ON LOCALLY UNIFORMLY A-PSEUDOCONVEX ALGEBRAS

M. ABEL, A. EL KINANI AND M. OUDADESS

ABSTRACT. Conditions when a unital locally uniformly A-pseudoconvex algebra (E,τ) is (or when there exists a topology τ' on E such that (E,τ') is) a locally p-convex algebra for some $p \in (0,1]$, are found. It is shown that on every unital advertibly complete locally uniformly A-pseudoconvex algebra E there exists a submultiplicative semi-norm $|\cdot|$ such that $(E,|\cdot|)$ is a Q-algebra.

1. Introduction. 1. Let (E, τ) be a locally pseudoconvex algebra over \mathbb{C} with separately continuous multiplication (in short lpca) the topology τ of which has been given by a family $\{|\cdot|_i: i \in I\}$ of p_i -homogeneous semi-norms $|\cdot|_i$, where $0 < p_i \le 1$ for each $i \in I$. In particular, when $p = \inf p_i > 0$, this lpca (E, τ) is a locally p-convex algebra (in short lp-ca) that is, an lpca in which every $p_i = p$.

If for any $x \in E$ there is a positive number M(x) such that 1

(1)
$$\max(|xy|_i, |yx|_i) \leqslant M(x)^{p_i}|y|_i$$

for each $y \in E$ and $i \in I$ (here M(x) depends only on x, but not on i), then an lpca (E, τ) is a *locally uniformly A-pseudoconvex* algebra (in short luA-pca) and if every semi-norm $|\cdot|_i$ in the family $\{|\cdot|_i : i \in I\}$ is *submultiplicative*, that is,

$$|xy|_i \leqslant |x|_i |y|_i$$

for each $x, y \in E$, then an lpca (A, τ) is a locally multiplicatively pseudoconvex (or locally m-pseudoconvex) algebra (in short lm-pca).

Received by the editors on March 13, 2004.

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 46H05, Secondary 46H20

Key words and phrases. Locally pseudoconvex algebra, locally m-pseudoconvex algebra, locally uniformly A-pseudoconvex algebra, Q-algebra, advertibly complete algebra, bornology, von Neumann bornology, bounded structure, boundedness.

Research is in part supported by Estonian Science Foundation grant 6205.

2. A net $(x_{\lambda})_{\lambda}$ in a unital topological algebra (E, τ) is said to be advertibly convergent if there exists an element $x \in E$ such that both nets $(xx_{\lambda})_{\lambda \in \Lambda}$ and $(x_{\lambda}x)_{\lambda \in \Lambda}$ converge to the unit element e of E. A unital algebra (E, τ) is advertibly complete if every advertibly convergent Cauchy net converges in (E, τ) , see [12, p. 45].

The set of all bounded subsets in a linear topological space (E, τ) is called the *von Neumann bornology* on (E, τ) , see for example, [9, 10]. We will denote it as usual by \mathcal{B}_{τ} .

- 3. By results of Ligaud [11] and Metzler [13], see also [8, pp. 102, 103], the von Neumann bornology \mathcal{B}_{τ} on a metrizable lpca (E,τ) has a countable basis only if (E,τ) is an lp-ca for some $p \in (0,1]$. We will show that on any unital luA-pca (E,τ) there is a bornology² \mathcal{B} with a countable basis such that (E,\mathcal{B}) is a bornological algebra³. On the other hand, we exhibit, that on any unital advertibly complete luA-pca (E,τ) there exists a submultiplicative semi-norm $|\cdot|$ such that $(E,|\cdot|)$ is a Q-algebra and every unital luA-pca has a stronger metrizable topology τ' such that (E,τ') is an lm-pca and an luA-pca.
- **2.** Structural results. Let (E, τ) be a unital luA-pca. First we find conditions under which (E, τ) is an lp-ca for some $p \in (0, 1]$.

Proposition 1. Let (E, τ) be a unital luA-pca and $\{|.|_i : i \in I\}$ a family of p_i -homogeneous semi-norms on E which defines the topology τ . Then

- (i) there is a bornology \mathcal{B} on E with a countable basis (finer than the von Neumann bornology \mathcal{B}_{τ} on (E,τ)) such that (E,\mathcal{B}) is a bornological algebra;
- (ii) (E,τ) is an lp-ca for some $p \in (0,1]$ if (E,τ) is metrizable and $\mathcal{B}_{\tau} = \mathcal{B}$.

Proof. For each $x \in E$ and $i \in I$, let

$$||x||_i = \sup\{|xy|_i : y \in E \text{ and } |y|_i \le 1\}.$$

Then $\|\cdot\|_i$ is a submultiplicative p_i -homogeneous semi-norm on E which satisfies the condition

$$||xy||_i \leqslant N(x)||y||_i$$

for each $i \in I$ and $y \in E$, where N(x) does not depend on i. Now, for each $x \in E$ we put $||x|| = \sup\{||x||_i : i \in I\}$. Then⁴

- a) $||x|| \leq N(x) < \infty$ for each $x \in A$;
- b) ||x|| = 0 if and only if $x = \theta_E$;
- c) $||x + y|| \le ||x|| + ||y||$ for each $x, y \in E$;
- d) $\|\alpha x\| \leq \max(|\alpha|, 1) \|x\|$ for each $\alpha \in \mathbb{C}$ and $x \in E$;
- e) $||xy|| \le ||x|| ||y||$ for each $x, y \in E$.

For any $n \in \mathbb{N}$ let $B_n = \{x \in E : ||x|| \leq n\}$. Then $\{B_n : n \in \mathbb{N}\}$ is a countable basis for a bornology \mathcal{B} on E such that (E, \mathcal{B}) is a bornological algebra and $\mathcal{B} \subset \mathcal{B}_{\tau}$, because

$$|x|_i = |xe|_i \leqslant ||x||_i \leqslant ||x||$$

for each $x \in E$ and $i \in I$.

The statement (ii) holds by Theorems 1 and 2 from [11] (or by Theorem 1 and Proposition 3 from [8, pp. 102, 103]).

Using another approach, we have

Proposition 2. Let (E, τ) be a unital luA-pca and $\{|.|_i : i \in I\}$ a family of p_i -homogeneous semi-norms on E which defines the topology τ . Then

- (i) there is a submultiplicative semi-norm |.| on E;
- (ii) (E, |.|) is a Q-algebra if (E, τ) is advertibly complete.

Proof. Let $\{\|.\|_i : i \in I\}$ be the family of submultiplicative p_i -homogeneous semi-norms on E, defined in the proof of Proposition 1, and $M(\tau)$ the topology on E defined by this family. Then

$$||xy||_i \leqslant M(x)^{p_i} ||y||_i$$

for each $x, y \in E$. For each $i \in I$, let

$$||x||_{i,c} = \inf \sum_{k=1}^{n} ||x_k||_i^{1/p_i},$$

where the infimum is taken over all decompositions $x = \sum_{k=1}^{n} x_k$ of x in E. Similarly as in [7], every $\|\cdot\|_{i,c}$ is a submultiplicative semi-norm on E and

$$||xy||_{i,c} \leq M'(x)||y||_{i,c}$$

for each $y \in E$, where $M'(x) = \sum_{k=1}^{n} M(x_k)$. Therefore $|\cdot|$, defined by

$$|x| = \sup\{||x||_{i,c} : i \in I\}$$

for each $x \in E$, is a submultiplicative semi-norm on E.

Let now (E, τ) be advertibly complete. Since $M(\tau)$ is finer that τ , then $(E, M(\tau))$ is also an advertibly complete algebra, see [5, Proposition 2]. Hence

$$\rho(x) = \sup \left\{ \lim_{n \to \infty} \|x^n\|_i^{1/np_i} : i \in I \right\}$$

for each $x \in E$ (see⁵ [3, Corollary 4.2]). Since

$$\lim_{n \to \infty} \|x^n\|_i^{1/np_i} = \lim_{n \to \infty} \|x^n\|_{i,c}^{1/n}$$

for each $i \in I$ by [7, Theorem 2], then $\rho(x) \leq |x|$ for each $x \in E$. Now e - x is invertible in E if |x| < 1. Thus, the interior of the set of all invertible elements in (E, |.|) is not empty. Consequently, (E, |.|) is a Q-algebra, see [12, Lemma 6.4, pp. 43, 44].

Remark. If the topological dual space of (E, τ) separates the points of E, then $|\cdot|$, introduced in the proof of Proposition 2, is a norm. In general, it is only a semi-norm. Take, for example, $\mathbf{C} \times L^p([0,1])$ with $0 , define the multiplication in <math>\mathbf{C} \times L^p([0,1])$ by $(\alpha, f)(\beta, g) = (\alpha\beta, fg)$ for each $\alpha, \beta \in \mathbf{C}$ and $f, g \in L^p([0,1])$ and the p-seminorm $\|\cdot\|_p$ on $\mathbf{C} \times L^p([0,1])$ by $\|(\alpha, f)\|_p = |\alpha|^p + \|f\|_p$, where $\|f\|_p = \int_0^1 |f(t)|^p dt$.

In Proposition 2 the semi-norm |.| defines a topology on E which is not necessarily stronger than τ . The following result is an analog of Proposition 4.6 from [6].

Proposition 3. Let (E, τ) be a unital luA-pca and $\{|.|_i : i \in I\}$ a family of p_i -homogeneous semi-norms on E which defines the topology τ on E. Then

- (i) there exists a topology τ' on E, stronger than τ , such that (E, τ') is a metrizable lm-pca and an luA-pca;
 - (ii) (E, τ') is advertibly complete if (E, τ) is advertibly complete;
- (iii) (E, τ') is an lp-ca for some $p \in (0, 1]$ if every τ -bounded subset B of E is uniformly τ' -bounded⁶.

Proof. Let again $\{\|\cdot\|_i : i \in I\}$ be the family of submultiplicative p_i -homogeneous semi-norms on E, introduced in the proof of Proposition 1, and let

$$\Lambda_n = \left\{ i \in I : \frac{1}{n} \leqslant p_i \right\}$$

for each $n \in \mathbb{N}$. Then $\Lambda_n \subset \Lambda_{n+1}$ for each $n \in \mathbb{N}$ and

$$I = \cup \{\Lambda_n : n \in \mathbf{N}\}.$$

Let now $q_n = \inf\{p_i : i \in \Lambda_n\}$ and

$$||x||_n = \sup\{||x||_i^{q_n/p_i} : i \in \Lambda_n\}$$

for each $n \in \mathbb{N}$. Then $q_n \in (0,1]$ and $\|.\|_n$ is a q_n -homogeneous submultiplicative semi-norm on E for each $n \in \mathbb{N}$.

Let τ' be the topology on E which defines the countable family $\{\|.\|_n : n \in \mathbb{N}\}$ of semi-norms. Then τ' is stronger than τ on E and (E, τ') is a metrizable lm-pca and also an luA-pca. by (2).

The statement (ii) is true by (i) and [5, Proposition 2], and the statement (iii) is true by (i) (similarly as statement (ii) in Proposition 1). \Box

ENDNOTES

- 1. The first author of the present paper considered in [1] the case when inf $p_i \neq 0$. Since $t^p \leq 1+t$ for each $p \in (0,1]$ if $t \geqslant 1$, then from (1) follows the condition $\max(|xy|_i,|yx|_i) \leqslant N(x)|y|_i$ of [1], where the positive number N(x) depends again only on x, but not on i.
- 2. That is, \mathcal{B} is a cover of E such that the union of every two elements of \mathcal{B} and every subset of elements of \mathcal{B} belong to \mathcal{B} , see for example, [10, p. 18]. In [14, p. 23], and in several other articles such a cover \mathcal{B} of E is called also a *bound structure* or *boundedness* on E.

- 3. That is, an algebra in which all algebraic operations are bounded. In this case \mathcal{B} is called an *algebra bornology*, see for example, [8, p. 21] or an *algebra boundedness*, see for example, [14, p. 24] or [15, p. 199] on E. Sometimes, instead of the term "bornological algebra" is used also the term "b-algebra." We prefer the term "bornological algebra," because "b-algebra" has also other meanings, see for example, [15, p. 199].
 - 4. Here, and later on, θ_E denotes the zero element of E.
- 5. For complete locally *m*-pseudoconvex Hausdorff algebra this result has been proved in [4, Theorem 7.4.8], and for commutative unital advertibly complete locally *m*-pseudoconvex Hausdorff algebra in [2, Proposition 12].
 - 6. That is, $\sup_{b\in B}\sup_{n\in \mathbf{N}}|b|_n<+\infty$ for each bounded subset B in $(E,\tau).$

REFERENCES

- 1. M. Abel, Strongly spectrally bounded algebras, Acta Comment. Univ. Tartu 899 (1990), 71–90.
- 2. ——, Advertive topological algebras, General Topological Algebras (Tartu 1999), 14–24, Math. Stud. (Tartu), vol. 1, Est. Math. Soc., Tartu, 2001.
- 3. M. Akkar, A. Beddaa and M. Oudadess, Sur une classe d'algèbres topologiques, Bull. Belg. Math. Soc. 3 (1996), 13–24.
- 4. V.K. Balachandran, *Topological algebras*, North-Holland Math. Stud., vol. 185, Elsevier, Amsterdam, 2000.
- **5.** A. Beddaa and O. H. Cheikh, Boundedness of characters in locally A-convex algebras, Rend. Circ. Mat. Palermo **47** (1998), 91–98.
- **6.** M. Chahboun, A. El Kinani and M. Oudadess, *Algèbres localement uniformèment A-pseudo-convex et advertiblement complètes*, Rend. Circ. Mat. Palermo **50** (2001), 271–284.
- 7. X. Dao-Xing, On locally bounded topological algebras, Acta Math. Sinica 14 (1964), 261–276.
- 8. H. Hogbe-Nlend, *Théorie des Bornologies et Applications*, Lecture Notes in Math., vol 213, Springer-Verlag, Berlin, 1971.
- 9. ——, Les fondements de la théorie spectrale des algèbres bornologiques. Bol. Soc. Brasil. Mat. 3 (1972), 19–56.
- 10. ——, Bornologies and functional analysis, North-Holland Math. Stud., vol. 26, North-Holland, Amsterdam, 1977.
- 11. J.P. Ligaud, Sur les rapports entre topologies et bornologies pseudo-convexes, C.R. Acad. Sci. Paris 271 (1970), A1058–A1060.
- 12. A. Mallios, *Topological algebras*. Selected topics, North-Holland Math. Stud., vol. 124, North-Holland, Amsterdam, 1986.
- 13. R.C. Metzler, A remark on bounded sets in linear topological spaces, Bull. Acad. Polon Sci. 15 (1967), 317–318.
- 14. L. Waelbroeck, *Topological vector spaces and algebras*, Lecture Notes in Math., vol. 230, Springer-Verlag, Berlin, 1971.

Institute of Pure Mathematics, University of Tartu, 2 J. Liivi Str., room 614, 50409 Tartu, Estonia $E\text{-}mail\ address:\ \mathtt{mati.abel@ut.ee}$

ECOLE NORMALE SUPÉRIEURE, B.P. 5118 TAKADDOUM, 10105 RABAT, MAROC $E\text{-}mail\ address:}$ a_elkinani@ens-rabat.ac.ma

ECOLE NORMALE SUPÉRIEURE, B.P. 5118 TAKADDOUM, 10105 RABAT, MAROC $E\text{-}mail\ address: } \texttt{m_oudadess@ens-rabat.ac.ma}$