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NONOSCILLATORY CRITERIA FOR SECOND-ORDER
NONLINEAR DIFFERENCE EQUATIONS

JIQIN DENG

ABSTRACT. In this paper, we obtain some nonoscillatory
theories of the second-order nonlinear difference equation

�(rn(�xn)α) + f(n + 1, xn+1) = 0, n ∈ N

where α is a quotient of positive odd integers, rn > 0 for
n ∈ N and f ∈ C(N × R, R).

1. Introduction. Consider the following second-order difference
equation

(1) �(rn(�xn)α) + f(n + 1, xn+1) = 0, n ∈ N

where α is a quotient of positive odd integers, �xn = xn+1−xn, rn > 0
for n ∈ N and f ∈ C(N× R, R).

A solution of (1) is called nonoscillatory if it is either eventually
positive or eventually negative; otherwise, it is called oscillatory.

In [6 10], many good results for nonoscillatory solutions of differen-
tial equations corresponding to (1) were obtained, but in the results the
condition where f(t, x) is either linear or quasi-linear was adopted. So
far, very few results for nonoscillation of (1) with generally nonlinear
term have been obtained. In this paper, by using the methods in the
proof of [1], we discuss nonoscillatory solutions of (1) and obtain the
following results.
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Theorem 1. Take a fixed positive number K. If, for any ε > 0,
there exists n0 ∈ N such that for each {xi}∞i=n0

with K/2 ≤ xn0 ≤
xn0+1 ≤ · · · ≤ K,

∞∑
j=n

f(j + 1, xj+1) ≥ 0, n ≥ n0(2)

and
∞∑

k=n0

(
1
rk

∞∑
j=k

f(j + 1, xj+1)
)1/α

< ε,(3)

then, (1) has a bounded nonoscillatory solution and the solution is
eventually nondecreasing.

Theorem 2. Take a fixed positive number K. If, for any ε > 0, there
exists n0 ∈ N such that for each {xi}∞i=n0

with K ≥ xn0 ≥ xn0+1 ≥
· · · ≥ K/2,

∞∑
j=n

f(j + 1, xj+1) ≤ 0, n ≥ n0(4)

and
∞∑

k=n0

(
1
rk

∞∑
j=k

f(j + 1, xj+1)
)1/α

> − ε,(5)

then, (1) has a bounded nonoscillatory solution and the solution is
eventually nonincreasing.

Theorem 3. Take a fixed positive number K, a fixed nonnegative
sequence {λn} with λn → 0 as n → ∞ and a fixed mapping m : N →
N. If for any ε > 0, there exist n0 ∈ N such that for each {xn} with
K/2 ≤ xn ≤ K and |xn+m(n) − xn| ≤ λn+m(n) for n ≥ n0,

(6)
∣∣∣∣

n+m(n)−1∑
k=n

(
1
rk

∞∑
j=k

f(j + 1, xj+1)
)1/α∣∣∣∣ ≤ λn+m(n), n ≥ n0
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and

(7)
∣∣∣∣

n−1∑
k=n0

(
1
rk

∞∑
j=k

f(j + 1, xj+1)
)1/α∣∣∣∣ ≤ ε, n ≥ n0 + 1,

then, (1) has a bounded nonoscillatory solution.

Define N0 as follows:

N0 = {n0, n0 + 1, n0 + 2, . . . }.

As in [1], the following theorems and notations shall be used. B(N0)
is the Banach space of all bounded mappings from N0 (discrete topol-
ogy) to R with the norm: |{xn}|∞ = supi∈N0

|xi|.

Theorem A (see [4]). Let C be a closed, convex subset of a Banach
space E and U an open subset of C with {p�} ∈ U . Also T : U → C
is a continuous, condensing map with T (U) bounded. Then one of the
following conclusions holds:

(A1) T has a fixed point in U ; or

(A2) there is an x ∈ ∂U and λ ∈ (0, 1) with x = (1 − λ) p� + λTx.

Theorem B (see [1 5]). Let E be a uniformly bounded subset of the
Banach space B(N). If E is equiconvergent at ∞, it is also relatively
compact.

2. Proofs of theorems.

Proof of Theorem 1. For any 0 < ε < K/8, take n0 ∈ N sufficiently
large so that (2) holds and for each {xi}∞i=n0

with K/2 ≤ xn0 ≤ xn0+1 ≤
· · · ≤ K,

(8) 0 ≤
∞∑

k=n0

(
1
rk

∞∑
j=k

f(j + 1, xj+1)
)1/α

< (K/4) − ε.
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Let

E = (B(N0), |.|∞),

C =
{
{xi} ∈ B(N0) : xi+1 ≥ xi ≥ K

2
, i ∈ N0

}
,

U = {x = {xi} ∈ C : |x|∞ < K}

and p� = K − ε. Then, {p�} ∈ U .

Define operators T1 and T2 as follows:

T1xn =
3
8

K +
1
2

xn, n ∈ N0

T2xn0 = 0, T2xn =
1
2

n−1∑
k=n0

(
1
rk

∞∑
j=k

f(j + 1, xj+1)
)1/α

,

n ≥ n0 + 1.

Set T = T1 + T2. First, for any {xn} ∈ U , from (8), it is easy to see
that

Txn ≥ 3
8

K +
1
4

K ≥ K

2

and {Txn} is nondecreasing on N0. Thus,

(9) T : U → C.

Next, The continuity of T2 is obvious and clearly, T2U = {T2x : x ∈
U} is a uniformly bounded subset of B(N0). Also, for any {xn} ∈ U ,
we have

|T2x∞ − T2xn| ≤
∞∑

k=n

(
1
rk

∞∑
j=k

f(j + 1, xj+1)
)1/α

.

Hence, T2U is equiconvergent at ∞. From Theorem B, it is easy to see
that T2U is a relatively compact subset of B(N0). Therefore,

(10) T2 : U −→ E is a continuous, relatively compact map.
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Next, if {xn}, {yn} ∈ U , then we have

|T1xn − T1yn| =
1
2
|xn − yn| ≤ 1

2
|{xn} − {yn}|∞

which, together with (10), yields

(11) T : U −→ C is a continuous, condensing map.

Next, we show that operator T does not satisfy condition (A2).
Assume that there exists {xn} ∈ ∂U such that, for some 0 < λ < 1,

xn = (1 − λ) p� + λTxn.

Then,

xn = (1−λ) p� + λTxn

= (1−λ)(K− ε)+λ

[
3
8

K+
1
2

xn+
1
2

n−1∑
k=n0

(
1
rk

∞∑
j=k

f(j+1, xj+1)
)1/α]

,

n ≥ n0

which, together with (8), yields

sup
n∈N0

|xn| ≤ (1 − λ)(K − ε) + λ

[
3
8

K +
1
2

K +
1
8

K − (ε/2)
]

≤ K − (ε/2) < K

which gives a contradiction since K = |{xn}|∞ = supn∈N0
|xn|. From

Theorem A, it is easy to see that there exists {xn} ∈ U with xn = Txn,
i.e.,

xn =
3
4

K +
n−1∑
k=n0

(
1
rk

∞∑
j=k

f(j + 1, xj+1)
)1/α

for n ≥ n0 + 1.

Clearly, xn for n ≥ n0 + 1 is a bounded nonoscillatory solution of (1)
and the solution is eventually nondecreasing. The proof is complete.
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Proof of Theorem 2. For any 0 < ε < K/8, take n0 ∈ N sufficiently
large so that (4) holds and for each {xi}∞i=n0

with K ≥ xn0 ≥ xn0+1 ≥
· · · ≥ K/2,

0 ≥
∞∑

k=n0

(
1
rk

∞∑
j=k

f(j + 1, xj+1)
)1/α

> − ((K/4) − ε).

Let N and E be as in the proof of Theorem 1 and

C =
{
{xi} ∈ B(N0) : xi ≥ xi+1 ≥ K

2
, i ∈ N0

}
,

U = {x = {xi} ∈ C : |x|∞ < K}
and p� = K − ε. Then, {p�} ∈ U .

The rest is similar to the proof of Theorem 1. Thus, we omit it.

Proof of Theorem 3. For any 0 < ε < K/8, take n0 ∈ N sufficiently
large so that (6) holds and for each {xn} with K/2 ≤ xn ≤ K and
|xn+m(n) − xn| ≤ λn+m(n) for n ≥ n0,

∣∣∣∣
n−1∑
k=n0

(
1
rk

∞∑
j=k

f(j + 1, xj+1)
)1/α∣∣∣∣ < (K/4) − ε, n ≥ n0 + 1.

Let N , E and p� be as in the proof of Theorem 1 and

C =
{
{xi} ∈ B(N0) : xi ≥ K

2
and |xi+m(i) − xi| ≤ λi+m(i), i ∈ N0

}
,

U =
{
x = {xi} ∈ C : |x|∞ < K

}
.

The rest is similar to the proof of Theorem 1. Thus, we omit it.

Example 1. Consider the following equation

(12) �(�xn)1/3 + pn+1(1 + xn+1) = 0, n ∈ N.

If

p2k = 1/(2k)(1+(1/2))/3 = 1/
√

2k, k = 1, 2, . . . ,

p2k+1 = − 1/
√

2k + 2, k = 0, 1, 2, . . .
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and taking K = 1, then we have

(13)

2(k+m+1)∑
j=2k+1

f(j + 1, xj+1)

=
2(k+m+1)∑

j=2k+1

pj+1(1 + xj+1)

=
2(k+m+1)∑

j=2k+1

(−1)j(1 + xj+1)
/√

2j + 1 − (−1)j

=
k+1+m∑
j=k+1

[
xj+1

(
1/

√
2j −

√
2(j+1)

)
+ (xj+2 − xj+1)

/√
2j

]

≤ 2
/√

2(k + 1), m ∈ N,

(14)

2(k+m+1)+1∑
j=2k+1

f(j + 1, xj+1)

=
2(k+m+1)+1∑

j=2k+1

pj+1(1 + xj+1)

=
2(k+m+1)+1∑

j=2k+1

(−1)j(1 + xj+1)
/√

2j + 1 − (−1)j

=
k+1+m∑
j=k+1

[
xj+1

(
1/

√
2j −

√
2(j+1)

)
+ (xj+2 − xj+1)

/√
2j

]

− x2(k+m+1)+2

/√
2(k + m + 1) + 2, m ∈ N

which, together with (13), yields that, for each m ∈ N with m ≥ 2,

k+[m/2]∑
j=k+1

[
xj+1

(
1/

√
2j −

√
2(j+1) ) + (xj+2 − xj+1)

/√
2j

]

− x2(k+2[m/2])

/√
2(k + 2[m/2])
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≤
2k+1+m∑
j=2k+1

f(j + 1, xj+1)

≤
k+[m/2]+1∑

j=k+1

[
xj+1

(
1/

√
2j −

√
2(j+1)

)
+ (xj+2 − xj+1)

/√
2j

]
.

It follows that
(15)

0 ≤
∞∑

j=2k+1

f(j + 1, xj+1)

= lim
m→∞

k+[m/2]+1∑
j=k+1

[
xj+1

(
1/

√
2j −

√
2(j+1)

)
+ (xj+2 − xj+1)

/√
2j

]

≤ 2/
√

2(k + 1), k ∈ N.

Similarly, we have
(16)

0 ≤
∞∑

j=2k

f(j + 1, xj+1)

= x2k+1

/√
2k

+ lim
m→∞

k+[m/2]+1∑
j=k+1

[
xj+1

(
1/

√
2j −

√
2(j+1)

)
+ (xj+2− xj+1)

/√
2j

]

≤ 3/
√

2k, k ∈ N

which, together with (15), yields that (2) and (3) hold. And, from
Theorem 1, it is easy to see that (12) has a bounded nondecreasing
nonoscillatory solution. And, if p2k = 1/

√
2k + 2, k = 1, 2, . . . ,

p2k+1 = −1/
√

2k, k = 0, 1, 2, . . . and taking K = 1, similar to the
above discussion and from Theorem 2, it is easy to see that (12) has a
bounded nonincreasing nonoscillatory solution.

Example 2. Consider the following equation

(17) �(�xn)α + (−1)n

(
a

nα(1+τ)
+

a

(n+1)α(1+τ)

)
xn+1 = 0, n ∈ N
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where α is a quotient of positive odd integers, a > 0 and τ > 0. Take
K = 1, m(n) ≡ 1, λn = 1/n. Then for any 0 < ε < 1/8, it is easy to
see that there exists integer n0 with n0 ≥ 21/τ (a + a/[α(1 + τ )])1/ατ

such that

(18) (a + a/[α(1 + τ )])1/α
∞∑

j=n0

1
j1+τ

< ε.

Then, for each sequence {xn}∞n=1 with K/2 ≤ xn ≤ K and |xn+1−xn| ≤
λn+1 for n ≥ n0, we have

(19)
∣∣∣∣

∞∑
j=n

(−1)j

(
a

jα(1+τ)
+

a

(j + 1)α(1+τ)

)
xj+1

∣∣∣1/α

=
∣∣∣∣

∞∑
j=n

(−1)j

(
a

jα(1+τ)
xj+1 +

a

(j + 1)α(1+τ)
xj+2

+
a

(j + 1)α(1+τ)
(xj+1 − xj+2)

)∣∣∣∣
1/α

=
∣∣∣∣(−1)n a

nα(1+τ)
xn+1 +

∞∑
j=n+1

(−1)j a

jα(1+τ)
(xj+1 − xj)

∣∣∣∣
1/α

≤
(

a

nα(1+τ)
+

∞∑
j=n+1

a

jα(1+τ)+1

)1/α

≤
(

a + a/[α(1 + τ )]
nα(1+τ)

)1/α

≤ 1
n + 1

for n ≥ n0.

And, consequently, for each sequence {xn}∞n=1 with K/2 ≤ xn ≤ K
and |xn+1 − xn| ≤ λn+1 for n ≥ n0, from (18), we have

∣∣∣∣
n−1∑
k=n0

( ∞∑
j=k

(−1)j

(
a

jα(1+τ)
+

a

(j + 1)α(1+τ)

)
xj+1

)1/α∣∣∣∣

≤ (a + a/[α(1 + τ )])1/α
∞∑

k=n0

1
k1+τ

< ε, n ≥ n0 + 1,

which, together with Theorem 3 and (19), yields that equation (17) has
a bounded nonoscillatory solution.
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