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PAIRS OF TOPOLOGICAL ALGEBRAS

MART ABEL AND MATI ABEL

ABSTRACT. Let (A, B) be a pair of topological algebras
A and B. Conditions for A, respectively B, to be a Gelfand-
Mazur algebra or an exponentially galbed algebra, if B, re-
spectively A, is one, are given. It is shown that hom A, the
set of all nonzero continuous homomorphisms from A onto
K endowed with Gelfand topology, and hom B are homeo-
morphic if either hom A is equicontinuous or hom B is locally
equicontinuous. Topological algebras A with jointly continu-
ous multiplication for which a) the completion Ã is a Gelfand-
Mazur algebra or exponentially galbed algebra or b) hom A

and hom Ã are homeomorphic are described.

1. Introduction. Let A be an associative topological algebra over
the field K (of real or complex numbers) with separately continuous
multiplication (in the sequel, a topological algebra), m(A) the set of
such closed regular two-sided ideals of A which are maximal as left
or right ideals and homA the set of all nonzero continuous homomor-
phisms from A onto K endowed, as usual, with the topology in which
a base of neighborhoods of ϕ0 ∈ homA consists of sets

O(ϕ0; a1, . . . , an, ε) =
n⋂

k=1

{ϕ ∈ homA : |(ϕ− ϕ0)(ak)| < ε}

for some n ∈ N, ε > 0 and a1, . . . , an ∈ A. The set homA is
equicontinuous if, for any ε > 0, there is a neighborhood O of zero
in A such that |ϕ(a)| < ε for each a ∈ O and ϕ ∈ homA and homA
is locally equicontinuous if every ϕ0 ∈ homA has an equicontinuous
neighborhood. It is known (see, for example, [19, p. 75]) that homA
is equicontinuous if A is a Q-algebra, that is, a topological algebra in
which the set of quasi-invertible elements is open.
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A topological algebra A is locally pseudoconvex if it has a base
{Uλ : λ ∈ Λ} of neighborhoods of zero consisting of balanced and
pseudoconvex sets, that is, of sets U for which μU ⊂ U , whenever
|μ| � 1, and U + U ⊂ ρU for a ρ � 2. In particular, when every
Uλ in {Uλ : λ ∈ Λ} is idempotent, that is, UλUλ ⊂ Uλ, then A is
called a locally m-pseudoconvex algebra. It is well known, see [24, p.
4], that the locally pseudoconvex (locally m-pseudoconvex) topology
on A we can give by a family {pλ : λ ∈ Λ} of kλ-homogeneous semi-
norms, respectively of kλ-homogeneous submultiplicative semi-norms,
where kλ ∈ (0, 1] for each λ ∈ Λ. In particular, when kλ = 1 for
each λ ∈ Λ, then A is a locally convex, respectively locally m-convex
algebra, and when the topology of A has been defined by only one
k-homogeneous semi-norm with k ∈ (0, 1], then A is a locally bounded
algebra. Examples of locallym-pseudoconvex algebras1 have been given
in [13, pp. 209 213]; of locally m-convex algebras2 in several books,
see, for example, [14, 19, 20, 26] and of locally bounded algebras, in
particular Banach algebras, in [25] and [26].

A topological algebra A is called a Gelfand-Mazur algebra (see3, for
example, [1, 2, 4, 5, 8, 10]) if A/M is topologically isomorphic
with K for each M ∈ m(A). In this case every M ∈ m(A) defines
a ϕM ∈ homA such that M = kerϕM . Herewith, the set m(A)
can be empty both in case of commutative topological algebras, see
[17, pp. 124 125] and of noncommutative topological algebras, even in
case of noncommutative Banach algebras, see [17, p. 706]. Since every
topological algebra A, for which the set m(A) is empty, is a Gelfand-
Mazur algebra, then it is of interest to study only these topological
algebras A for which the set m(A) is not empty.

A topological algebra A is an exponentially galbed algebra, (see4, for
example, [1, 2, 4, 5, 8, 23]), if every neighborhood O of A defines
another neighborhood U of zero such that

{ n∑
k=1

ak

2k
: a1, . . . , an ∈ U

}
⊂ O

for each n ∈ N. Besides, A is a simplicial5 topological algebra, see [6, p.
15] or normal topological algebra in the sense of Michael, see [20, p. 68],
if every closed regular left (right or two-sided) ideal of A is contained in
some closed maximal regular left, respectively right or two-sided, ideal
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of A and A is a strongly simplicial topological algebra, if every closed
regular two-sided ideal of A is contained in some ideal M ∈ m(A). It
is known that all locally pseudoconvex algebras, in particular, locally
convex and locally bounded algebras, are exponentially galbed algebras
and all exponentially galbed algebras A over C (see, for example,
[5, Corollary 2] or [8, Theorem 2]) are Gelfand-Mazur algebras if all
elements in A are bounded, see [12, p. 400], i.e., for any a ∈ A there is
a number λ ∈ C \ {0} such that the set

{(
a

λ

)n

: n ∈ N
}

is bounded in A. Moreover, all commutative locally m-pseudoconvex,
in particular locally m-convex, Hausdorff algebras over C are simplicial
algebras, see [9, Corollary 3]; in the complete case, see [7, Proposition
2]; [13, p. 300] and in the locally m-convex case, see [14, p. 321], and
m(A) is not empty if A is a commutative unital simplicial Gelfand-
Mazur algebra, see [9, Corollary 2].

A net (aλ)λ∈Λ of elements of a topological algebra A is advertibly
convergent in A, see [6, p. 15], if there exists an element a ∈ A such that
(a◦aλ)λ∈Λ and (aλ◦a)λ∈Λ converge in A to the zero element. In the case
when every advertibly convergent Cauchy net of A converges in A, then
A is an advertibly complete topological algebra. It is known, see [19, p.
45] that every complete algebra and every Q-algebra is an advertibly
complete topological algebra.6 Moreover, a topological algebra A is a
topological algebra with functional spectrum if the spectrum spA(a) of
element a coincides with the set {ϕ(a) : ϕ ∈ homA} for each a ∈
A. For example, every complex commutative locally m-pseudoconvex
Q-algebra with unit, see [6, Proposition 11], in particular, every Banach
algebra is a topological algebra with functional spectrum. In this case
the spectral radius rA(a) of a is equal to

sup{|ϕ(a)| : ϕ ∈ homA}.
We will say that two topological algebras (A, τA) and (B, τB) form
a pair of topological algebras and denote it by (A,B), if a) B is a
dense subalgebra of (A, τA); b) the topology τB is not weaker than the
topology τA|B induced on B by τA.

Properties of pairs (A,B) in case of commutative unital Banach
algebras have been considered in [22] and in [21, Chapter 11] and
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in case of topological algebras in [20, see Appendix B]. The study of
properties of pairs of topological algebras, more general than Banach
algebras, is continued in the present paper.

2. Pairs of Gelfand-Mazur algebras. Let (A,B) be a pair of
topological algebras A and B. To describe the case when one of algebras
A or B is a Gelfand-Mazur algebra, we need the following results.

Proposition 1. a) If A is a Gelfand-Mazur algebra, M ∈ m(A)
and u is a unit of A modulo (meaning that a−ua ∈M and a−au ∈M
for each a ∈ A) M , then every element a ∈ A is representable in the
form a = λu+m for some λ ∈ K and m ∈M .

b) Let A be a topological algebra, M a closed regular two-sided ideal
of A and u a unit of A modulo M . If every a ∈ A is representable in
the form a = λu+m for some λ ∈ K and m ∈M , then M ∈ m(A).

Proof. a) Let A be a Gelfand-Mazur algebra and M ∈ m(A). Then
there is a ϕM ∈ homA such that M = kerϕM and ϕM (u) = 1. Since
a−ϕM (a)u ∈ kerϕM for each a ∈ A, then every a ∈ A is representable
in the form a = λu+m for some λ ∈ K and m ∈M .

b) Let A be a topological algebra, M a closed regular two-sided
ideal of A, πM the canonical homomorphism from A onto A/M and
J a left (right) ideal of A such that M ⊂ J . Then πM (J) �= A/M .
Indeed, if πM (J) = A/M , then from πM (u) ∈ πM (J) it follows that
πM (u) = πM (j) for some j ∈ J . Therefore, u − j ∈ M ⊂ J . Hence,
u = (u − j) + j ∈ J but it is not possible. Consequently, πM (J)
is a left (respectively, right) ideal of A/M . Since every x ∈ A/M is
representable in the form x = πM (a) for some a ∈ A and a = λau+ma

for some λa ∈ K and ma ∈ M , by assumption, then x = λaπM (u),
where πM (u) is a unit element of A/M . It means that the map νM

from A/M onto K, defined by νM (πM (a)) = λa for each a ∈ A, is
an isomorphism. Hence, πM (J) = {θA/M}. (Here, and later on, θA

denotes the zero element of A.) Taking this into account, from

J ⊂ π−1
M (πM (J)) = π−1

M ({θA/M}) = M ⊂ J

it follows that M = J . Consequently, M ∈ m(A).
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Proposition 2. Let (A,B) be a pair of topological algebras A and
B, M ∈ m(A) and u ∈ B a unit element of A modulo M . If A is a
Gelfand-Mazur algebra, then M ∩B ∈ m(B) and clA(M ∩B) ∈ m(A).

Proof. Let A be a Gelfand-Mazur algebra, b ∈ B, M ∈ m(A),
ϕM ∈ homA such that M = kerϕM , and let λ = ϕM (b). Since
M ∩ B �= B, then M ∩ B is a closed regular two-sided ideal of B,
u is a unit of B modulo M ∩B and b− λu ∈M ∩B. Therefore, every
b ∈ B is representable in the form b = λu + m for some m ∈ M ∩ B.
Hence, M ∩B ∈ m(B), by Proposition 1 b).

Let now a be an arbitrary element of A. Since B is dense in A, then
there is a net (bα)α∈A in B which converges to a. As above, every
bα ∈ B defines a number λα ∈ K and an element mα ∈ M ∩ B such
that bα = λαu + mα. Since ϕM (bα) = λα for each α ∈ A and ϕM is
continuous, then the convergence of (ϕM (bα))α∈A to ϕM (a) means that
(λα)α∈A converges to λa = ϕM (a). Hence, the net (mα)α∈A converges
to a − λau ∈ clA(M ∩ B). Thus a = λu + m for some λ ∈ K and
m ∈ clA(M ∩ B). Since clA(M ∩ B) ⊂ M �= A, then clA(M ∩ B) is a
closed regular two-sided ideal of A. Therefore, clA(M ∩B) ∈ m(A), by
Proposition 1 b).

Corollary 1. Let (A,B) be a pair of topological algebras A and B
with the same unit e. Then

a) clA(M ∩ B) = M for each M ∈ m(A) if A is a Gelfand-Mazur
algebra.

b) clA(M) ∩ B = M for each M ∈ m(B) if A and B are Gelfand-
Mazur algebras and τB = τA|B.

Proof. If M ∈ m(A), then clA(M ∩B) ⊂M . Therefore the statement
a) holds by Proposition 2. Let now M ∈ m(B). If e ∈ clA(M),
then there exists a net (mλ)λ∈Λ in M which converges in A to e.
Since τB = τA|B , then every neighborhood OB of zero in B defines
a neighborhood OA of zero in A such that OB = OA ∩ B. Now OA

defines a number λ0 ∈ Λ such that mλ − e ∈ OA for every λ > λ0.
Since mλ − e ∈ B for every λ > λ0, then (mλ)λ∈Λ converges also in
B to e. But this means that e ∈ clB(M) = M , which is not possible.
Hence, clA(M) is a closed two-sided ideal in A.
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Let now a ∈ A be an arbitrary element of A. Then there is a net
(bα)α∈A in B, which converges to a in the topology of A. If B is
a Gelfand-Mazur algebra, then M = kerϕM for some ϕM ∈ homB
and every bα is representable in the form bα = λαe + mα for some
λα ∈ K and mα ∈ M , by Proposition 1 a). As ϕM (bα) = λα

for each α ∈ A and ϕM (bα)α∈A converges to ϕM (a), then (mα)α∈A
converges to a − ϕM (a)e ∈ clA(M). Hence, a = ϕM (a)e + m for
some m ∈ clA(M). Consequently, clA(M) ∈ m(A), by Proposition
1 b), and clA(M) ∩ B ∈ m(B), by Proposition 2 because A is a
Gelfand-Mazur algebra. Therefore, from M ⊂ clA(M) ∩ B follows
that M = clA(M) ∩B.

Proposition 3. Let A be a topological algebra with jointly continuous
multiplication and B a subalgebra of A endowed with the topology τA|B.
If homB is not empty, then every ϕ ∈ homB defines a ϕ̄ ∈ hom clA(B)
such that ϕ̄(b) = ϕ(b) for each b ∈ B.

Proof. It is known, see [18, pp. 129 131] that every ϕ ∈ homB has
a uniformly continuous linear extension ϕ̄ of ϕ to clA(B). Herewith
ϕ̄ is nonzero. To show that ϕ̄ is multiplicative, let a1, a2 ∈ clA(B),
μ1 = |ϕ̄(a1)|, μ2 = |ϕ̄(a2)|, ε > 0 and δ > 0 be such that

δ2 + δ(μ1 + μ2 + 1) < ε.

Since ϕ̄ is uniformly continuous on clA(B), then there exists in A a
neighborhood U of zero such that |ϕ̄(a) − ϕ̄(a′)| < δ if a− a′ ∈ U . By
the continuity of the multiplication in A, there exists in A a balanced
neighborhood V of zero and, by density of B in A, elements b1, b2 ∈ B
such that V ⊂ U , V a2 + a1V + V 2 ⊂ U , b1 − a1 ∈ V and b2 − a2 ∈ V .
Now by

a1a2− b1b2 = (a1− b1)a2 +a1(a2− b2)− (a1− b1)(a2− b2) ∈ U ∩ clA(B)

we have that

|ϕ̄(a1)ϕ̄(a2) − ϕ̄(a1a2)| � |ϕ̄(a1)−ϕ̄(b1)| |ϕ̄(a2)|+|ϕ̄(a1)| |ϕ̄(a2)−ϕ̄(b2)|
+ |ϕ̄(a1) − ϕ̄(b1)| |ϕ̄(a2) − ϕ̄(b2)|
+ |ϕ̄(a1a2) − ϕ̄(b1b2)|

< δμ2 + δμ1 + δ2 + δ < ε.
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Consequently, ϕ̄(a1)ϕ̄(a2) = ϕ̄(a1a2) for each a1, a2 ∈ clA(B). Thus,
the extension ϕ̄ ∈ hom clM (B).

Theorem 1. Let (A,B) be a pair of topological algebras A and B
with the same unit e. If the multiplication in A is jointly continuous, B
is a Gelfand-Mazur algebra and τB = τA|B, then A is a Gelfand-Mazur
algebra if and only if M ∩B ∈ m(B) for every M ∈ m(A).

Proof. Let (A,B) be a pair of topological algebras A and B with
the same unit e. If herewith A is a Gelfand-Mazur algebra, then
M ∩B ∈ m(B) for every M ∈ m(A), by Proposition 2.

Let now A be a topological algebra with jointly continuous multipli-
cation. If the set m(A) is empty, then A is a Gelfand-Mazur algebra.
Therefore, we assume that there is an ideal M ∈ m(A). Let B be a
Gelfand-Mazur algebra and M ∩ B ∈ m(B). Then M ∩ B = kerϕM

for some ϕM ∈ homB and every b ∈ B is representable in the form
b = ϕM (b)e+m for some m ∈ M ∩ B, by Proposition 1 a). Since the
multiplication in A is jointly continuous then, by Proposition 3, there
is an extension ϕ̄M of ϕM such that ϕ̄M ∈ homA and ϕ̄M (b) = ϕM (b)
for each b ∈ B. As B is dense in A, then every a ∈ A defines a net
(bα)α∈A in B which converges to a in the topology of A. Now for each
α ∈ A, there is an element mα ∈M ∩B such that bα = ϕ̄M (bα)e+mα.
Since the net (ϕ̄M (bα))α∈A converges to ϕ̄M (a) (because ϕ̄M is contin-
uous) and bα − ϕ̄M (bα)e ∈ B for each α ∈ A, then (bα − ϕ̄M (bα)e)α∈A
converges to a− ϕ̄M (a)e ∈ clA(M ∩B). From M ∩B = kerϕM follows
that clA(M ∩ B) ⊂ ker ϕ̄M �= A. Therefore, clA(M ∩ B) is a closed
(regular) ideal of A and every element a ∈ A is representable in the
form a = λae+ma, where λa = ϕ̄M (a) and ma ∈ clA(M∩B). It means
that clA(M ∩B) ∈ m(A), by Proposition 1 b). Thus,

M = clA(M ∩B) = ker ϕ̄M

Let now πM be the canonical homomorphism of A onto A/M , τA/M

the quotient topology on A/M and νM the isomorphism from A/M
onto K defined by νM (πM (a)) = ϕ̄M (a) for each a ∈ A. Then
πM (a) = ϕ̄M (a)πM (e) for each a ∈ A, where πM (e) is the unit element
of A/M . Since (A/M, τA/M) is a topological algebra, then ν−1

M is
continuous. To show the continuity of νM in the topology τA/M , let
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O be a neighborhood of zero in K. Then there is a number ε > 0
such that Oε = {λ ∈ K : |λ| < ε} ⊂ O. If λ0 ∈ Oε \ {0}, then
λ0πM (e) �= θA/M . Hence, there is a balanced neighborhood U of zero
in (A/M, τA/M) such that λ0πM (e) /∈ U (because (A/M, τA/M) is a
Hausdorff space). If now |ϕ̄M (a)| � |λ0|, then |λ0ϕ̄M (a)−1| � 1.
Therefore λ0πM (e) = (λ0ϕ̄M (a)−1)πM (a) ∈ U for each πM (a) ∈ U .
Since this is not possible, then ϕ̄M (a) ∈ O for each πM (a) ∈ U because
of which νM is continuous. It means that (A/M, τA/M) and K are
topologically isomorphic for each M ∈ m(A). Consequently, A is a
Gelfand-Mazur algebra.

Theorem 2. Let (A,B) be a pair of topological algebras A and B. If
A is a Gelfand-Mazur algebra for which for every M ∈ m(B) there is
MA ∈ m(A) such that clA(M) ⊂MA, then B is also a Gelfand-Mazur
algebra.

Proof. If B is a topological algebra for which the set m(B) is
empty, then B is a Gelfand-Mazur algebra. Therefore, we assume that
M ∈ m(B). Then there is MA ∈ m(A) such that clA(M) ⊂MA. Since
A is a Gelfand-Mazur algebra, then MA = kerψ for some ψ ∈ homA.
Now ϕ = ψ|B ∈ homB because B is dense in A and M ⊂ kerϕ. Thus
M = kerϕ and B/M and K are topologically isomorphic (see the proof
of Theorem 1). It means that B is a Gelfand-Mazur algebra.

Corollary 2. Let (A,B) be a pair of topological algebras A and B.
If A is a strongly simplicial, in particular, commutative and simplicial,
Gelfand-Mazur algebra, then B is also a Gelfand-Mazur algebra in the
topology τA|B.

Proof. Let M ∈ m(B) and u be a unit of B modulo M . Then
clA(M) �= A. Indeed, if clA(M) = A, then there exists a net (mλ)λ∈Λ

in M which converges to u in the topology of A. Let OB be a
neighborhood of u in B. Then there is a neighborhood OA of u in
A such that OB = OA ∩B. Now OA defines an index λ0 ∈ Λ such that
mλ − u ∈ OA whenever λ > λ0. Since mλ − u ∈ B for each λ ∈ Λ,
then mλ −u ∈ OB whenever λ > λ0. It means that (mλ)λ∈Λ converges
to u in B. Since M is closed in B, then u ∈ M but it is not possible.
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Hence, I = clA(M) is a closed regular two-sided ideal in A. Since A
is strongly simplicial, then there is an ideal MA ∈ m(A) such that
I ⊂ MA. Consequently, B is a Gelfand-Mazur algebra by Theorem 2.

3. Pairs of exponentially galbed algebras. To show that A in
the pair (A,B) of topological algebras A and B is exponentially galbed
if and only if B is exponentially galbed we use the following

Lemma 1. Let (A,B) be a pair of topological algebras A and B. If
τB = τA|B, then clA(OB) is a neighborhood of zero in A for each open
neighborhood OB of zero in B.

Proof. Let OB be an open neighborhood of zero in B and OA an open
neighborhood of zero in A such that OB = OA ∩ B. If a ∈ OA and
O(a) is an arbitrary neighborhood of a in A, then OA ∩O(a) is also a
neighborhood of a in A. Since B is dense in A, then (OA ∩ O(a)) ∩ B
is not empty. Hence, O(a) ∩OB = O(a) ∩ (OA ∩B) is also not empty.
Therefore, a ∈ clA(OB) for each a ∈ OA. It means that clA(OB) is a
neighborhood of zero in A.

Theorem 3. Let (A,B) be a pair of topological algebras A and B.
If τB = τA|B, then A is an exponentially galbed algebra if and only if
B is an exponentially galbed algebra.

Proof. Let A be an exponentially galbed algebra, B a topological
algebra, OB a neighborhood of zero in B, UB a closed neighborhood of
zero in B such that UB ⊂ OB and VB an open neighborhood of zero in
B such that VB ⊂ UB . Then clA(VB) is a neighborhood of zero in A,
by Lemma 1, and there is a neighborhood WA in A such that{ n∑

k=1

ak

2k
: a1, . . . , an ∈WA

}
⊂ clA(VB)

for each n ∈ N. Let WB = WA∩B, n ∈ N and b1, . . . , bn ∈WB. Then
n∑

k=1

bk
2k

∈ clA(VB) ∩B = clB(VB) ⊂ UB ⊂ OB
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for each n ∈ N, because τB = τA|B . Consequently, B is also an
exponentially galbed algebra.

Let now A be a topological algebra, B an exponentially galbed
algebra and OA a neighborhood of zero in A. Then there is a closed
neighborhood UA of zero in A such that UA ⊂ OA, UB = UA ∩ B is a
closed neighborhood of zero in B and there is an open neighborhood
VB of zero in B such that

{ n∑
k=1

bk
2k

: b1, . . . , bn ∈ VB

}
⊂ UB

for each n ∈ N. Since τB = τA|B, then clA(VB) is a neighborhood of
zero in A, by Lemma 1.

Let now n ∈ N and a1, . . . , an ∈ clA(VB). Then for each k ∈
{1, . . . , n} there is a net (b(k)α)α∈A in VB which converges to ak in
the topology of A. Hence

n∑
k=1

ak

2k
= lim

α

n∑
k=1

b(k)α

2k
∈ UA ⊂ OA.

It means that A is also an exponentially galbed algebra.

4. Pairs of topological algebras A and B for which homA
and homB are homeomorphic. The next result describes such pairs
(A,B) of topological algebras A and B for which homA and homB are
homeomorphic.

Theorem 4. Let (A,B) be a pair of such topological algebras A and
B for which the multiplication in A is jointly continuous, τB = τA|B
and homB is not empty. Then there is a bijection Λ from homB
onto homA such that Λ−1 is continuous. If, in addition, homA is
equicontinuous or homB is locally equicontinuous, then homA and
homB are homeomorphic.

Proof. Let (A,B) be a pair of topological algebras A and B. If A
and B are such as described in the formulation of Theorem 4, then
every ϕ ∈ homB defines a ϕ̄ ∈ homA such that ϕ̄(b) = ϕ(b) for each
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b ∈ B, by Proposition 3, because B is dense in A. Let Λ be a map from
homB into homA defined by Λ(ϕ) = ϕ̄ for each ϕ ∈ homB. Then Λ
is a bijection by density of B in A.

To show that Λ−1 is continuous, let O(ϕ0) be a neighborhood of ϕ0

in homB. Then there exist n ∈ N, ε > 0 and b1, . . . , bn ∈ B such that
U = O(ϕ0; b1, . . . , bn, ε) ⊂ O(ϕ0). Since V = O(ϕ̄0; b1, . . . , bn, ε) is a
neighborhood of ϕ̄0 in homA and Λ(U) = V , then Λ−1 is continuous.

To show the continuity of Λ, let ψ0 ∈ homA and O(ψ0) be a
neighborhood of ψ0 in homA. Then there exist n ∈ N, ε > 0 and
a1, . . . , an ∈ A such that U = O(ψ0; a1, . . . , an, ε) ⊂ O(ψ0). If homA
is equicontinuous, then there is a neighborhood O of zero in A such that
|ψ(a)| < ε/4 for each a ∈ O and ψ ∈ homA. For each k ∈ {1, . . . , n},
let bk ∈ B be such that bk − ak ∈ O (because B is dense in A). Then
V = O(ψ0; b1, . . . , bk, ε/4) is a neighborhood of ψ0 in homA. Since

|(ψ−ψ0)(ak)| � |ψ(bk − ak)|+ |(ψ−ψ0)(bk)|+ |ψ0(bk − ak)| < 3ε
4
< ε

for each ψ ∈ V , then V ⊂ U ⊂ O(ψ0). If ϕ0 = ψ0|B and W =
O(ϕ0; b1, . . . , bn, ε/4), then ϕ0 ∈ homB (because B is dense in A), W
is a neighborhood of ϕ0 in homB and Λ(W ) ⊂ V ⊂ O(ψ0). Hence, Λ
is continuous.

Let now ϕ0 ∈ homB, ϕ̄0 ∈ homA be the extension of ϕ0, defined
by Proposition 3, and O(ϕ̄0) a neighborhood of ϕ̄0 in homA. Then
there exist n ∈ N, ε > 0 and a1, . . . , an ∈ A such that U =
O(ϕ̄0; a1, . . . , an, ε) ⊂ O(ϕ̄0). If homB is locally equicontinuous, then
ϕ0 has an equicontinuous neighborhood O(ϕ0). Therefore, there is
an open neighborhood of zero OB in B such that |ϕ(b)| < ε/3 for each
b ∈ OB and ϕ ∈ O(ϕ0). Since ϕ̄ is continuous for every ϕ ∈ O(ϕ0), then
ϕ̄(clA(OB)) ⊂ clK(ϕ̄(OB)) = clK(ϕ(OB)). It means that |ϕ̄(a)| � ε/3
for each a ∈ clA(OB) and ϕ ∈ O(ϕ0). Herewith, clA(OB) is a
neighborhood of zero in A, by Lemma 1, because τB = τA|B . Now
for each k ∈ {1, . . . , n} there is an element bk ∈ (ak + clA(OB)) ∩ B.
Hence, |ϕ̄(bk − ak)| � ε/3 for each k ∈ {1, . . . , n} and ϕ ∈ O(ϕ0).
Taking this into account,

|(ϕ̄− ϕ̄0)(ak)| � |ϕ̄(ak − bk)| + |(ϕ̄− ϕ̄0)(bk)| + |ϕ̄0(ak − bk)| < ε

for each ϕ ∈ V = O(ϕ0) ∩ O(ϕ0; b1, . . . , bk, ε/3). As V is a neighbor-
hood of ϕ0 in homB and Λ(V ) ⊂ U ⊂ O(ϕ̄0), then Λ is continuous.
Consequently, homB and homA are homeomorphic.



12 M. ABEL AND M. ABEL

Corollary 3. Let (A,B) be a pair of such topological algebras A
and B that the multiplication in A is jointly continuous, τB = τA|B
and homA and homB are not empty. Then homB is equicontinuous
if and only if homA is equicontinuous.

Proof. Let (A,B) be a pair of topological algebras A and B described
in the formulation of Corollary 3. Let ε > 0 and δ ∈ (0, ε). If homB
is equicontinuous, then there is an open neighborhood OB of zero in
B such that |ϕ(b)| < δ for each b ∈ OB and ϕ ∈ homB. Since
OA = clA(OB) is a neighborhood of zero in A, by Lemma 1, and
ϕ̄(OA) ⊂ clKϕ(OB) for each ϕ ∈ homA, then |ϕ(a)| � δ < ε for
each a ∈ OA and ϕ ∈ homA. Hence, homA is equicontinuous. On
the other hand, if homA is equicontinuous, then the sets homB and
homA are homeomorphic, by Theorem 4. Therefore, homB is also
equicontinuous.

5. Properties of the completion of a topological algebra.
Let A be a topological Hausdorff algebra. Then A has the completion
Ã which is a linear topological Hausdorff space, see [18, p. 131], but
not necessarily an algebra, see [16, p. 311] or [11, the example in
Remark 3.3]. In particular, when the multiplication in A is jointly
continuous, then Ã is a topological algebra with jointly continuous
multiplication, see [19, p. 22] or [13, Theorem 2.3.14], and there is
a topological isomorphism ν from A into Ã such that ν(A) is dense
in Ã and τν(A) = τÃ|ν(A). Hence, (Ã, ν(A)) is a pair of topological
Hausdorff algebras. Next we apply results proved above to the pair
(Ã, ν(A)). By Theorems 1 and 3 and Corollary 2, we have

Theorem 5. a) Let A be a unital Gelfand-Mazur algebra with
jointly continuous multiplication. Then the completion Ã of A is also
a Gelfand-Mazur algebra if and only if M ∩ ν(A) ∈ m(ν(A)) for each
M ∈ m(Ã).

b) A topological algebra with jointly continuous multiplication is a
Gelfand-Mazur algebra if the completion Ã of A is a strongly simplicial
(in particular, a commutative simplicial) Gelfand-Mazur algebra.

c) A topological algebra A is an exponentially galbed algebra if and
only if the completion Ã of A is an exponentially galbed algebra.
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Theorem 6. Let A be a topological algebra with jointly continuous
multiplication. If the set homA is not empty, then

a) the sets homA and hom Ã are homeomorphic if either hom Ã is
equicontinuous or homA is locally equicontinuous.

b) the set homA is equicontinuous if and only if the set hom Ã is
equicontinuous.

Corollary 4. Let A be a topological algebra with jointly continuous
multiplication. If homA is not empty and Ã is a Q-algebra, then homA
and hom Ã are homeomorphic. (Since Ã is a Q-algebra, then hom Ã is
equicontinuous.)

Theorem 7. Let A be an advertibly complete topological Hausdorff
algebra over C and the completion Ã of A a topological algebra with
functional spectrum. Then A is a Q-algebra if and only if Ã is a
Q-algebra.

Proof. Let A be an advertibly complete topological Hausdorff alge-
bra over C the completion Ã of which is a topological algebra with
functional spectrum. Then A is also a topological algebra with func-
tional spectrum, see [6, Corollary 7]. If Ã is a Q-algebra, then the set
hom Ã is equicontinuous. Hence, the set homA is equicontinuous too,
by Corollary 3. It means that there is a neighborhood O of zero in A
such that |ϕ(a)| < 1 for each a ∈ O and ϕ ∈ homA. Thus, rA(a) � 1
for each a ∈ O because of which {a ∈ A : rA(a) � 1} is a neighborhood
of zero in A. Consequently, (see [19, Lemma II.4.2] or [26, Proposition
12.19]) A is a Q-algebra.

Let now A be a Q-algebra. Then homA is equicontinuous. Therefore,
the set hom Ã is equicontinuous too, by Corollary 3, and similarly as
in the above we have that Ã is a Q-algebra (because Ã is a topological
algebra with functional spectrum).

Corollary 5. Let A be a commutative advertibly complete locally
m-pseudoconvex Hausdorff algebra over C. Then A is a Q-algebra if
and only if Ã is a Q-algebra.
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Proof. By the assumption of Corollary 5, Ã is a commutative
advertibly complete (because Ã is complete) locally m-pseudoconvex
Hausdorff algebra over C. Therefore, Ã has functional spectrum, see
the proof of Proposition 11 in [6]. Hence, Corollary 5 is true, by
Theorem 7.

Remark. Corollary 1 has been proved in [21, Chapter III, part 11] in
case of commutative Banach algebras with unit, a part of Theorem 6
in [19, Theorem 2.1, p. 150, Lemma 2.2, p. 146] and Corollaries 4 and
5 in [19, pp. 150 151] in the case of commutative locally m-convex
algebras.

ENDNOTES

1. One of the simplest examples of locally m-pseudoconvex algebra is C(K; (kn))
with 0 < kn � 1 of all K-valued continuous functions f on K with respect to the
point-wise algebraic operations and the topology defined by the system {pn : n ∈ N}
of kn-homogeneous semi-norms, where

pn(f) = sup
|x|�n

|f(t)|kn for each f ∈ C(K; (kn)).

2. One of the simplest examples of locally m-convex algebra is C(X,K) of all
K-valued continuous functions on a topological space X with respect to point-wise
algebraic operations and the uniform topology on compact subsets of X.

3. The class of Gelfand-Mazur algebras is very large. In addition to Banach
algebras, it contains all locally m-pseudoconvex, in particular, locally m-convex and
locally bounded, algebras, all locally pseudoconvex Fréchet, in particular p-Banach,
algebras and many other topological algebras, see [5, 8]. Moreover, there exist
topological algebras (see, for example, [26, p. 86]) which are not Gelfand-Mazur
algebras.

4. It is known, see [3, Proposition 5] that the algebra l(ρn), with coordinate-
wise algebraic operations, of all sequences (xn) of complex numbers such that∑

|xn|ρn < ∞, is not exponentially galbed if 0 < ρn � 1 and (ρn) converges
to zero.

5. For example, C(K; (kn)) and C(X,K) are simplicial topological algebras.

6. It is known (see, for example, [15, Example 3]) that the algebra of all
measurable functions f on [0, 1], endowed with the topology defined by the system
{pk : k0 < k < 1, k0 ∈ (0, 1]} of k-norms, where

pk(f) =

∫
[0,1]

|f(t)|k dt

for each measurable f on [0, 1], is a sequentially advertibly complete algebra, which
is neither a Q-algebra, a complete algebra nor a locally m-pseudoconvex algebra.
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Rend. Circ. Mat. Palermo 49 (2000), 307 312.

17. E. Hille and R. Phillips, Functional analysis and semigroups, Amer. Math.
Soc. Colloq. Publ. 31, New York, 1957.
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