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MINIMAL KERNELS, QUADRATURE IDENTITIES
AND PROPORTIONAL HARMONIC MEASURES

JOHN R. AKEROYD, KRISTI KARBER AND ALEXANDER YU. SOLYNIN

ABSTRACT. We describe nonnegative weights on T that
are minimal at a given point and are related to quadrature
identities for harmonic functions. The problem has a geo-
metric interpretation in terms of a system of crescent regions
carrying proportional harmonic measures. This system occurs
as circle domains of a quadratic differential with second order
poles. Our results have applications to harmonic polynomial
approximation.

1. Introduction and main results. Let H denote the set of
real-valued functions h that are harmonic in D = {z : |z| < 1} and
continuous on D. By the Poisson formula, for every h in H, and any
point a in D,

(1.1) h(a) =
∫

T

h(z)Pa(z) dm(z),

where dm = dθ/2π is normalized Lebesgue measure on T = ∂D and
Pa(z) denotes the Poisson kernel on T for evaluation at a:

Pa(z) =
1 − |a|2
|z − a|2 =

(1 − |a|2)z
(z − a)(1 − āz)

.

Now (1.1) can be viewed as a first order quadrature identity. A
quadrature identity of order n+ 1 on H has the form

(1.2)
∫

T

h(z)w(z) dm(z) =
n∑

k=0

(−1)kckh(ak),

where the weight w, the distinct reference points ak are in D, and the
nonzero constants ck are independent of h. The factor (−1)k in (1.2)
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is chosen to simplify some of our later formulations. The weight w in
(1.2) is necessarily of the form:

(1.3) wA,C(z) =
n∑

k=0

(−1)kckPak
(z),

where A = {a0, a1, . . . , an} and C = {c0, c1, . . . , cn}. Indeed, if w
satisfies (1.2), then [w − wA,C ] dm ⊥ C(T), where C(T) denotes the
set of continuous functions on T, and hence w(z) = wA,C(z) almost
everywhere on T. Since harmonic functions are conformally invariant,
we may fix one of the reference points. In what follows we always
assume that a0 = 0 and c0 = 1. Then wA,C can be represented as

(1.4) wA,C(z) =
R(z)∏n

k=1(z − ak)(z − 1/āk)
,

whereR(z) is a polynomial of degree at most 2n. And indeed if all of our
constants ck are nonzero, then taking the limit as z tends to infinity
in representations (1.3) and (1.4) we find that the degree of R(z) is
exactly 2n and the coefficient of z2n in R(z) is one. Motivated by
applications to the theory of approximation by harmonic polynomials,
we are interested in weights wA,C with the maximal possible rate of
decay near a given point ζ0 in T; without loss, we assume that ζ0 = 1.
So we search for nonzero constants c0 = 1, c1, . . . , cn to satisfy:

wA,C(z) = O((z − 1)2n),

and indeed such that R(z) = (z− 1)2n. The existence of, and formulae
for, such constants is easily established in the following way. For
1 ≤ k ≤ n, simply multiply both

∏n
k=1((z − 1)2)/((z − ak)(z − 1/āk))

and
∑n

k=0(−1)kckPak
(z) by (z − ak), and then substitute z = ak.

Equating the results and solving for ck, we find that

ck = (−1)k āk(1 − ak)2

ak(1 − |ak|2)
∏′n

j=1

āj(1 − ak)2

(aj − ak)(1 − akāj)
.

Here and below
∏′ denotes the product over all indices j �= k.

If the reference points ak are real and positive, then the minimal
weight wA,C = wA is

(1.5) wA(z) =
(z − 1)2n∏n

k=1(z − ak)(z − 1/ak)
=

n∏
k=1

ak|z − 1|2
|z − ak|2 > 0
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for all z ∈ T \ {1}. If, in addition, 0 = a0 < a1 < · · · < an < 1, then
the constants ck are positive:

(1.6) ck = (−1)k 1 − ak

1 + ak

∏′n

j=1

aj(1 − ak)2

(aj − ak)(1 − akaj)
> 0.

Combining these observations we obtain the following result.

Theorem 1.1. For every set A of n ≥ 1 reference points 0 = a0 <
a1 < · · · < an < 1, there is a unique weight wA minimal at z = 1 and a
unique set of real constants C = {c0, c1, . . . , cn} with c0 = 1, such that
the quadrature identity

(1.7)
∫

T

h(ζ)wA(ζ) dm(ζ) =
n∑

k=0

(−1)kckh(ak)

holds for all h ∈ H. The minimal weight wA is given by (1.5) and is
positive on T \ {1}. The constants ck are positive and defined by (1.6).

Since wA ≥ 0, (1.7) implies the Harnack-type inequality

h(0) ≥
n∑

k=1

(−1)k+1ckh(ak),

which holds for all h ≥ 0 in H. For n = 1 and a1 = a > 0, this is the
classical Harnack’s inequality:

h(0) ≥ 1 − a

1 + a
h(a).

In Section 2, we discuss an application of Theorem 1.1 to harmonic
polynomial approximation. This application has a counterpart in the
context of analytic polynomial approximation [2], which has close ties
to Szegö’s theorem.

Our problem concerning quadrature identities, cf. Theorem 1.1, has
an interesting geometric interpretation. It turns out that any solution
corresponds uniquely with a partition of D into a system of n crescents
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along with a single Jordan region. To make the picture clear, we first
define our terms.

A crescent is a bounded, simply connected region of the form W \V ,
where V and W are Jordan regions such that V ⊂ W and V ∩ ∂W is
a single point, the so-called multiple boundary point (mbp) of W \ V .
In this case, γ− := ∂W and γ+ := ∂V are two Jordan curves that
comprise the boundary of W \ V , γ− and γ+ have just one point in
common (the mbp of W \ V ) and γ+ is internal to γ−.

In this paper we consider systems of Jordan curves of the form:
γ0, γ1, . . . , γn, where γ0 = T, γi ∩ γj = {1} whenever i �= j, and γj is
internal to γi whenever j > i, see Figure 1. The collection of bounded
components of C \ ∪n

k=0γk forms what we call a crescent configuration.
For 0 ≤ k ≤ n− 1, let Ωk be the component bounded by γk and γk+1,
and let Ωn be the Jordan region bounded by γn. Notice that Ωk is a
crescent for 0 ≤ k ≤ n−1. We further assume that our system of curves
is chosen so that 0 ∈ Ω0. For notational convenience we let γ−k = γk

and γ+
k = γk+1, 0 ≤ k ≤ n− 1, and hence (for such k), γ+

k = γ−k+1.

Let Cn denote the set of all crescent configurations described above.

Problem. For a given set of positive constants C = {c0, c1, . . . , cn}
with c0 = 1, find all configurations {Ω0, . . . ,Ωn} in Cn and reference
points ak ∈ Ωk, which carry harmonic measures proportional with
respect to C, i.e., such that for all k = 0, . . . , n− 1,

(1.8) ck ω(E,Ωk, ak) = ck+1 ω(E,Ωk+1, ak+1)

for every Borel set E ⊂ γ+
k .

For two regions this problem was solved in [1]. For n ≥ 2, its solution
is given by Theorem 1.3 below. To explain how configurations carrying
proportional harmonic measures arise in relation with quadrature iden-
tities, let us discuss a theoretical link between them and Theorem 1.1.

Let D be a bounded Dirichlet region in C. We remind the reader that
the harmonic measure ω(·, D, a) is a unique Borel probability measure
on ∂D such that

h(a) =
∫

∂D

h(z) dω(z,D, a)
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FIGURE 1.

for all functions h harmonic on D and continuous on D, see [5]. Let
gD(z, a) be Green’s function of D with singularity at a ∈ D. If ∂D is
piecewise smooth, then (cf. [5]) for z in ∂D,

(1.9) dω(z,D, a) =
1
2π

∂gD(z, a)
∂nz

,

where ∂/∂nz denotes the derivative with respect to the inner normal
on ∂D.

Now assume that {Ω0, . . . ,Ωn} is a configuration of crescents in Cn

satisfying (1.8). Then, for every h ∈ H and k = 0, . . . , n− 1,

(1.10) ck

∫
γ+

k

h(z) dω(z,Ωk, ak) = ck+1

∫
γ−

k+1

h(z) dω(z,Ωk+1, ak+1).

Since

h(ak) =
∫

γ−
k
∪γ+

k

h(z) dω(z,Ωk, ak), k = 0, . . . , n− 1,
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(1.10) implies that

ckh(ak) = ck

∫
γ−

k

h(z) dω(z,Ωk, ak)+ck+1

∫
γ−

k+1

h(z) dω(z,Ωk+1, ak+1).

Multiplying this by (−1)k and summing over k = 0, . . . , n, we get:

(1.11)
∫

T

h(z) dω(z,Ω0, a0) =
n∑

k=0

(−1)kckh(ak)

for every h ∈ H.

Thus, starting with a configuration of crescents carrying proportional
harmonic measures, we obtain the same type of quadrature identity as
in Theorem 1.1. In particular, if a0, . . . , an and c0, . . . , cn in (1.11) are
the same as in (1.7), the uniqueness statement of Theorem 1.1 implies
that the minimal weight w(ζ) can be recovered from the equation

w(ζ) dm(ζ) = dω(ζ,Ω0, 0).

In the opposite direction, Theorem 1.1 allows us to describe configu-
rations of crescents carrying proportional harmonic measures. Let

(1.12) HA,C(z) =
n∑

k=0

(−1)kck log
∣∣∣∣ z − ak

1 − akz

∣∣∣∣ .

Theorem 1.2. Let A be a set of reference points 0 = a0 < a1 < ··· <
an < 1, and let C = {c0, . . . , cn}, where the constants ck (dependent
on the points a1, . . . , an) are given by Theorem 1.1. Let

EA = {z ∈ C : HA,C(z) = 0}.
Then EA partitions D into a crescent configuration {Ω0, . . . ,Ωn},
which carries proportional harmonic measures with respect to the set
C; ak ∈ Ωk for k = 0, 1, . . . , n.

Figure 2 demonstrates typical configurations with two and three
crescents carrying proportional harmonic measures. These figures were
generated by Advanced Grapher software.
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FIGURE 2.

The proof of Theorem 1.2 given in Section 3 uses the fact that EA is
a level set of a linear combination of Green’s functions

g(z, ak) = − log |(z − ak)/(1 − ākz)|
of D having singularities at z = ak. This approach was used in [1].

Note that Green’s functions provide an efficient method to study
extremal problems on the maximal product of conformal radii of non-
overlapping regions (cf. [3, 4]), which leads to a description of extremal
configurations in terms of quadratic differentials (cf. [3, 8, 9]). In Sec-
tion 4 we show that quadratic differentials are intimately related to the
problem on configurations carrying proportional harmonic measures.
Our next theorem, whose proof is given in Section 5, solves the prob-
lem for crescent configurations.

Theorem 1.3. For every set of positive constants C = {c0, . . . , cn}
with c0 = 1 such that

(1.13) ck − ck+1 + · · · + (−1)n−k · cn > 0 for k = 0, . . . , n,

there is a unique system Ω̃ ∈ Cn of crescents Ωk, each of which is
symmetric with respect to R, and a unique set A = (a0, . . . , an) with
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a0 = 0 of reference points ak ∈ Ωk, carrying harmonic measures
proportional with respect to C. The regions Ωk are the circle domains
of the quadratic differential

(1.14) QA(z) dz2 = − (z − 1)4n

z2
∏n

k=1(z − ak)2(z − 1/ak)2
dz2.

The reference points ak are solutions, unique up to ordering, to the
equations

(1.15) ck+1Fk(a1, . . . , an) = ckFk+1(a1, . . . , an), k = 0, . . . , n− 1,

where F0 = 1 and for k = 1, . . . , n, Fk denotes the right-hand side of
(1.6) considered as a function of a1, . . . , an.

We should emphasize that all problems studied in this paper are
conformally invariant, i.e., they can be reformulated for any simply
connected region instead of the unit disk. Often such a transplantation
leads to an essential simplification of computations.

2. Harmonic polynomial approximation. We begin this section
with a famous result in the context of analytic polynomial approxima-
tion.

Theorem 2.1 (G. Szegö). Let P denote the collection of analytic
polynomials in z, and let μ be a finite, positive Borel measure with
support in T. Let μ = μa + μs be the Lebesgue decomposition of μ
with respect to m (normalized Lebesgue measure on T); μa 
 m and
μs ⊥ m. Then, for 0 < t <∞,

inf
p∈P

∫
T

∣∣∣∣1z − p(z)
∣∣∣∣t dμ(z) = exp

{∫
T

log
(
dμa

dm

)
dm

}
.

Corollary 2.2. Under the hypothesis of Szegö’s theorem, P is dense
in Lt(μ) if and only if

∫
T

log (dμa/dm) dm = −∞.

In general terms, Corollary 2.2 indicates that, in order for the analytic
polynomials to be dense in Lt(μ), where 0 ≤ μ 
 m, there must be a
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“location” (in T) where μ is weak relative to m. In the context of the
(real) harmonic polynomials, there is no requirement of this sort since
such functions are in fact uniformly dense in the continuous real-valued
functions on T. If, however, μ has some additional mass in D, then the
question of density of the harmonic polynomials in Lt(μ) is usually
nontrivial. Our main result of this section, Theorem 2.4, addresses a
problem of this type. It has a close relative in the context of analytic
polynomial approximation; cf. [2], where a “plugging” phenomenon is
described. Specifically, in [2], the authors consider measures of the form
μ = η+σ, where dη = w dm, 0 ≤ w ∈ L∞(m),

∫
T

log(w) dm = −∞, and
σ is a series of weighted point masses in D such that, for t sufficiently
large, P is not dense in Lt(μ). One can thus say that, for sufficiently
large t, the series of weighted point masses σ plugs the weakness in μ.
We find a similar phenomenon quite commonplace in our work here.
Since H contains the harmonic polynomials and any function in H can
be uniformly approximated (on D) by harmonic polynomials, without
loss we work with H as if it were the set of harmonic polynomials. The
next two results address the case t = 1. We later investigate the less
tractable setting of t in the range 1 < t <∞. We begin by noting that,
if a ∈ D and μ = m+ δa, where δa is the (unit) point mass at a, then
H is not dense in Lt(μ) for any t, 1 ≤ t < ∞. This simple fact follows
from Harnack’s inequality. Indeed, for any h in H that is nonnegative
on D,

h(a) ≤ 1 + |a|
1 − |a|

∫
T

h dm.

And so, the characteristic function χa is not in H1(μ), the closure of
H in L1(μ).

Lemma 2.3. Suppose 0 ≤ v ∈ L∞(m) and yet 1/v �∈ L∞(m). For
some fixed a in D, define μ by

μ = η + δa,

where dη = v dm. Then H is dense in L1(μ).

Proof. Now, by our assumption concerning v, for any ε > 0 and any
value λ in R, we can find a continuous real-valued function g on T such
that

∫
T
|g|v dm < ε and yet ĝ(a) = λ; where ĝ denotes the solution to
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the Dirichlet problem on D with boundary values g. So, functions of
the form ĥ + ĝ, where h is continuous and real-valued on T and g is
as above, are dense in L1(μ). Since functions of this form are also in
H1(μ), the result follows.

In Section 1 we have shown that, for any set A of reference points,
0 = a0 < a1 < · · · < an < 1, there are uniquely determined positive
constants c0 = 1, c1, . . . , cn and a unique corresponding L∞ weight wA

on T that has a zero of order 2n at z = 1 such that∫
T

hwA dm = h(0) − c1h(a1) + · · · + (−1)ncnh(an),

whenever h ∈ H. And hence, for such h,

(2.1) |h(0)| ≤
∫

T

|h|wn dm+ c1|h(a1)| + · · · + cn|h(an)|.

Evidently, H is not dense in L1(μ), where μ = η + σ and σ =
δ0 + c1δa1 + · · · + cnδan

and dη = wA dm. Our next result shows
that this is sharp.

Theorem 2.4. With the terms of the above discussion, suppose
0 ≤ v ∈ L∞(m), v ≤ wA and yet (wA/v) �∈ L∞(m). Define ν by
dν = v dm+ dσ. Then H is dense in L1(ν).

Proof. For k = 0, 1, . . . , n, let

fk(ζ) =
n∏

j=1,j �=k

(
1 −

(
1 − aj

1 + aj

)2(1 + z

1 − z

)2)
.

Notice that fk is analytic in D, fk is real-valued on T ∪ [0, 1] which
contains the support of μ, and fk ∈ L1(μ). Consider the measure νk

defined by dνk = fk dν. Now νk has the form ηk +σk, where σk = cδak
,

0 �= c ∈ R, dηk = vkdm, 0 ≤ vk|T ∈ L∞(m) and yet (1/vk) /∈ L∞(m).
So, as in the proof of Lemma 2.3, for any ε > 0 and any λ in R, we
can find g real-valued and continuous on T such that

∫
T
|g| dνk < ε and

yet ĝ(ak) = λ, where ĝ denotes the solution to the Dirichlet problem
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on D with boundary values g. In fact, we may assume that g is Dini
continuous on T, and so g has a continuous harmonic conjugate g∗ on
D; cf. [7]. We let G = g + ig∗. We then have hk = �{Gfk} ∈ H1(ν),∫

T
|hk| dν < ε, hk(ai) = 0 for i �= k and hk(ak) can be prescribed in R.

Therefore, linear combinations of functions of the type hk along with
summands from H are dense in L1(ν). Since hk ∈ H1(ν) for 0 ≤ k ≤ n,
we conclude that H is dense in L1(ν).

Remark. Let us now return to the inequality given in (2.1) and apply
Jensen’s inequality for t in the range 1 < t <∞ to get

|h(0)|t ≤ 2t−1

∫
T

|h|twt
A dm+Mt

[
c1|h(a1)|t + · · · + cn|h(an)|t] ,

whenever h ∈ H; Mt = (2
∑n

k=1 ck)t−1. And therefore H fails to
be dense in Lt(μt), where μt = ηt + σ, dηt = wt

A dm and σ =
δ0 + c1δa1 + · · · + cnδan

. Since the zero of wt
A at z = 1 is of higher

order than that of wA, provided 1 < t < ∞, we see, by Theorem 2.4,
that plugging for t > 1 is a more common occurrence than for t = 1.
However, we have not yet been able to obtain “sharpness” for t in the
range 1 < t < ∞. The best analogue of Theorem 2.4 that we have
been able to achieve for 1 < t < ∞ and the measures μt is for weights
v satisfying

v(z) ≤ |1 − z|t−1wt
A(z).

3. Proof of Theorem 1.2. Now EA is a level set of the function
HA,C defined by (1.12), and HA,C is harmonic on C except poles at
the points a0, a1, . . . , an and a−1

1 , . . . , a−1
n . Therefore, EA consists of a

finite number of Jordan analytic curves or analytic arcs, each of which
“terminates” on the set of critical points of HA,C . The critical points
of HA,C are zeros of (∂/∂z)HA,C . Since

2
∂

∂z
HA,C(z) =

n∑
k=0

(−1)kck
1 − a2

k

(z − ak)(1 − akz)

= z−1
n∑

k=0

(−1)kckPak
(z) = z−1wA(z),

there is only one critical point, of order 2n, at z = 1.



1830 J.R. AKEROYD, K. KARBER AND A.YU. SOLYNIN

Note that T ⊂ EA. Let ẼA be the collection of arcs γj of EA, which
lie in D and terminate at z = 1. Since HA,C(z̄) = HA,C(z), the set ẼA

is symmetric with respect to R. Since there are no critical points of
HA,C in D, each γj is either symmetric with respect to R or it does not
intersect R except at z = 1. The latter case never happens. Indeed, if
it does, then γj ∪ {1} bounds a simply connected region D on D \ R.
Therefore, HA,C is harmonic on D. Since HA,C(z) = 0 on γj ∪{1}, the
maximum principle implies that HA,C ≡ 0 contradicting (1.12).

Since z = 1 is a critical point of HA,C of order 2n, our analysis shows
that ẼA consists of n analytic arcs γj symmetric with respect to R,
which split D into n + 1 simply connected regions Ωk, each of which
contains at least one of the points a0, a1, . . . , an. Since the regions are
pairwise disjoint, each of them contains exactly one of these points. We
numerate the domains such that ak ∈ Ωk, k = 0, . . . , n.

The maximum principle also implies that EA∩D = ẼA. If not, we can
find a Jordan analytic curve γ, which belongs to one of the regions, say
Ωk, and separates ak from ∂Ωk. Let D be a doubly connected region
bounded by γ and ∂Ωk. Then HA,C is harmonic on D and HA,C ≡ 0 on
∂D. By the maximum principle, HA,C ≡ 0 on C contradicting (1.12).

Summarizing, we have shown that D \ EA consists of n crescents Ωk

and a Jordan region Ωn, such that ak ∈ Ωk for 0 ≤ k ≤ n. Let gk(z)
be the restriction of (−1)kc−1

k HA,C(z) to Ωk. Then gk is harmonic on
Ωk except for a logarithmic singularity at z = ak, and gk ≡ 0 on ∂Ωk.
Therefore gk is Green’s function of Ωk having a pole at z = ak. Then,
by (1.9), for z ∈ ∂Ωk,

dω(z,Ωk, ak) =
1
2π

∂

∂n
gk(z) |dz| =

(−1)k

2πck
∂

∂n
HA,C(z) |dz|,

where ∂/∂n denotes differentiation in the direction of the inner normal
on ∂Ωk. This implies that for k = 0, . . . , n− 1 and z ∈ ∂Ωk ∩ ∂Ωk+1,

ck dω(z,Ωk, ak) = ck+1 dω(z,Ωk+1, ak+1).

Therefore, the crescent configuration Ωk carries proportional harmonic
measures. The proof is complete.
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4. Harmonic measure on trajectories of quadratic differen-
tials. The expression Q(z) dz2 with the function Q meromorphic in
a region Ω ⊂ C is called a quadratic differential on Ω. If z = z(ζ) is
a conformal mapping from a region Ωζ onto Ω, then Q(z) dz2 can be
represented in terms of ζ as

(4.1) Q1(ζ) dζ2 = Q(z(ζ))(z′(ζ))2 dζ2.

Equation (4.1), which is a part of the definition of a quadratic differ-
ential, describes how a conformal change of variables affects quadratic
differentials; see [6, 8, 9] for properties and applications of quadratic
differentials. A maximal curve or arc γ such that Q(z) dz2 > 0 (respec-
tively, Q(z) dz2 < 0) along γ is called a trajectory (respectively, orthog-
onal trajectory) of Q(z) dz2. Now Q(z) dz2 is called real (respectively,
positive) on Ω if the expression Q(z) dz2 is real on ∂Ω (respectively,
positive on ∂Ω except possibly for a finite number of points where Q
vanishes).

Zeros and poles of Q are its critical points. Any trajectory or
orthogonal trajectory having at least one of its terminal points at a
zero or simple pole of Q is called a critical trajectory or a critical
orthogonal trajectory, respectively. By ΦQ we denote the set of points
of all critical trajectories of Q(z) dz2.

A simply connected region D is called a circle domain of Q(z) dz2

if the following properties hold. The meromorphic function Q has a
second order pole at some point a in D, which is the only critical point
in D, and if γ is a trajectory of Q(z) dz2 intersecting D, then γ is a
closed Jordan curve in D that separates a from ∂D. The maximal circle
domain containing a pole a is necessarily bounded by a finite number
of critical trajectories or boundary arcs.

Here we consider only quadratic differentials Q(z) dz2, without den-
sity structures, for which C \ Φ̄Q consists of a finite number of circle
domains. In general, C \ ΦQ may also contain ring domains, strip do-
mains, and end domains; see [8, Chapter 3].

A point a is a second order pole of Q(z) dz2 in a circle domain D if
and only if there exists c > 0 such that

(4.2) Q(z) = − c2

4π2

1
(z − a)2

+
a1

z − a
+ · · ·

near z = a.
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The metric |Q(z)|1/2 |dz| is called the Q-metric. If γ is a trajectory
of Q(z) dz2 in a circle domain D, then

|γ|Q :=
∫

γ

|Q(z)|1/2 |dz| =
∫

γ

Q1/2(z) dz

is the Q-length of γ. Here and later on we always assume that
Q1/2 dz > 0 along the corresponding trajectory. Using (4.2) we easily
get

|γ|Q = c.

Let ζ = f(z) map D conformally onto the unit disk D such that
f(a) = 0 and f(b) = 1 for some b ∈ ∂D. Then

(4.3) f(z) = exp
{

2πi
c

∫
b

Q1/2(z) dz
}

;

see [8, Chapter 3.3].

Lemma 4.1. Let D be a circle domain of a quadratic differential
Q(z) dz2 having expansion (4.2) at z = a ∈ D. Then

(4.4) dω(z,D, a) = c−1|Q(z)|1/2 |dz| for all z ∈ ∂D.

Proof. Let ζ = f(z) map D conformally onto D such that f(a) = 0.
Then using (4.3), we get

dω(z,D, a) =
1
2π

|dζ| =
1
2π

|f ′(z)| |dz| = c−1|Q(z)|1/2 |dz|.

Corollary 4.2. Let D1 and D2 be circle domains of Q(z) dz2 having
an open arc L on ∂D1 ∩ ∂D2, and choose a1 in D1 and a2 in D2.
Let c1 and c2 be Q-lengths of trajectories of Q(z) dz2 in D1 and D2,
respectively. If Q is meromorphic on L, then for every Borel set E ⊂ L,

(4.5) c1ω(E,D1, a1) = c2ω(E,D2, a2).
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Equality (4.5), which is an immediate consequence of (4.4), reveals a
role played by quadratic differentials in problems on regions carrying
proportional harmonic measures on their boundaries.

5. Proportional harmonic measures on crescents. The
proof of Theorem 1.3 will be given after two lemmas. First we show
that inequalities (1.13) are necessary for the existence of crescent
configurations carrying proportional harmonic measures.

Lemma 5.1. Assume there is a crescent configuration Ω̃ ∈ Cn

of Ω0, . . . ,Ωn with reference points ak ∈ Ωk satisfying (1.8) with
c0 = 1 and positive c1, . . . , cn. Then inequalities (1.13) hold true for
all k = 0, . . . , n.

Proof. Let ω+
k = ω(γ+

k ,Ωk, ak) and ω−
k = ω(γ−k ,Ωk, ak). Then, by

(1.8),

(5.1) ω−
k = 1 − ω+

k = 1 − ck+1

ck
ω−

k+1, k = 0, . . . , n− 1.

Using (5.1) and proceeding by induction, we get

(5.2) ω−
k = (−1)kc−1

k

n∑
j=k

(−1)jcj , k = 0, . . . , n.

Indeed, (5.2) is trivial for k = n. Assume that (5.2) holds true for
k = n, n− 1, . . . , s. Then using (5.1) and our induction hypothesis, we
obtain

(5.3)

ω−
s−1 = 1 − cs

cs−1
ω−

s = 1 − cs
cs−1

⎡⎣(−1)sc−1
s

n∑
j=s

(−1)jcj

⎤⎦
= (−1)s−1c−1

s−1

n∑
j=s−1

(−1)jcj ,

which proves (5.2). Since the harmonic measures ω−
k and constants ck

are positive, (5.2) implies (1.13).
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Lemma 5.2. For every set of positive constants C = {c0, . . . , cn}
with c0 = 1, there is at most one crescent configuration Ω̃ ∈ Cn carrying
harmonic measures proportional with respect to C.

Proof. Assume there are two configurations Ω̃1 = {Ωk,1}n
k=0 and

Ω̃2 = {Ωk,2}n
k=0 carrying harmonic measures proportional with respect

to C. Let ak,m be a reference point in Ωk,m, and let γ+
k,m and γ−k,m be

the corresponding boundary arcs of Ωk,m. Then, for k = 0, . . . , n − 1
and m = 1, 2, and for any Borel set E ⊂ γ+

k,m,

ckω(E,Ωk,m, ak,m) = ck+1ω(E,Ωk+1,m, ak+1,m).

For notational convenience, let

ω+
k,m = ω(γ+

k,m,Ωk,m, ak,m) and ω−
k,m = ω(γ−k,m,Ωk,m, ak,m).

Since ω−
k,1 and ω−

k,2 satisfy (5.2) for the same set of constants ck, (5.3)
implies that

(5.4) ω+
k,1 = ω+

k,2, ω−
k,1 = ω−

k,2, k = 0, 1, . . . , n.

Let ζ = fk,m(z) map Ωk,m conformally onto the unit disk if k is even
and onto the exterior of the unit disk D∗ = C \ D if k is odd. For even
k, we normalize fk,m by the conditions fk,m(ak,m) = 0, fk,m(γ+

k,m) =
L(ϕk,m), where 0 < ϕk,m ≤ 2π and L(ϕ) := {eiθ : 0 < θ < ϕ}. For odd
k we assume that fk,m(ak,m) = ∞ and fk,m(γ−k,m) = L(ϕk,m). Note
that (5.4) implies that ϕk,1 = ϕk,2 for all k = 0, . . . , n.

Consider the function Φ : D �→ D defined by:

Φ(z) = f−1
k,2(fk,1(z)) if z ∈ Ωk,1 ∪ γ+

k,1.

Then Φ(ak,1) = ak,2 for all k = 0, 1, . . . , n, Φ(1) = 1, and Φ is analytic
in ∪n

k=0Ωk,1. Since γ+
k,m and γ−k,m are Jordan arcs, the conformal

mapping fk,m is one-to-one on Ω̄k,m \ {1}. Therefore Φ maps D one-
to-one and onto D.

Let us prove that Φ is analytic in D. We have to show that Φ is
analytic across γ+

k,1 for every 0 ≤ k < n. To be specific, we fix an even
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k. If k is odd, the argument is similar. Let Ω′
k,m = f−1

k,m(D \ [0, 1]),

Ω′
k+1,m = f−1

k+1,m(D∗ \ [1,∞]), let gk,m = f
1/ck+1
k,m and gk+1,m = f

1/ck

k+1,m.
The functions gk,m and gk+1,m are single-valued on Ω′

k,m and Ω′
k+1,m,

respectively. For m = 1, 2, let

Φm(z) =

{
gk,m(z) if z ∈ Ω′

k,m ∪ γ+
k,m

gk+1,m(z) if z ∈ Ω′
k+1,m.

Notice that Φ(z) = Φ−1
2 (Φ1(z)) for z ∈ Ω′

k,1 ∪ Ω′
k+1,m ∪ γ+

k,1.

For any point τ ∈ γ+
k,m, let lm(τ ) denote the arc of γ+

k,m with ends at
z = 1 and z = τ such that fk,m(lm(τ )) = L(ϕm) for some ϕm = ϕm(τ ),
0 < ϕm ≤ 2π. Since

ckω(lm(τ ),Ωk,m, ak,m) = ck+1ω(lm(τ ),Ωk+1,m, ak+1,m),

we have
gk,m(τ ) = gk+1,m(τ ),

for m = 1, 2 and every τ in γ+
k,m. This implies that Φm is continuous on

Ω′
k,m ∪ Ω′

k+1,m ∪ γ+
k,m. Since |Φm(z)| = 1 for z in γ+

k,m, it follows that
Φm(z) is analytic on γ+

k,m, m = 1, 2. This implies that Φ = Φ−1
2 ◦ Φ1

is analytic and one-to-one on D. Hence Φ is a Möbius mapping from
D onto D. Since Φ(0) = 0 and Φ(1) = 1, we have Φ(z) = z. Therefore,
Ωk,2 = Φ(Ωk,1) = Ωk,1 and ak,2 = Φ(ak,1) = ak,1. This completes the
proof.

For any set A, let A∗ = {z̄ : z ∈ A}. Note that a configuration
Ω̃ = {Ωk}n

k=0 in Cn, with reference points ak in Ωk, carries proportional
harmonic measures if and only if the configuration of symmetric regions
Ω̃∗ = {Ω∗

k}n
k=0 with the reference points āk ∈ Ω∗

k carries proportional
harmonic measures. Therefore, by the uniqueness result of Lemma 5.2,
we obtain the following.

Corollary 5.3. If a crescent configuration Ω̃ = {Ω0, . . . ,Ωn}, with
reference points ak ∈ Ωk, carries proportional harmonic measures, then
Ωk is symmetric with respect to R and

(5.5) 0 = a0 < a1 < · · · < an < 1.
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Proof of Theorem 1.3. The uniqueness of a crescent configuration Ω̃ =
{Ω0, . . . ,Ωn}, the symmetry of Ωk with respect to R, for k = 0, . . . , n,
and inequalities (5.5) follow from Lemma 5.2 and its corollary. Let M1

be the set of all points (a1, . . . , an) ∈ Rn, whose coordinates satisfy
(5.5), and let M2 be the set of points (c1, . . . , cn) ∈ Rn with positive
coordinates satisfying (1.13). Let F : M1 �→ Rn be the mapping with
components Fk, k = 1, . . . , n, defined by (1.6).

The proof will be complete if we show that F is a diffeomorphism from
M1 onto M2. Indeed, for every set of constants ck satisfying (1.13),
there is a unique solution a1, . . . , an of equations (1.15), which satisfies
(5.5). Therefore the crescent configuration defined by Theorem 1.2 is a
unique system carrying proportional harmonic measures with respect
to c0, . . . , cn.

The same crescent configuration arises as a system of circle domains
of quadratic differential (1.14). To show this, we note that QA(z) has
a second order pole at z = ak in the Laurent expansion

QA(z) =
−c2k

(z − ak)2
+ · · · ,

where ck = Fk(a1, . . . , an) and Fk is defined as in Theorem 1.3.
Therefore, there is a maximal circle domain Dk of QA(z) dz2 centered
at ak.

Notice that the trajectory structure of QA(z) dz2 is symmetric with
respect to the real axis and with respect to the unit circle. The
punctured circle γ0 = T\{1} is a critical trajectory of QA(z) dz2. Inside
the unit disk, QA(z) dz2 has n critical trajectories γ1, . . . , γn, each of
which terminates at the point z = 1; where z = 1 is a zero of order 4n
of QA(z) dz2. We enumerate the trajectories such that γk+1 lies inside
γk. The complementary set D\∪n

k=1γk consists of n+1 maximal circle
domains Dk of QA(z) dz2, where ak ∈ Dk and ∂Dk = γk ∪ γk+1 ∪ {1}.
Hence, for every k = 0, . . . , n−1, Dk is a crescent in D, Dn is a Jordan
region and the system D̃A = {D0, . . . , Dn} is in Cn. And this holds for
every set A = {a0, . . . , an} satisfying (5.5). In our standard notation
for boundary arcs of crescents, γ−k = γk, γ+

k = γk+1.

By Corollary 4.2,

ckω(E,Dk, ak) = ck+1ω(E,Dk+1, ak+1)
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for all k = 1, . . . , n and for every Borel set E ⊂ γ−k = γk. There-
fore, the crescent configuration D̃A with the set of reference points A
carries harmonic measures proportional with respect to the constants
c0, c1, . . . , cn defined by (1.6). Now the uniqueness result of Lemma 5.2
shows that Dk = Ωk for all k = 0, . . . , n.

To prove that F is a diffeomorphism from M1 onto M2, we represent
F as F = Φ◦L with L = (ψ, . . . , ψ), where ψ = ψ(x) = (1+x)/(1−x).
Then Φ = F ◦ L−1 is a mapping from the set N = {(b1, . . . , bn) : 1 <
b1 < · · · < bn} into M2. Let (∂L/∂A) denote the Jacobian matrix of
L. We then have

(5.6) ‖(∂L/∂A)‖ = 2n
n∏

k=1

(1 − ak)−2 �= 0.

This easily implies that L is a diffeomorphism from M1 onto N .

To show that Φ is a local diffeomorphism, we change variables in (1.3)
via z = (i−ζ)/(i+ζ). Then (1.3), with wA,C defined by (1.5), becomes

(5.7)
n∑

k=0

(−1)kck
bk

1 + b2kζ
2

=
ζ2n

1 + ζ2

n∏
k=1

b2k − 1
1 + b2kζ

2
,

where bk = (1 + ak)/(1 − ak), k = 0, . . . , n. Developing both sides of
(5.7) into power series at ζ = 0 and equating corresponding coefficients,
we get a system of linear equations in ck:

(5.8)
n∑

k=1

(−1)kckb
2j+1
k = − 1, j = 0, . . . , n− 1.

We know from Theorem 1.1 that (5.8) has a unique solution. Therefore,
the determinant ‖((−1)kb2j+1

k )‖ �= 0 for considered values of bk’s.

Differentiating equations (5.8) with respect to the bl’s and using
matrix notation, we obtain:

(5.9) (∂ck/∂bl)
(
(−1)kb2j+1

k

)
= −

(
(2j + 1)(−1)lclb

2j
l

)
,

where k = 1, . . . , n, l = 1, . . . , n and j = 0, . . . , n − 1. Finding the
determinant of the matrix on the right-hand side of (5.9), we get:
(5.10)∥∥∥(

(2j + 1)(−1)lclb
2j
l

)∥∥∥ = (2n− 1)!!
n∏

k=1

(ck/bk)
∥∥∥(

(−1)lb2j+1
l

)∥∥∥ �= 0.
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Now (5.10) and (5.6) imply that ‖(∂ck/∂bl)‖ �= 0 for considered values
of the parameters. Thus, Φ is a local diffeomorphism and therefore
F = Φ ◦ L is a diffeomorphism from M1 into M2.

To finish the proof, we have to show that F maps ∂M1 into ∂M2.
Since F = Φ ◦ L and L is a diffeomorphism from M1 onto N , it is
enough to show that Φ maps ∂N into ∂M2.

Suppose that ∂Φ(N) �⊂ ∂M2. Then we can find a sequence
(b1,m, . . . , bn,m) in N , which converges to (β1, . . . , βn) in ∂N as m →
∞, such that, for k = 1, . . . , n, ck,m := ck(b1,m, . . . , bn,m) → λk as
m → ∞, where (c1,m, . . . , cn,m) ∈ M2 for all m = 1, 2, . . . and indeed
(λ1, . . . , λn) ∈M2. Since (β1, . . . , βn) ∈ ∂N , we have:

(5.11) β0 = 1 ≤ β1 ≤ β2 ≤ · · · ≤ βn ≤ +∞

with at least one additional sign of equality in the inequalities (5.11).

Substituting aj = (bj−1)/(bj +1) into (1.6), we express the functions
ck in terms of parameters bj ’s:

(5.12) ck = (−1)k 1
bk

∏′n

j=1

b2j − 1
b2j − b2k

, k = 1, . . . , n.

Note that {λk}∞k=1 are the limit values of functions (5.12) with bj =
bj,m, where bj,m → βj as m → ∞. By our assumption, these limit
values λk are finite positive numbers, which satisfy inequalities

(5.13) λk − λk+1 + · · · + (−1)n−kλn > 0, k = 0, . . . , n.

If β1 > 1 and βn < ∞, then βk �= βj for k �= j since all the limit
values ck,∞ are finite. Thus, we cannot have the sign of equality in
relations (5.11) in this case.

Consider the case βn = ∞. Since λn is positive, it follows from
(5.12) that b2n,m − b2j,m → 0 and b2n,m − b2s−1,m �→ 0 as m → ∞ for
j = n− 1, . . . , s and some s, 1 ≤ s ≤ n− 1.
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Considering the sum (5.13) for k = s, we have:

(5.14)

λs−λs+1 + · · · + (−1)n−sλn

= λs

n∑
j=s

(−1)j−s λj

λs

= (−1)n−sλs lim
m→∞

n∑
k=s

bs,m

bj,m

∏′n

j=1

b2s,m − b2j,m
b2k,m − b2j,m

= (−1)n−sλs lim
m→∞

n∑
k=s

∏′n

j=s

b2s,m − b2j,m
b2k,m − b2j,m

= 0,

which contradicts (5.13). The third equality in this chain follows from
the limit relation bj,m/bs,m → 1 as m → ∞, and the last one follows
from the identity

n∑
k=1

∏′n

j=1

1
zk − zj

= 0,

which holds for any distinct complex numbers z1, . . . , zn.

Now suppose βn < ∞. Then, as we noted above, β1 = 1. As in the
previous case, since λn > 0, there exists s, 0 ≤ s < n, such that βj = βn

for all j = s, . . . , n and, in addition, βs−1 < βs if s > 0. Calculating
the sum (5.13) with k = s, we get the same chain of relations (5.14).

Since (5.14) contradicts (5.11), the assumption ∂Φ(N) �⊂ ∂M2 is false
in all cases. The proof is now complete.

Remark. In the proof above we use the fact that ‖((−1)kb2j+1
k )‖ �= 0,

which we derive from the uniqueness assertion of Theorem 1.1. This
relation can be verified directly from the well-known property of the
Vandermonde determinant. Indeed, we have:

‖((−1)kb2j+1
k )‖ = (−1)[n/2]Δ

n∏
k=1

bk,

where [n/2] denotes the integer part of n/2 and

Δ =

∣∣∣∣∣∣∣∣∣
1 1 1 . . . 1
b21 b22 b23 . . . b2n
b41 b42 b43 . . . b4n
. . . . . . . . . . . . . . .

b
2(n−1)
1 b

2(n−1)
2 b

2(n−1)
3 . . . b

2(n−1)
n

∣∣∣∣∣∣∣∣∣
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is the Vandermonde determinant for b21, . . . , b2n. The well-known iden-
tity for the Vandermonde determinant, see [10, p. 3]:

Δ =
∏
i>j

(b2i − b2j)

shows that Δ > 0 (and therefore Δ′ �= 0) since bi > bj if i > j.

6. The case of infinitely many reference points. In this
section we consider the case of a sequence of reference points {aj}∞j=1,
0 = a0 < a1 < · · · < aj−1 < aj → 1 as n→ ∞, and related quadrature
identities. Once again we transplant the problem to H = {z ∈ C :
�(z) > 0} via the Möbius transformation ζ(z) = i(1 − z)/(1 + z), and
let bj = (1 + aj)/(1 − aj). Our analysis is based on the finite case. In
the finite case, and under the transformation z(ζ) = (i− ζ)/(i+ ζ), the
minimal weight vn in H is given by vn(ζ) = wn(z(ζ))|z′(ζ)| and has the
form:

vn(ζ) =
1

1 + ζ2

n∏
j=1

(b2j − 1)ζ2

1 + b2jζ
2
.

And, for n ≥ 2 and 1 ≤ k ≤ n, the constants ck are given by:

ck =
1
bk

n∏
1≤j �=k

b2j − 1
|b2j − b2k|

.

Now 1 − ((b2j − 1)ζ2)/(1 + b2jζ
2) = (1 + ζ2)/(1 + b2jζ

2) and so, by [11,
Theorem 15.6],

v(ζ) =
1

1 + ζ2

∞∏
j=1

(b2j − 1)ζ2

1 + b2jζ
2

converges to a positive weight on R if and only if

∞∑
j=1

b−2
j

converges. The convergence of this series also assures us of the conver-
gence of

ck =
1
bk

∞∏
1≤j �=k

b2j − 1
|b2j − b2k|

.
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Notice that, if v(ζ) converges, then

0 < v(x) <
1

1 + x2

on R \ {0} and so v ∈ L1(R). Suppose, additionally, that the sequence
of positive constants {cn}∞n=1 were summable, i.e., the series

∑∞
n=1 cn

converges, and define measures η (on R) and σ (on H) by:

dη =
1
π
v(x) dx

and

σ = δi +
∞∑

j=1

cjδi/bj
.

Then the signed measure μ = η − σ has finite total variation and, by
our earlier quadrature identities, satisfies∫

h dμ = 0

whenever h is bounded and continuous on H and harmonic on H. In
what follows we give a sufficient condition on {bn}∞n=1, and hence on
{an}∞n=1, that ensures that the sequence {cn}∞n=1 is indeed summable.
We later examine two cases that are instructive. We have not yet
obtained a condition on {bn}∞n=1 that is necessary and sufficient for the
summability of {cn}∞n=1.

Theorem 6.1. If there exist λ > 1 and a positive integer N such
that

bn+1

bn
≥ λ

for n ≥ N , then {cn}∞n=1 is summable.

Proof. Without loss of generality, we may assume that N = 1. To
find an upper bound for ck, we first estimate the product of the initial
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k − 1 factors in its infinite product representation. Observe that
k−1∏
j=1

bj − 1
bk − bj

≤
k−1∏
j=1

1
(bk/bj) − 1

≤
k−1∏
j=1

1
λj − 1

≤ 1
λk(k−1)/2

∞∏
j=1

1
1 − (1/λ)j

≤ C

λk
,

where C is some positive constant, independent of k. And, concerning
the tail of our infinite product, notice that

log

⎛⎝ ∞∏
j=k+1

bj − 1
bk − bj

⎞⎠ =
∞∑

j=k+1

log
(
bj − 1
bj − bk

)

≤
∞∑

j=k+1

bk
bj − bk

≤
∞∑

j=k+1

1
λj−k − 1

≤ 1
λ− 1

∞∑
j=0

1
λj

=
λ

(λ− 1)2
.

Combining these estimates, we obtain an upper bound for ck of the
form:

ck ≤ C∗

λk
,

where C∗ > 0 is independent of k. Evidently, {ck}∞k=1 is summable.

Theorem 6.2. In the case that bj = (j + 1)2, j = 1, 2, 3, . . . ,
the sequence {ck}∞k=1 is summable. Yet, in the case that bj = j + 1,
j = 1, 2, 3, . . . , the sequence {ck}∞k=1 is not even bounded.
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Proof. Now, for k = 2, 3, . . . ,

fk(z) =
∞∏

2≤j �=k

(
1 − z2

j2

)
=

sin πz
πz(1 − z2)(1 − (z2/k2))

.

And therefore,

∞∏
2≤j �=k+1

j2 − 1
|j2 − (k + 1)2| =

|fk+1(1)|
|fk+1(k + 1)| = (k + 1)2.

So, in the case that bj = (j + 1)2,

ck =
1

(k + 1)2
·

∞∏
1≤j �=k

(j + 1)4 − 1
|(j + 1)4 − (k + 1)4|

=
1

(k + 1)2
·

∞∏
2≤j �=k+1

j4 − 1
|j4 − (k + 1)4|

=
1

(k + 1)2
·

∞∏
2≤j �=k+1

j2 − 1
|j2 − (k + 1)2| ·

∞∏
2≤j �=k+1

j2 + 1
|j2 + (k + 1)2|

≤ 5
4 + (k + 1)2

.

Thus, {ck}∞k=1 is summable in the case that bj = (j + 1)2. However, if
bj = j + 1, then

ck :=
1

k + 1
·

∞∏
2≤j �=k+1

j2 − 1
|j2 − (k + 1)2| = k + 1,

which is unbounded as k ranges over the positive integers.
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