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ON LOCALLY UNIFORMLY
A-PSEUDOCONVEX ALGEBRAS

M. ABEL, A. EL KINANI AND M. OUDADESS

ABSTRACT. Conditions when a unital locally uniformly
A-pseudoconvex algebra (E, τ) is (or when there exists a
topology τ ′ on E such that (E, τ ′) is) a locally p-convex
algebra for some p ∈ (0, 1], are found. It is shown that on every
unital advertibly complete locally uniformly A-pseudoconvex
algebra E there exists a submultiplicative semi-norm | . | such
that (E, | . |) is a Q-algebra.

1. Introduction. 1. Let (E, τ ) be a locally pseudoconvex algebra
over C with separately continuous multiplication (in short lpca) the
topology τ of which has been given by a family {| . |i : i ∈ I} of
pi-homogeneous semi-norms | . |i, where 0 < pi ≤ 1 for each i ∈ I.
In particular, when p = inf pi > 0, this lpca (E, τ ) is a locally p-convex
algebra (in short lp-ca) that is, an lpca in which every pi = p.

If for any x ∈ E there is a positive number M(x) such that1

(1) max(|xy|i, |yx|i) � M(x)pi |y|i

for each y ∈ E and i ∈ I (here M(x) depends only on x, but not on i),
then an lpca (E, τ ) is a locally uniformly A-pseudoconvex algebra (in
short luA-pca) and if every semi-norm | . |i in the family {| . |i : i ∈ I}
is submultiplicative, that is,

|xy|i � |x|i|y|i

for each x, y ∈ E, then an lpca (A, τ ) is a locally multiplicatively
pseudoconvex (or locally m-pseudoconvex) algebra (in short lm-pca).
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2. A net (xλ)λ in a unital topological algebra (E, τ ) is said to
be advertibly convergent if there exists an element x ∈ E such that
both nets (xxλ)λ∈Λ and (xλx)λ∈Λ converge to the unit element e of
E. A unital algebra (E, τ ) is advertibly complete if every advertibly
convergent Cauchy net converges in (E, τ ), see [12, p. 45].

The set of all bounded subsets in a linear topological space (E, τ ) is
called the von Neumann bornology on (E, τ ), see for example, [9, 10].
We will denote it as usual by Bτ .

3. By results of Ligaud [11] and Metzler [13], see also [8, pp. 102,
103], the von Neumann bornology Bτ on a metrizable lpca (E, τ ) has
a countable basis only if (E, τ ) is an lp-ca for some p ∈ (0, 1]. We will
show that on any unital luA-pca (E, τ ) there is a bornology2 B with a
countable basis such that (E,B) is a bornological algebra3. On the other
hand, we exhibit, that on any unital advertibly complete luA-pca (E, τ )
there exists a submultiplicative semi-norm | . | such that (E, | . |) is a
Q-algebra and every unital luA-pca has a stronger metrizable topology
τ ′ such that (E, τ ′) is an lm-pca and an luA-pca.

2. Structural results. Let (E, τ ) be a unital luA-pca. First we
find conditions under which (E, τ ) is an lp-ca for some p ∈ (0, 1].

Proposition 1. Let (E, τ ) be a unital luA-pca and {| . |i : i ∈ I} a
family of pi-homogeneous semi-norms on E which defines the topology
τ . Then

(i) there is a bornology B on E with a countable basis (finer than the
von Neumann bornology Bτ on (E, τ )) such that (E,B) is a bornological
algebra;

(ii) (E, τ ) is an lp-ca for some p ∈ (0, 1] if (E, τ ) is metrizable and
Bτ = B.

Proof. For each x ∈ E and i ∈ I, let

‖x‖i = sup{|xy|i : y ∈ E and |y|i � 1}.
Then ‖ . ‖i is a submultiplicative pi-homogeneous semi-norm on E
which satisfies the condition

(2) ‖xy‖i � N(x)‖y‖i
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for each i ∈ I and y ∈ E, where N(x) does not depend on i. Now, for
each x ∈ E we put ‖x‖ = sup{‖x‖i : i ∈ I}. Then4

a) ‖x‖ � N(x) < ∞ for each x ∈ A;

b) ‖x‖ = 0 if and only if x = θE ;

c) ‖x + y‖ � ‖x‖ + ‖y‖ for each x, y ∈ E;

d) ‖αx‖ � max(|α|, 1)‖x‖ for each α ∈ C and x ∈ E;

e) ‖xy‖ � ‖x‖ ‖y‖ for each x, y ∈ E.

For any n ∈ N let Bn = {x ∈ E : ‖x‖ � n}. Then {Bn : n ∈ N}
is a countable basis for a bornology B on E such that (E,B) is a
bornological algebra and B ⊂ Bτ , because

|x|i = |xe|i � ||x||i � ||x||

for each x ∈ E and i ∈ I.

The statement (ii) holds by Theorems 1 and 2 from [11] (or by
Theorem 1 and Proposition 3 from [8, pp. 102, 103]).

Using another approach, we have

Proposition 2. Let (E, τ ) be a unital luA-pca and {| . |i : i ∈ I} a
family of pi-homogeneous semi-norms on E which defines the topology
τ . Then

(i) there is a submultiplicative semi-norm | . | on E;

(ii) (E, | . |) is a Q-algebra if (E, τ ) is advertibly complete.

Proof. Let {‖ . ‖i : i ∈ I} be the family of submultiplicative
pi-homogeneous semi-norms on E, defined in the proof of Proposition 1,
and M(τ ) the topology on E defined by this family. Then

‖xy‖i � M(x)pi‖y‖i

for each x, y ∈ E. For each i ∈ I, let

‖x‖i,c = inf
n∑

k=1

‖xk‖1/pi

i ,
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where the infimum is taken over all decompositions x =
∑n

k=1 xk of x
in E. Similarly as in [7], every ‖ . ‖i,c is a submultiplicative semi-norm
on E and

‖xy‖i,c � M ′(x)‖y‖i,c

for each y ∈ E, where M ′(x) =
∑n

k=1 M(xk). Therefore | . |, defined
by

|x| = sup{‖x‖i,c : i ∈ I}
for each x ∈ E, is a submultiplicative semi-norm on E.

Let now (E, τ ) be advertibly complete. Since M(τ ) is finer that
τ , then (E, M(τ )) is also an advertibly complete algebra, see [5,
Proposition 2]. Hence

ρ(x) = sup
{

lim
n→∞ ‖xn‖1/npi

i : i ∈ I
}

for each x ∈ E (see5 [3, Corollary 4.2]). Since

lim
n→∞ ‖xn‖1/npi

i = lim
n→∞ ‖xn‖1/n

i,c

for each i ∈ I by [7, Theorem 2], then ρ(x) � |x| for each x ∈ E. Now
e − x is invertible in E if |x| < 1. Thus, the interior of the set of all
invertible elements in (E, | . |) is not empty. Consequently, (E, | . |) is
a Q-algebra, see [12, Lemma 6.4, pp. 43, 44].

Remark. If the topological dual space of (E, τ ) separates the points
of E, then | . |, introduced in the proof of Proposition 2, is a norm. In
general, it is only a semi-norm. Take, for example, C × Lp([0, 1]) with
0 < p � 1, define the multiplication in C × Lp([0, 1]) by (α, f)(β, g) =
(αβ, fg) for each α, β ∈ C and f, g ∈ Lp([0, 1]) and the p-seminorm
‖ . ‖p on C × Lp([0, 1]) by ‖(α, f)‖p = |α|p + ‖f‖p, where ‖f‖p =∫ 1

0
|f(t)|p dt.

In Proposition 2 the semi-norm | . | defines a topology on E which is
not necessarily stronger than τ . The following result is an analog of
Proposition 4.6 from [6].

Proposition 3. Let (E, τ ) be a unital luA-pca and {| . |i : i ∈ I} a
family of pi-homogeneous semi-norms on E which defines the topology
τ on E. Then
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(i) there exists a topology τ ′ on E, stronger than τ , such that (E, τ ′)
is a metrizable lm-pca and an luA-pca;

(ii) (E, τ ′) is advertibly complete if (E, τ ) is advertibly complete;

(iii) (E, τ ′) is an lp-ca for some p ∈ (0, 1] if every τ -bounded subset
B of E is uniformly τ ′-bounded6.

Proof. Let again {‖ . ‖i : i ∈ I} be the family of submultiplicative
pi-homogeneous semi-norms on E, introduced in the proof of Proposi-
tion 1, and let

Λn =
{

i ∈ I :
1
n

� pi

}

for each n ∈ N. Then Λn ⊂ Λn+1 for each n ∈ N and

I = ∪{Λn : n ∈ N}.

Let now qn = inf{pi : i ∈ Λn} and

‖x‖n = sup{‖x‖qn/pi

i : i ∈ Λn}

for each n ∈ N. Then qn ∈ (0, 1] and ‖ . ‖n is a qn-homogeneous
submultiplicative semi-norm on E for each n ∈ N.

Let τ ′ be the topology on E which defines the countable family
{‖ . ‖n : n ∈ N} of semi-norms. Then τ ′ is stronger than τ on E
and (E, τ ′) is a metrizable lm-pca and also an luA-pca. by (2).

The statement (ii) is true by (i) and [5, Proposition 2], and the
statement (iii) is true by (i) (similarly as statement (ii) in Proposition
1).

ENDNOTES

1. The first author of the present paper considered in [1] the case when inf pi �= 0.
Since tp ≤ 1 + t for each p ∈ (0, 1] if t � 1, then from (1) follows the condition
max(|xy|i, |yx|i) � N(x)|y|i of [1], where the positive number N(x) depends again
only on x, but not on i.

2. That is, B is a cover of E such that the union of every two elements of B and
every subset of elements of B belong to B, see for example, [10, p. 18]. In [14, p.
23], and in several other articles such a cover B of E is called also a bound structure
or boundedness on E.
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3. That is, an algebra in which all algebraic operations are bounded. In this
case B is called an algebra bornology, see for example, [8, p. 21] or an algebra
boundedness, see for example, [14, p. 24] or [15, p. 199] on E. Sometimes, instead
of the term “bornological algebra” is used also the term “b-algebra.” We prefer the
term “bornological algebra,” because “b-algebra” has also other meanings, see for
example, [15, p. 199].

4. Here, and later on, θE denotes the zero element of E.

5. For complete locally m-pseudoconvex Hausdorff algebra this result has been
proved in [4, Theorem 7.4.8], and for commutative unital advertibly complete locally
m-pseudoconvex Hausdorff algebra in [2, Proposition 12].

6. That is, supb∈B supn∈N |b|n < +∞ for each bounded subset B in (E, τ).
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