manuscript, and his detailed and very useful comments which improved this paper substantially.

REFERENCES

1. Y.D. Kim, A family of pseudo metrics on B^{3} and its application, preprint, arXiv:math.GN/0201077.
2. B. O'Neill, Elementary differential geometry, Academic Press, New York, 1966.

BK21 SNU Mathematical Sciences Division, School of Mathematical Sciences, Seoul National University, Seoul 151-747, Korea
E-mail address: ydkim@math.sunysb.edu, ydkimus@yahoo.com

[^0]: Received by the editors on September 17, 2003.

