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ON THE IRREDUCIBILITY OF
A TRUNCATED BINOMIAL EXPANSION

MICHAEL FILASETA, ANGEL KUMCHEV AND DMITRII V. PASECHNIK

1. Introduction. For positive integers k and n with k ≤ n − 1,
define

Pn,k(x) =
k∑

j=0

(
n

j

)
xj .

In the case that k = n − 1, the polynomial Pn,k(x) takes the form

Pn,n−1(x) = (x + 1)n − xn.

If n is not a prime, Pn,n−1(x) is reducible over Q. If n = p is prime,
the polynomial Pn,n−1(x) = Pp,p−1(x) is irreducible as Eisenstein’s
criterion applies to the reciprocal polynomial xp−1Pp,p−1(1/x). This
note concerns the irreducibility of Pn,k(x) in the case where 1 ≤ k ≤
n − 2. Computations for n ≤ 100 suggest that in this case Pn,k(x) is
always irreducible. We will not be able to establish this but instead
give some results which give further evidence that these polynomials
are irreducible.

The problem arose during the 2004 MSRI program on Topological
aspects of real algebraic geometry, in the context of work by Inna
Scherbak in investigations of the Schubert calculus in Grassmannians.
She had observed that the roots of any given Pn,k(x) are simple. This
follows from the identity

Pn,k(x) − (x + 1)
P ′

n,k(x)
n

=
(

n − 1
k

)
xk.
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She then asked whether, for a fixed positive integer n, the various
n(n − 1)/2 roots of Pn,k(x) for 1 ≤ k ≤ n − 1 are distinct. We will
not resolve this problem, but our methods imply that, for each positive
integer n, almost all of the roots are distinct. In other words, the
number of distinct roots is ∼ n2/2 as n tends to infinity. We note that,
since the initial writing of this paper, Inna Scherbak [6] has written a
paper that explains her use of these polynomials.

Before closing this Introduction, we mention that these same poly-
nomials have recently arisen in the context of work by Iossif Ostrovskii
[4]. In particular, he finds a solution to a problem posed by Alexandre
Eremenko on the distribution of the zeroes of Pn,k(x) as k and n tend
to infinity with k/n approaching a limit α ∈ (0, 1).

2. The results. Our methods apply to a wider class of polynomials
than the Pn,k(x)’s alone, so we begin by recasting the problem in a
more general setting. For a and b nonnegative integers with a ≤ b, the
identity

(1)
a∑

j=0

(
b

j

)
(−1)j =

(
b − 1

a

)
(−1)a

is easily established by induction on a. We deduce that

Pn,k(x − 1) =
k∑

j=0

(
n

j

)
(x − 1)j

=
k∑

j=0

(
n

j

) j∑
i=0

(
j

i

)
(−1)j−ixi

=
k∑

i=0

k∑
j=i

(
n

j

)(
j

i

)
(−1)j−ixi

=
k∑

i=0

k∑
j=i

(
n

i

)(
n − i

j − i

)
(−1)j−ixi

=
k∑

i=0

(
n

i

) k−i∑
j=0

(
n − i

j

)
(−1)jxi
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=
k∑

i=0

(
n

i

)(
n − i − 1

k − i

)
(−1)k−ixi,

where the last equality makes use of (1). For 0 ≤ j ≤ k, we define

cj =
(

n

j

)(
n − j − 1

k − j

)
(−1)k−j

=
(−1)k−jn(n − 1) · · · (n − j + 1)(n − j − 1) · · · (n − k + 1)(n − k)

j!(k − j)!

so that Pn,k(x−1) =
∑k

j=0 cjx
j . We are interested in the irreducibility

of Pn,k(x). A necessary and sufficient condition for Pn,k(x) to be irre-
ducible is for Pn,k(x− 1) to be irreducible, so we restrict our attention
to establishing irreducibility results for the polynomials

∑k
j=0 cjx

j .

For our results, we consider

(2) Fn,k(x) =
k∑

j=0

ajcjx
j ,

where a0, a1, . . . , ak denote integers, each having all of its prime factors
≤ k. In particular, none of the aj are zero. Observe that, if Fn,k(x)
is irreducible for all such aj , then necessarily Pn,k(x) is irreducible
simply by choosing each aj = 1. Another interesting choice for aj

is aj = (−1)k−jj!(k − j)!. As Fn,k(x) is irreducible if and only if
((n−k−1)!/n!) ·xkFn,k(1/x) is irreducible, the irreducibility of Fn,k(x)
will imply the irreducibility of

1
n − k

+
x

n − k + 1
+

x2

n − k + 2
+ · · · + xk

n
.

In particular, if n = k + 1, these polynomials take a nice form. It
is possible to show, still with n = k + 1, that these polynomials are
irreducible for every positive integer k. The idea is to use Newton
polygons with respect to two distinct primes in the interval ((k + 1)/
2, k +1]. For k ≥ 10, it is known that such primes exist, cf. [5]. As this
is not the focus of the current paper, we omit the details.

Let N be a positive integer. The number of integral pairs (n, k) with
1 ≤ n ≤ N and 1 ≤ k ≤ n − 2 is

∑
n≤N

(n − 2) ∼ N2

2
.
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Our first result is that the number of possible reducible polynomials
Fn,k(x) with n ≤ N and 1 ≤ k ≤ n − 2 is small by comparison. More
precisely, we show the following.

Theorem 1. Let ε > 0, and let N be a positive integer. For each
integral pair (n, k) with 1 ≤ n ≤ N and 1 ≤ k ≤ n− 2, consider the set
S(n, k) of all polynomials of the form (2) where a0, a1, . . . , ak denote
arbitrary integers, each having all of its prime factors ≤ k. The number
of such pairs (n, k) for which there exists a polynomial f(x) ∈ S(n, k)
that is reducible is O(N23/18+ε).

Under the assumption of the Lindelöf hypothesis, a result of Gang Yu
[9] can be used to improve our estimate for the number of exceptional
pairs (n, k) to O(N1+ε). A further improvement to O(N log3 N) is
possible under the Riemann hypothesis by a classical result of Atle
Selberg [7].

Based on the main result in [1], one can easily modify our approach
to show that, for each positive integer n, there are at most O(n0.525)
different positive integers k ≤ n − 2 for which S(n, k) contains a
reducible polynomial. This implies the remark in the Introduction that
for fixed n, the number of distinct roots of Pn,k(x) for k ≤ n − 2 is
∼ n2/2 as n tends to infinity.

Our second result is an explicit criterion for the irreducibility of
Fn,k(x).

Theorem 2. If there is a prime p > k that exactly divides n(n− k),
then Fn,k(x) is irreducible for every choice of integers a0, a1, . . . , ak

with each having all of its prime factors ≤ k.

Theorem 2 has a simple proof based on Eisenstein’s criterion. It
implies, in particular, that if n is a prime, then Pn,k(x) is irreducible
for every k ∈ {1, 2, . . . , n − 1}. This then resolves the problem of
Scherbak in the case that n is a prime.

Our third and final result concerning the irreducibility of Fn,k(x) is
as follows.
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Theorem 3. Let k be a fixed integer ≥ 3. There is an n0 = n0(k)
such that if n ≥ n0, then Fn,k(x) is irreducible for every choice of
integers a0, a1, . . . , ak with each having all of its prime factors ≤ k.

The value of n0(k) in this last result, being based on the solutions
to certain Thue equations, can be effectively determined. The result
is of added interest as the proof of Theorem 1 relies on considering k
large. Thus, the proof of Theorem 1 gives no information about the
situation in Theorem 3, where k is fixed and n is large. In the case
that k = 1, the polynomials Fn,k(x) are linear and, hence, irreducible.
In the case that k = 2, our approach does not apply; but we note that
the polynomials Pn,2(x) are easily seen to be irreducible for n ≥ 3 as
Pn,2(x) has imaginary roots for such n.

3. The proofs.

Proof of Theorem 1. Let f(x) =
∑k

j=0 djx
j ∈ Z[x] with dkd0 �= 0. In

the argument, we will make use of the Newton polygon of f(x) with
respect to a prime p. The Newton polygon of f(x) with respect to
p can be defined as the lower part of the convex hull of the points
(j, νp(dj)) where 0 ≤ j ≤ k and νp(m) is defined to be the integer
r satisfying pr | m and pr+1 � m. Thus, the Newton polygon has
its left most endpoint being (0, νp(d0)) and its right-most endpoint
being (k, νp(dk)). A theorem of Gustave Dumas [2] asserts that, for
a fixed prime, the Newton polygon of a product of two polynomials
can be obtained by translating the edges of the Newton polygons of
each of the polynomials. The endpoints on the translation of an edge
always occur at lattice points. For the proof of Theorem 1, we will
use a specific consequence of this result: If the lattice points along
the edges of the Newton polygon of f(x) with respect to p consist
of (0, νp(d0)), (k, νp(dk)) and only one additional lattice point, say at
(u, v), then either f(x) is irreducible or it is the product of an irreducible
polynomial of degree u times an irreducible polynomial of degree k−u.
We note that the lattice point (u, v) in this context need not be one
of the points (j, νp(dj)) (for example, consider f(x) = x2+4x+4 and
p=2).

Consider n sufficiently large. Let pj denote the jth prime, and let t be
maximal such that pt < n. Denote by δ(n) the distance from n to pt−1
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so that δ(n) = n−pt−1. Suppose that k satisfies 2δ(n) < k < n− δ(n).
We show that in this case, the polynomial f(x) = Fn,k(x) is irreducible
over Q (independent of the choices of aj as in the theorem). First, we
explain why this implies our result.

For the moment, suppose that we have shown that Fn,k(x) is irre-
ducible over Q for n sufficiently large and 2δ(n) < k < n − δ(n). Let
ρ(n) = pt−1 where t is defined as above. It follows that the num-
ber of pairs (n, k) as in the theorem for which there exists a reducible
polynomial f(x) ∈ S(n, k) is

�
∑
n≤N

δ(n) �
∑
n≤N

(n − ρ(n)) �
∑

2<pt<N

∑
n≤N

ρ(n)=pt−1

(n − pt−1).

This last double sum can be handled rather easily by extending the
range on n slightly (to the least prime that is ≥ N). It does not exceed

∑
2<pt<N

∑
pt<n≤pt+1

(n − pt−1) ≤
∑

2<pt<N

∑
pt<n≤pt+1

(pt+1 − pt−1)

≤
∑

2<pt<N

(pt+1 − pt−1)(pt+1 − pt).

Setting dj = pj+1 − pj , we deduce from the arithmetic-geometric mean
inequality that

(pt+1− pt)(pt+1− pt−1) = dt(dt+ dt−1) = d2
t + dtdt−1 ≤ 3

2
d2

t +
1
2

d2
t−1.

Hence, the number of pairs (n, k) as in the theorem for which there
exists a reducible polynomial f(x) ∈ S(n, k) is � ∑

pt<N d2
t . A

theorem of Roger Heath-Brown [3] asserts that

∑
pt≤N

d2
t � N23/18+ε.

Therefore, Theorem 1 follows provided we establish that Fn,k(x) is
irreducible over Q for n sufficiently large and 2δ(n) < k < n − δ(n).

Consider n sufficiently large and k an integer in the interval (2δ(n),
n− δ(n)). Let p = pt and q = pt−1. Note that both p and q are greater
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than k. We set u and v to be the positive integers satisfying p = n− u
and q = n − v. Then 1 ≤ u < v = δ(n) < k/2. Observe that the
numerator of cj is the product of the integers from n− k to n inclusive
but with the factor n − j missing. Also, the denominator of cj is not
divisible by any prime > k and, in particular, by p or by q.

We look at the Newton polygon of f(x) with respect to p and the
Newton polygon of f(x) with respect to q. Note that νp(n − u) = 1
and, for each j, we have νp(aj) = 0. Therefore, the Newton polygon
of f(x) with respect to p consists of two line segments, one from (0, 1)
to (u, 0) and one from (u, 0) to (k, 1). The theorem of Dumas implies
that if f(x) is reducible, then it must be an irreducible polynomial of
degree u times an irreducible polynomial of degree k− u. Similarly, by
considering the Newton polygon of f(x) with respect to q, we deduce
that if f(x) is reducible, then it is an irreducible polynomial of degree v
times an irreducible polynomial of degree k−v. Since k−v > δ(n) > u
and v �= u, we deduce that f(x) cannot be reducible. Thus, f(x) is
irreducible. Theorem 1 follows.

Proof of Theorem 2. Eisenstein’s criterion applies to xkFn,k(1/x)
whenever there is a prime p > k that exactly divides n, i.e., p | n and
p2 � n. Hence, Fn,k(x) is irreducible whenever such a prime exists.
Also, Fn,k(x) itself satisfies Eisenstein’s criterion whenever there is a
prime p > k that exactly divides n − k.

Proof of Theorem 3. As in the previous proofs, we work with
f(x) = Fn,k(x) (where the aj are arbitrary integers divisible only
by primes ≤ k). With k fixed, we consider n large and look at the
factorizations of n and n − k.

Lemma 1. Let p be a prime > k and e a positive integer for which
νp(n) = e or νp(n − k) = e. Then each irreducible factor of f(x) has
degree a multiple of k/ gcd(k, e).

The proof of Lemma 1 follows directly by considering the Newton
polygon of f(x) with respect to p. It consists of one edge, and the x-
coordinates of the lattice points along this edge will occur at multiples
of k/ gcd(k, e). The theorem of Dumas implies that the irreducible
factors of f(x) must have degrees that are multiples of k/ gcd(k, e).
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Lemma 2. Let n′ be the largest divisor of n(n− k) that is relatively
prime to k!. Write

n′ = pe1
1 pe2

2 · · · per
r ,

where the pj denote distinct primes and the ej are positive integers.
Let

(3) d = gcd(k, e1, e2, . . . , er).

Then the degree of each irreducible factor of f(x) is a multiple of k/d.

Note that in the statement of Lemma 2, if n′ = 1, then d = k. The
proof of Lemma 2 makes use of Lemma 1. Suppose that m is the
degree of an irreducible factor of f(x). Then, for each j ∈ {1, 2, . . . , r},
Lemma 1 implies there is an integer bj such that mej = kbj . There are
integers xj for which

kx0 + e1x1 + e2x2 + · · · + erxr = d.

Hence,

m(d−kx0) = m
(
e1x1 +e2x2 + · · ·+erxr

)
= k

(
b1x1 +b2x2 + · · ·+brxr

)
.

It follows that md is a multiple of k so that m is a multiple of k/d as
claimed.

For the proof of Theorem 3, we define d as in Lemma 2 and consider
three cases: (i) d = 1, (ii) d = 2 and (iii) d ≥ 3. In case (i), Lemma 2
implies f(x) is irreducible. Case (ii) is more difficult and we return to
it shortly. In case (iii), there exist positive integers a, b, m1 and m2

satisfying

(4) n = amd
1, n − k = bmd

2, and a and b divide
∏
p≤k

pd−1.

As d | k and k is fixed, there are finitely many choices for d, a and b as
in (4). For each such d, a and b, the possible values of n correspond to
axd given by solutions to the Diophantine equation

axd − byd = k.
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The above is a Thue equation, and it is well known that, since d ≥ 3, it
has finitely many solutions in integers x and y, see [8]. It follows that
there are finitely many integers n for which case (iii) holds. Hence,
for n sufficiently large, case (iii) cannot occur. We are left with an
examination of case (ii).

For case (ii), the definition of d implies k is even. As we already have
k ≥ 3, we deduce k ≥ 4. Lemma 2 implies that, if f(x) is reducible,
then it factors as a product of two irreducible polynomials each of
degree k/2. To finish the analysis for case (ii), we make use of the
following.

Lemma 3. Let f(x) be as above with d, as defined in (3), equal to
2. Let n′′ be the largest divisor of (n − 1)(n − k + 1) that is relatively
prime to k!. Suppose νp(n′′) = e where p is a prime > k and e is a
positive integer. If f(x) is reducible, then (k − 1) | e.

For the proof of Lemma 3, we again appeal to the theorem of Dumas.
Suppose first that p | (n−1). Since p > k, we deduce that νp(n−1) = e.
The Newton polygon of f(x) with respect to p consists of two line
segments, one from (0, e) to (1, 0) and one from (1, 0) to (k, e). Let
d′ = gcd(k−1, e). As d = 2, we deduce as above that f(x) is a product
of two irreducible polynomials of degree k/2. The fact that f(x) has
just two irreducible factors implies by the theorem of Dumas that one
of these factors has degree that is a multiple of (k−1)/d′ and the other
has degree that is one more than a multiple of (k − 1)/d′. We deduce
that there are integers m and m′ such that

k − 1
d′

m =
k

2
and

k − 1
d′

m′ + 1 =
k

2
.

It follows that (k − 1)/d′ divides 1, whence
k − 1 = d′ = gcd(k − 1, e).

We deduce that (k − 1) | e. A similar argument works in the case that
p | (n − k + 1).

To finish the analysis for case (ii), we use Lemma 3 to deduce that
there are positive integers a′, b′, m3, and m4 such that
(5)
n−1 = a′mk−1

3 , n−k+1 = b′mk−1
4 , and a′ and b′ divide

∏
p≤k

pk−2.
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As k is fixed, there are finitely many choices for a′ and b′ as in (5).
For each of these, the possible values of n correspond to a′xk−1 + 1
determined by solving the Diophantine equation

a′xk−1 − b′yk−1 = k − 2.

As k ≥ 4, the above is a Thue equation and has finitely many solutions
in integers x and y. Thus, there are finitely many integers n for which
case (ii) holds. Hence, for n sufficiently large, we deduce that Fn,k(x)
is irreducible, completing the proof of Theorem 3.
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