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SPHERE-FOLIATED MINIMAL AND CONSTANT
MEAN CURVATURE HYPERSURFACES IN SPACE

FORMS AND LORENTZ-MINKOWSKI SPACE

SUNG-HO PARK

ABSTRACT. We prove that a sphere-foliated minimal or
constant mean curvature hypersurface in hyperbolic space of
dimension ≥ 5 is one of the following: hypersurface of rotation
around a geodesic, geodesic hyperplane, horosphere, equidis-
tant hypersurface, or a geodesic sphere in the upper half-space
model. And we show that a sphere-foliated minimal or con-
stant mean curvature hypersurface in sphere of dimension ≥ 5
is either a hypersurface of rotation or a hypersphere.

We also show that a hypersurface of nonzero constant mean
curvature in Lorentz-Minkowski space foliated by spheres in
space-like hyperplanes is either a hypersurface of rotation
or a pseudo-hyperbolic space and that maximal space-like
hypersurfaces foliated by spheres in hyperplanes are rotational
if the ambient space has dimension ≥ 4.

1. Introduction. A hypersurface M of Rn+1 is said to be sphere-
foliated if there is a one-parameter family of hyperplanes that meet M
in round (n− 1)-spheres. A circle-foliated surface is called cyclic.

Examples of cyclic constant mean curvature (CMC) surfaces are the
Delaunay’s surfaces and the spheres. While Delaunay’s surfaces are
rotational, spheres admit plenty of nonrotational foliations by circles.
Nitsche claimed that all cyclic surfaces of nonvanishing constant mean
curvature are surfaces of rotation [12]. Though his claim is right, his
proof is incomplete. Our first aim in Section 2 is to give a complete
proof of the following modified form of Nitsche’s claim.

Theorem 1. If M is a cyclic surface of nonzero constant mean
curvature, then it is either a surface of rotation or a sphere.

As a consequence of this theorem, we see that there is no cyclic surface
of nonzero constant mean curvature spanning two non-coaxial circles
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in parallel planes, while there is a minimal one (Riemann’s minimal
surface).

Jagy showed that a similar result holds in higher dimensional Eu-
clidean space [7]. IfM is a sphere-foliated CMC hypersurface of Rn+1,
n ≥ 3, then M is either rotational or spherical.
There are analogous results for cyclic or sphere-foliated minimal
hypersurfaces. In this case the generating circles or spheres must by
necessity lie in parallel hyperplanes [13], [6]. When M is a surface, the
circles may not be co-axial (Riemann’s minimal surfaces), whereas the
spheres are co-axial whenever n ≥ 3. Hence M is a hypersurface of
rotation if n ≥ 3 [6].
Our main goal in this paper is to generalize Jagy’s theorem in
various ambient spaces: Lorentz-Minkowski space, hyperbolic space
and sphere.

Our second aim in Section 2 is to give a new proof of Jagy’s theorem.
The argument in Section 2 will be repeatedly used in the rest of this
paper.

In Section 3 we study the properties of space-like maximal or CMC
hypersurfaces in Lorentz-Minkowski space Ln+1 foliated by spheres in
space-like hyperplanes (spacelike spheres). López et al. showed that a
space-like maximal surface foliated by space-like circles in L3 is either a
Lorentzian catenoid or a Lorentzian Riemann’s maximal surface where
the generating circles lie in parallel space-like planes [11]. We show
that space-like maximal hypersurfaces foliated by space-like spheres are
rotational when n ≥ 3. And ifM has nonzero constant mean curvature,
then it is either a hypersurface of rotation or a pseudohyperbolic space,
which admits nonrotational foliations as spheres do in Euclidean space.

In Section 4 we study sphere-foliated minimal or CMC hypersurfaces
in hyperbolic space Hn+1 or in sphere Sn+1 for n ≥ 4. We say that
a hypersurface M in Hn+1 (or in Sn+1) is sphere-foliated if there is
a one-parameter family of geodesic hyperplanes (or totally geodesic
n-spheres) which meet M in geodesic (n− 1)-spheres.
In the upper half-space model for Hn+1, one may view M as a
sphere-foliated hypersurface with or without boundary in Rn+1. Using
this observation and Jagy’s computation of the mean curvature of
a sphere-foliated hypersurface in Rn+1 [7], we show that a sphere-



MINIMAL AND CMC HYPERSURFACES 1021

foliated minimal or CMC hypersurface in Hn+1, when n ≥ 4, is either
a hypersurface of rotation around a geodesic or (part of) a (Euclidean)
sphere in Rn+1

+ .

The examples of (Euclidean) spheres in the upper-half space model
are geodesic hyperplanes, horospheres, equidistant hypersurfaces and
geodesic spheres, which have constant mean curvature. These examples
admit foliations by spheres which are not rotational around a geodesic.

We use, as a model for sphere, Rn+1 with a conformal metric induced
by a stereographic projection, see Section 4 for the precise definition.
Therefore, we can view a sphere-foliated hypersurface in sphere as
a sphere-foliated hypersurface in Euclidean space. We show that a
sphere-foliated minimal or CMC hypersurface of Sn+1 for n ≥ 4 is
either a hypersurface of rotation around a geodesic or a hypersphere.

When n = 2 or 3, there are only partial results. López and Jagy
obtained similar results with various restrictions on the geodesic hy-
perplanes or the totally geodesic n-spheres of the foliation [7], [9].

The referee pointed out that the results are local.

2. Preliminaries and the proofs of Theorem 1 and Jagy’s
theorem. A smooth hypersurface in Rn+1 can be locally written as
the level set of a smooth function f . We define its mean curvature by

(1) H = − 1
n
div

(
− ∇f

|∇f |
)
.

Let M be a sphere-foliated hypersurface in Rn+1. We construct a
local coordinate system on M as in [6]. (We sketch the outline and
recall the results.)

Let e0 be the unit vector field normal to the hyperplanes of the
foliation and γ(t) an integral curve of e0. We label the hyperplane
containing γ(t) by πt and the center and the radius of the (n − 1)-
sphere on Πt by c(t) and r(t). Since γ(t) is a unit speed curve, we have
orthonormal vector fields e0, e1, . . . , en along γ(t) that satisfy Frenet
equations: γ′(t) = e0(γ(t)), e′0 = κ0e1, e′1 = −κ0e0 + κ1e2, . . . and
e′n = −κn−1en−1, where ′ denotes ∂/∂t. Since c(t) is a smooth curve,
there are smooth functions α0, . . . , αn such that c′(t) =

∑n
i=0 αiei.
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We define a map X : Rn+1 → Rn+1 by

(2) X(t, v1, . . . , vn) = c(t) + r(t)
n∑

i=1

viei(t).

Therefore, M is the zero set of f = v21 + · · ·+ v2n − 1. If the differential
dX : Rn+1 → Rn+1 is nondegenerate at some point (t, v) with |v| = 1,
then X||v|=1 gives a local coordinate system on M .

By a straightforward computation, we have

∂X/∂vi = rei

and

∂X

∂t
= (α0−rκ0v1)e0+

n∑
j=1

(αj+r′vj+rvj−1κj−1−rvj+1κj)ej .

The induced metric gij = 〈∂X/∂vi, ∂X/∂vj〉, v0 = t, satisfies [6]

det (gij) = r2n(α0 − rκ0v1)2.

Hence the differential dX is identically degenerate if and only if we
have α0 ≡ 0 and κ0 ≡ 0, which implies that M is a hyperplane.
From now on, we assume that g = det (gij) 
= 0.

Proof of Theorem 1. When M is a surface, we have an explicit
representation of X in terms of trigonometric functions:

X(t, θ) = c(t) + r(t)(cos θe1(t) + sin θe2(t)).

Let E,F and G denote the coefficients of the first fundamental form:
E = 〈Xt, Xt〉, F = 〈Xt, Xθ〉 and G = 〈Xθ, Xθ〉. Then the mean
curvature H of M satisfies

(3)
2H(EG− F 2)3/2 = G(Xtt, Xt ×Xθ〉 − 2F 〈Xtθ, Xt ×Xθ〉

+ E〈Xθθ, Xt ×Xθ〉
≡ P.
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By a straightforward computation, we have

(4)

EG− F 2 =
1
2
r2(r2κ2

0 + α
2
1 − α2

2) cos(2θ) + r
2α1α2 sin(2θ)

+ 2r2(r′α1 − rα0κ0) cos θ + 2r2r′α2 sin θ

+
1
2
r2(α2

1 + α
2
2 + 2α

2
0 + 2r

′2 + r2κ2
0)

and

(5)

P = 1
2
r3κ0(α2

2 − r2κ2
0 − α2

1) cos(3θ)− r3α1α2κ0 sin(3θ)

+
1
2
(−r4α1κ

′
0 + 5r

4α0κ
2
0 + r

4α′1κ0 − 6r3r′α1κ0) cos(2θ)

+
1
2
(r4α′2κ0 − 6r3r′α2κ0 − r4α2κ

′
0) sin(2θ)

+
1
2
(−3r5κ3

0− 2r4r′κ′0− 2r3α0α
′
1− 3r3α2

1κ0− 6r3r′2κ0 + 2r4r′′κ0

+ 2r3α0α2κ1− 8r3α2
0κ0− 3r3α2

2κ0+ 2r3α′0α1+ 4r2r′α0α1) cos θ
+ (−r3α0α

′
2 − r3α0α1κ1 + r3α′0α2 + 2r2r′α0α2 − r4r′κ0κ1) sin θ

+ r3r′α′0 − r3r′′α0 − 12r
4α1κ

′
0 +
1
2
r4α′1κ0 +

5
2
r4α0κ

2
0

+ r2α0α
2
1 + r

2r′2α0 + r2α0α
2
2 + r

2α3
0 − 2r3r′α1κ0 − r4α2κ0κ1.

Without loss of generality, we may assume that H2 = 1. We define a
trigonometric polynomial Q by

Q = P2 − 4(EG− F 2)3.

(We will find conditions for Q to vanish identically.) Let us denote by
cQ,i and sQ,i the coefficients of cos(iθ) and sin(iθ) in the Fourier series
expansion of Q. Similarly, we define cP,i and sP,i.

It follows from cQ,6 = 0 and sQ,6 = 0 that

r6A3/8− 3r6AB2/2 = r6κ2
0A

2/8− r6B2/2

and

3r6A2B/4− r6B3 = r6κ2
0AB/2,
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where A = r2κ2
0 + α2

1 − α2
2 and B = α1α2. Therefore, one of the

following holds: i) A = B = κ0 = 0 or ii) A = κ2
0, B = 0 and κ0 
= 0 or

iii) A = B = 0 and κ0 
= 0.
If i) holds, then the generating circles lie in parallel planes and
α1 = α2 = 0. Hence, M is a surface of rotation.

When ii) holds, we have α1α2 = 0. First, we suppose that α1 = 0.
By a straightforward computation, we see that cQ,6 = r6(α2

2−r2κ2
0)

2×
(κ2

0 + α2
2 − r2κ2

0)/8 = 0.

When α2
2 = r

2κ2
0 (this is case iii)), it follows that

EG− F 2 = −2r3α0κ0 cos θ + 2r2r′α2 sin θ

+
1
2
r2(α2

2 + 2α
2
0 + 2r

′2 + r2κ2
0).

Hence we have cQ,4 = (c2P,2 − s2P,2)/2 and sQ,4 = cP,2sP,2/2. Since
these are both zero and cP,2 = 5r4α0κ

2
0/2 and sP,2 = r4κ2

0(α2/κ0)′/2,
we have α0 = r′ = 0. Substituting these into (4) and (5), we find that

EG− F 2 = r2α2
2

and
P = −3r5κ5

0 cos θ − r4α2κ0κ1.

Hence we must have κ0 = 0. This contradicts our assumption that
κ0 
= 0.
Now we suppose that κ2

0 + α
2
2 = r2κ2

0. Then we have cQ,5 =
5r7α0κ

3
0×(r2κ2

0−α2
2)/4 and sQ,5 = r7κ5

0(α2/κ0)′/4. Therefore we have
α0 = 0 and α2/κ0 is constant. The radius r satisfying r2 = 1+(α2/κ0)2

is also constant. Therefore we have

EG− F 2 =
1
2
r2κ2

0 cos(2θ) +
1
2
r2(α2

2 + r
2κ2

0)

and
P = −1

2
r3κ3

0 cos(3θ)−
5
2
r5κ3

0 cos(2θ)− r4α2κ0κ1.

Since there is no cos θ term in EG−F 2, we have α2 = 0. Hence, X(t, θ)
is a parametrization of a unit sphere.
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Now we consider the second case α2 = 0. Since CQ,6 = r6(α2
1 +

r2κ2
0)

2 × (κ2
0 − α2

1 − r2κ2
0)/8 = 0, it follows that κ

2
0 = α2

1 + r
2κ2

0.
Differentiating this with respect to t, we have (α1/κ0)(α1/κ0)′+rr′ = 0.

Using the above two equations, we find that cQ,5 = r7κ5
0((α1/κ0)′ −

α0)/4. Hence we have α0 = (α1/κ0)′. From the definition of αis, we
have

c′(t) = (α1/κ0)′e0 + (α1/κ0)κ0e1 = ((α1/κ0)e0)′.

Hence X(t, θ) = C0 + (α1/κ0)e0 + r(t)(cos θe1 + sin θe2) for some
constant vector C0. Since we have

|X(t, θ)− C0|2 = r2 + (α1/κ0)2 = 1,

M is the unit sphere centered at C0.

Remark 1. Equation (3) in [12] is wrong (we must have A−n = An

and ā−n = ān). This led to the wrong conclusion that all the circles in
the circle-foliation of a sphere are great circles. But there are plenty of
cyclic foliations of a sphere consisting of nongeodesic circles.

To deal with sphere-foliated CMC hypersurfaces in Rn+1, we recall
some results about the mean curvature of a sphere-foliated hypersurface
in Rn+1 from [6] and [7].

Lemma 1. Let M be a sphere-foliated hypersurface of Rn+1 and
X(t, v) the parametrization of M introduced at the beginning of this
section. Then the mean curvature H of M , which is the zero set of
f = v21 + · · ·+ v2n − 1, is given by

H =
1
n
√
g

{
∂

∂t

(
T0√
D

)
+

n∑
i=1

∂

∂vi

(
Ti√
D

)}
,

where

D = (α0 − rκ0v1)2(v · v) + (α · v + r′(v · v))2,
T0 = −rn(α · v + r′(v · v)),
Ti = rn−1(α0 − rκ0v1)2vi + rn−2(α · v + r′(v · v))g0i

and α · v =∑n
i=1 αivi.
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Multiplying 2
√
gD3/2 on both sides of the above equation, we have

(6) 2nH
√
gD3/2 =

(
2
∂T0

∂t
D−T0

∂D

∂t

)
+

n∑
i=1

(
2
∂Ti

∂vi
D−Ti

∂D

∂vi

)
≡ P.

Substituting v · v = 1 into P after the necessary differentiations, we
have [7]

(7)

P = 2nrn+1κ2
0v

2
1{r2κ2

0v
2
1 + (α · v)2}

+ 2rnκ0v1




(1− 4n)r2α0κ
2
0v

2
1 + (2n+ 2)rr

′κ0v1(α · v)
+ (2− 2n)α0(α · v)2 + r2κ′0v1(α · v)
− r2κ0v1(α′ · v) + r2κ0κ1v2(α · v)
+ rκ0v1(α · s)




+ 2rn−1




(6n− 3)r2α2
0κ

2
0v

2
1 − 4nrr′α0κ0v1(α · v)

+ (n+ 1)r2r′2κ2
0v

2
1 − 2rα0κ0v1(α · s)

+ (n− 2)α2
0(α · v)2 − r2α0κ

′
0v1(α · v)

+ r3r′κ2
0κ1v1v2 − r2α0κ0κ1v2(α · v) + r3r′κ0κ

′
0v

2
1

− r2α′0κ0v1(α · v)− r3r′′κ2
0v

2
1 − r2α1κ

2
0v1(α · v)

+ r2κ2
0(α · α)v21 + 2r2α0κ0v1(α′ · v)




+ 2rn−1




(3− 4n)rα3
0κ0v1 − 2nrr′2α0κ0v1 + 2r2r′′α0κ0v1

− r2r′α1κ
2
0v1 − 2rα0(α · α)κ0v1 − r2r′α′0κ0v1

+ (2n− 2)r′α2
0(α · v)− r2r′α0κ0κ1v2 + α2

0(α · s)
− r2r′α0κ

′
0v1 + rα0α

′
0(α · v)

− rα2
0(α

′ · v) + rα0α1κ0(α · v)




+ 2rn−1α0

{
(n− 1)α3

0 + (n− 1)r′2α0 + rr′α1κ0

+ α0(α · α) + rr′α′0 − rr′′α0

}

where si = rκi−1vi−1 − rκivi+1 with κ−1 = κn = v0 = vn+1 = 0. One
may view P as a polynomial of v1, . . . , vn.
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Theorem 2 (Jagy). Let M be a sphere-foliated CMC hypersurface
of Rn+1. If n ≥ 3, then M is either a hypersurface of rotation or a
sphere.

Proof. Let us define a polynomial Q by

(8)

Q = 4n2H2gD3 − P 2

= 4n2H2r2n(α0 − rκ0v1)2{(α0 − rκ0v1)2 + (α · v + r′)2}3 − P 2.

(Whenever D is not differentiated with respect to vi, we substitute
v · v = 1 into D.) We will find conditions for Q to vanish identically
when |v| = 1.
First we assume that α0 
= 0. Substituting v1 = 0, we get a new
polynomial Q|v1=0 which satisfies

Q|v1=0 = 4n2H2r2nα2
0

{
α2

0 +
( n∑

i=2

αivi + r′
)2}3

− P 2|v1=0.

This new polynomial Q|v1=0 vanishes identically when
∑n

i=2 v
2
i = 1.

Since P |v1=0 has only the degree−2 , 1, 0 terms, see (7), we have αi = 0
for i = 2, . . . , n. (To see this, it suffices to substitute vi = cos θ,
vj = sin θ and vk = 0 into Q|v1=0 for mutually distinct i, j, k ≥ 2.)
Therefore, P is a polynomial of v1 and v2. Since n ≥ 3, we may let
v1 = cos θ, v3 = sin θ and vi = 0 for i 
= 1, 3. Hence, we may regard Q
as a polynomial of v1, which vanishes identically for v1 ∈ [−1, 1].

Lemma 2. The polynomial identity

(9) (αx+ β)2(γx2 + δx+ ε)3 = (ax4 + bx3 + cx2 + dx+ e)2,

α 
= 0, γ, ε > 0, holds only if

δ2 = 4γε.
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Proof. Comparing coefficients, we have

a2 = α2γ3,

2ab = 2αβγ3 + 3α2γ2δ,

2ac+ b2 = β2γ3 + 6αβγ2δ + 3α2γ2ε+ 3α2γδ2,

2ad+ 2bc = α2δ3 + 6α2γδε+ 6αβγ2ε+ 6αβγδ2 + 3β2γ2δ,

2ce+ d2 = α2ε3 + 6αβδε2 + 3β2γε2 + 3β2δ2ε,

2de = 2αβε3 + 3β2δε2,

e2 = β2ε3.

First we suppose that a = ±αγ3/2 and e = ±βε3/2. From the first
and second equations, we have b = ±γ1/2(βγ+3αδ/2) depending on the
signature of α2γ3/a. Similarly, we have d = ∓ε1/2(αε+ 3βδ/2). From
the third and fifth equations, we find that 2ac = 3αβγ2δ + 3α2γ2ε +
3α2γδ2/4 and 2ce = 3αβδε2 + 3β2γε2 + 3β2δ2ε/4. Substituting the
values of a, e, ac, ce into (2ac)e = a(2ce), we find that

(αε1/2 − βγ1/2)(δ − 2γ1/2ε1/2)2 = 0.

Multiplying both sides of the fourth equation by a, we have 2a2d +
b(2ac) = a(α2δ3 + 6α2γδε + 6αβγ2ε + 6αβγδ2 + 3β2γ2δ). From this,
we find that

(δ − 2γ1/2ε1/2)2(αδ − 6βγ + 4αγ1/2ε1/2) = 0.

It is easy to see that αε1/2 = βγ1/2 and αδ − 6βγ + 4αγ1/2ε1/2 = 0
imply δ = 2γ1/2ε1/2.

When a = ±αγ3/2 and e = ∓βε3/2, we have

(αε1/2 + βγ1/2)(δ + 2γ1/2ε1/2)2 = 0

and
(δ + 2γ1/2ε1/2)2(αδ − 6βγ − 4αγ1/2ε1/2) = 0.

The equations αε1/2+βγ1/2 = 0 and αδ− 6βγ− 4αγ1/2ε1/2 = 0 imply
δ + 2γ1/2ε1/2 = 0.
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Applying the above lemma to (8), we find that

(10) α0α1 + rr′κ0 = 0.

If κ0 ≡ 0, then we have α1 ≡ 0. Hence M is a hypersurface of rotation.
Let us now suppose that κ0 
= 0. Since the degree-8 term of Q is
(r2κ2

0 + α2
1)2(H2(r2κ2

0 + α2
1)− κ2

0), we have

(11) r2 +
(
α1

κ0

)2

=
1
H2
.

From (10) and (11) we have α0 = (α1/κ0)′. As in the proof of
Theorem 1, one can see that M is a sphere.

If α0 = 0, then we have

Q = v21{4n2H2r2nr2κ2
0{r2κ2

0v
2
1 + (α · v)2}3 − (P/v1)2} = v21Q1.

Using Q1 instead of Q, we can derive the same conclusion.

3. Maximal and CMC hypersurfaces in Lorentz-Minkowski
space. The Lorentz-Minkowski space Ln+1 is Rn+1 endowed with the
Lorentzian scalar product 〈v, w〉l = v1w1 + · · ·+ vnwn − vn+1wn+1 for
v, w ∈ Rn+1. We say that a vector v ∈ Ln+1 is spacelike, respectively,
timelike or lightlike, if 〈v, v〉l > 0, respectively 〈v, v〉l < 0 or 〈v, v〉l = 0.
A hyperplane is said to be spacelike, respectively, timelike or lightlike,
if its Euclidean normal is timelike, respectively spacelike or lightlike. A
spacelike sphere S(c, r) is a sphere on a spacelike hyperplane Π centered
at c with radius r defined by

S(c, r) = {v ∈ Π : 〈v − c, v − c〉l = r2}.

A smooth hypersurface M is said to be spacelike if the tangent plane
TpM is spacelike at each point p of M . This is equivalent to the
requirement that the restriction of the Lorentzian scalar product 〈, 〉l
to TM be positive definite at each point. Timelike hypersurfaces are
defined similarly.

Example 1. The pseudohyperbolic space PHr defined by

PHr = {x ∈ Ln+1 : 〈x, x〉l = −r2}
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is a spacelike hypersurface of constant mean curvature 1/r. On the
other hand, the pseudo sphere PSr defined by

PSr = {x ∈ Ln+1 : 〈x, x〉l = r2}
is a timelike hypersurface of constant mean curvature 1/r. We note that
these hypersurfaces admit foliations by spacelike spheres in nonparallel
hyperplanes.

The gradient and the divergence on a Lorentz manifold (M,hij) are
defined as follows: for some smooth function f ,

∇f =
n∑

i,j=1

hij ∂f

∂yi

∂

∂yj
.

For a smooth vector field Y =
∑n

i=1 βi(∂/∂yi),

div (Y ) =
1√|det (hij)|

n∑
i=1

∂

∂yi

(√
|det (hij)|βi

)
.

If M is locally written as the level set of a smooth function f on
Ln+1, then the mean curvature H is defined by

(12) H = − 1
n
div

(
− ∇f√|〈∇f,∇f〉l|

)
.

We construct a coordinate system on a hypersurface M of Ln+1

foliated by spacelike spheres as in Section 2. Let l0 be the (timelike)
unit vector field normal to the hyperplanes of the foliation. We
choose an integral curve γ(t) of l0, and we label the hyperplane of the
foliation by Πt if it contains γ(t). There are orthonormal vector fields
l0, l1, . . . , ln which satisfy the following (Lorentzian) Frenet equations:
γ′(t) = l0(γ(t)), l′0 = κ0l1, l′1(t) = κ0l0+κ1l2, l′2 = −κ1l1+κ2l3, . . . , and
l′n = −κn−1ln−1, where ′ denotes ∂/∂t. We define c(t) and r(t) as the
center and the radius of the sphere of the foliation on Πt. And we find
smooth functions β0, β1, . . . , βn which satisfy c′(t) =

∑n
i=0 βi(t)li(t).

We define a map X : Ln+1 → Ln+1 by

X(t, v1, . . . , vn) = c(t) + r(t)
n∑

i=1

vili(t).
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Hence, M is the zero set of f = v21 + · · ·+ v2n − 1. It is easy to see that

∂X

∂vi
= rli

and

∂X

∂t
= (β0 + rκ0v1)l0 +

n∑
j=1

(βj + r′vj + rvj−1κj−1 − rvj+1κj)lj .

Moreover, the induced metric hij = 〈∂X/∂vi, ∂X/∂vj〉, v0 = t, satisfies

h = det (hij) = −r2n(β0 + rκ0v1)2.

Hence the identical degeneracy of the differential dX implies that M is
a spacelike hyperplane. From now on, we assume that h 
= 0. Hence,
X||v|=1 gives a local parametrization of M .

Theorem 3. LetM be a spacelike hypersurface in Lorentz-Minkowski
space Ln+1 foliated by spacelike spheres.

i) If M is maximal and n ≥ 3, then it is a hypersurface of rotation.

ii) If M has nonzero constant mean curvature, then it is either a
hypersurface of rotation or a pseudohyperbolic space.

Proof. Keeping in mind the signature changes in ∂X/∂t, h and that
∇f is timelike, one may compute as in [6, pp. 261 265] to find that
(13)

2nH
√
|h|D3/2 =

(
2
∂I0

∂t
D − I0

∂D

∂t

)
+

n∑
i=1

(
2
∂Ii

∂vi
D − Ii

∂D

∂vi

)
≡ B,

where

D = −(β0 + rκ0v1)2(v · v) + (β · v + r′(v · v))2,
I0 = rn(β · v + r′(v · v))

and

Ii = rn−1(β0 + rκ0v1)2vi − rn−2(β · v + r′(v · v))g0i.
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(As in Section 2 we substitute v · v = 1 after the necessary differentia-
tions.)

A long calculation shows that

(14)

B = 2nrn+1κ2
0v

2
1((β · v)2 − r2κ2

0v
2
1)

+




v1{(4n− 4)rnβ0κ0(β · v)2 + 2rn+2κ2
0κ1v2(β · v)}

+ v21

{
(4 + 4n)rn+1r′κ2

0(β · v) + 2rn+2κ2
0(β · s)

− 2rn+2κ2
0(β

′ · v) + rn(r2κ2
0)

′(β · v)

}

+ v31{(2− 8n)rn+2β0κ
3
0}




+ lower degree terms,

where si = rκi−1vi−1 − rκivi+1 with κ−1 = κn = v0 = vn+1 = 0.

Proof of i). IfM is maximal, thenB vanishes at |v| = 1. Substituting
v1 = cos θ, vi = sin θ and vj = 0 for i, j ≥ 2 into (14), we find that the
coefficients of cos(4θ) and sin(4θ) in the Fourier series expansion of B
are nrn+1κ2

0(β2
1 −β2

i − r2κ2
0)/2 and nrn+1β1βiκ

2
0. Since these are both

zero, we have either κ0 = 0 or βi = 0 for 2 ≤ i ≤ n and β2
1 − r2κ2

0 = 0.
(In Euclidean space, there is only one possibility κ0 ≡ 0.)
When κ0 ≡ 0, López showed thatM is a hypersurface of rotation [9].
The second case cannot happen. To see this, assume that κ0 
= 0,
β2

1 = r2κ2
0 and βi = 0 for 2 ≤ i ≤ n. Now the coefficient of the degree-3

term of B satisfies

B3|βi
= 0(i ≥ 2)/2rn−1 = −6r2β1κ

2
0 + 3r

′β3
1 − 4rβ0β

2
1κ0 + 7r3β0κ

3
0

+ rβ1(rr′κ2
0 + r

2κ0κ
′
0 − β1β

′
1)

+ 2(n+ 2)r2κ2
0(r

′β1 − rβ0κ0)
= (2n+ 1)r2κ2

0(r
′β1 − rβ0κ0).

(As in the proof of Theorem 2, we may let v1 = cos θ, v3 = sin θ and
vi = 0 for i 
= 1, 3 to see that B is a polynomial of v1.) Since B
vanishes identically for v1 ∈ [−1, 1], we have β0 = (β1/rκ0)r′. This
and β2

1 − r2κ2
0 = 0 imply that

c′(t) = β0l0 + β1l1 = (rl0)′ or − (rl0)′.



MINIMAL AND CMC HYPERSURFACES 1033

Therefore, we have |X(t, v) − C0| = 0 for some constant vector C0.
Hence X(t, v) is a foliation of a lightcone contrary to the hypothesis.

Proof of ii). If H 
= 0 and n ≥ 3, then we have βi = 0 for i ≥ 2 as
in the proof of Theorem 2. Moreover, we have either r2κ2

0 − β2
1 = 0 or

r2κ2
0+(κ0/H)2 = β2

1 by comparing the degree-8 terms in the square of
(13).

Therefore, we can apply Lemma 2 to (13) to get

(15) β0β1 = rr′κ0.

This with the above equalities implies that β0 = (β1/κ0)′. Hence,

c′(t) = (β1/κ0)′l0 + (β1/κ0)κ0l1 = (β1/κ0l0)′.

And c(t) = (β1/κ0)l0 + C0 for some constant vector C0. Therefore,
X(t, v) is a foliation of a pseudohyperbolic space (as in the case of
maximal hypersurfaces, r2κ2

0 − β2
1 = 0 is impossible), which has

constant mean curvature H.

WhenM is a surface, the local parametrization ofM is given by (like
the cyclic surfaces in R3)

X(t, θ) = c(t) + r(t)(cos θl1(t) + sin θl2(t)).

Let E,F and G be the coefficients of the first fundamental form and
B ≡ G(Xtt, Xt ×Xθ〉l − 2F〈Xtθ, Xt ×Xθ〉l + E〈Xθθ, Xt ×Xθ〉l. Then
the mean curvature H satisfies

4(EG − F2)3H2 = B2,

where

EG − F2 =
1
2
r2(β2

1 − r2κ2
0 − β2

2) cos(2θ) + r
2β1β2 sin(2θ)

− 2r2(rβ0κ0 − r′β1) cos θ + 2r2r′β2 sin θ

− 1
2
r2(2β2

0 − 2r′2 + r2κ2
0 − β2

1 − β2
2)
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and

B =
1
2
r3κ0(β2

1 − r2κ2
0 − β2

2) cos(3θ) + r
3β1β2κ0 sin(3θ)

+
1
2
(−r4β′1κ0 − 5r4β0κ

2
0 + r

4β1κ
′
0 + 6r

3r′β1κ0) cos(2θ)

+
1
2
(r4β2κ

′
0 + 6r

3r′β2κ0 − r4β′2κ0) sin(2θ)

+
1
2
(− 3r5κ3

0 + 2r
4r′κ′0 − 2r3β0β

′
1 + 3r

3β2
1κ0 + 6r3r′2κ0

− 2r4r′′κ0 + 2r3β0β2κ1 − 8r3β2
0κ0 + 3r3β2

2κ0

+ 2r3β′0β1 + 4r2r′β0β1

)
cos θ

+
(
r3β′0β2 − r3β0β1κ1 − r3β0β

′
2 + 2r

2r′β0β2 + r4r′κ0κ1

)
sin θ

+ r3r′β′0 − r3r′′β0 +
1
2
r4β1κ

′
0 −
1
2
r4β′1κ0 − 52r

4β0κ
2
0

+ r2β0β
2
1 + r

2r′2β0 + r2β0β
2
2 − r2β3

0 + 2r
3r′β1κ0 + r4β2κ0κ1.

(Without loss of generality, one may assume that H2 = 1.) We define
a trigonometric polynomial O by

O = B2 − 4(EB − F2)3.

As in the proof of Theorem 1, we have either κ0 = 0 and β1 = β2 = 0
or κ0 
= 0 and β1β2 = 0.

In the first case, M is rotational.

When κ0 
= 0 and β1 = 0, we have r2κ2
0+ β

2
2 = −κ2

0 from the cos(6θ)
term of O. This contradicts our assumption that κ0 
= 0.
When κ0 
= 0 and β2 = 0, we have β2

1 − r2κ2
0 = κ

2
0 or β

2
1 − r2κ2

0 = 0
from the cos(6θ) term of O. And we have β0 = (β1/κ0)′ from
the cos(5θ) term of O. Hence, M is a pseudohyperbolic space (if
β2

1 − r2κ2
0 = 0, then M is a lightcone).

Remark 2. 1. López et al. showed that a spacelike maximal sur-
face foliated by spacelike circles is either a Lorentzian catenoid or a
Lorentzian Riemann’s maximal surface [11].

2. We have a similar result for a timelike constant mean curvature hy-
persurface foliated by spacelike spheres. Noting that ∇f is a spacelike
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vector, we follow the proof of Theorem 3 to see that such a hypersurface
is either a hypersurface of rotation or a pseudo sphere.

4. Minimal and CMC hypersurfaces in hyperbolic space and
sphere. To investigate sphere-foliated minimal and constant mean
curvature hypersurfaces in hyperbolic space or in sphere, we adopt the
following models.

For hyperbolic space, we use the upper half-space model (Rn+1
+ , ds2h),

where Rn+1
+ = {(x1, . . . , xn+1) ∈ Rn+1 : xn+1 > 0} and ds2h =

(dx2
1 + · · · + dx2

n+1)/x
2
n+1. A smooth hypersurface in the upper half-

space model can be treated in view of two different metrics: the
Euclidean metric ds20 and the hyperbolic metric ds2h. Let Hh and H0

be the mean curvatures of M with respect to ds2h and ds
2
0 and N the

Euclidean normal vector of M . Then we have, at a point x in M ,

(16) Hh = xn+1H0 +Nn+1.

As for the sphere, we use the stereographic sphere model. It is Rn+1

endowed with the conformal metric ds2s = ds
2
0/((1+〈x, x〉)/2)2 induced

by the stereographic projection of a unit sphere from the north pole
(0, . . . , 0, 1) onto the hyperplane xn+1 = 0. (We denote by 〈, 〉 the usual
Euclidean inner product in Rn+1.) We note that different choices of
the north pole in the embedding of Sn+1 intoRn+2 induces an isometry
in our model. The mean curvatures Hs and H0 of M with respect to
the metrics ds2s and ds20 satisfy

(17) Hs =
1 + 〈x, x〉
2

H0 + 〈x,N〉.

Definition 1. A hypersurface in Hn+1, or in Sn+1, is said to be
sphere-foliated if there is a one-parameter family of geodesic hyper-
planes, or totally geodesic n-spheres, that meet M in (n− 1)-spheres.

Using these models one may consider a sphere-foliated hypersurface
M in hyperbolic space or in sphere as a sphere-foliated hypersurface
(with or without boundary) in Rn+1 satisfying (16) or (17).
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Lemma 3. Let M be a sphere-foliated hypersurface in Rn+1. If the
parametrization of M is given by (2), then we have

(18) N = − ∇f
|∇f | =

(α · v + r′)e0 − (α0 − rκ0v1)
∑n

i=1 viei√
(α · v + r′)2 + (α0 − rκ0v1)2

.

Proof. We note that N lies in the plane σ spanned by e0 and∑n
i=1 viei. Let p : R

n+1 → σ be the canonical projection. Then we
have

p

(
∂X

∂t

)
=

〈
∂X

∂t
, e0

〉
e0 +

〈
∂X

∂t
,

n∑
i=1

viei

〉 n∑
i=1

viei

= (α0 − rκ0v1)e0 + (〈α, v〉+ r′)
n∑

i=1

viei.

Since N is perpendicular to p(∂X/∂t) in S, the claim follows.

We assume that g 
= 0 and use the notations in Section 2.

Theorem 4. Let M be a sphere-foliated minimal or CMC hyper-
surface in hyperbolic space Hn+1 with n ≥ 4. Then M is either a
hypersurface of rotation around a geodesic or (part of ) a (Euclidean)
sphere.

Proof. (We prove this theorem for n = 4.) (i) First we assume that
Hh 
= 0. From (2), (6) and (18), we have
(19)

2nHh
√

g D
3/2
1 =

(
〈c, �E〉 + r

n∑
i=1

vi〈ei, �E〉
)

P

+2n
√

g D1

{
(α · v+r′)〈e0, �E〉−(α0−rκ0v1)

n∑
i=1

vi〈ei, �E〉
}

≡ L,

where 5E = (0, . . . , 0, 1) and D1 = (α0 − rκ0v1)2 + (α · v + r′)2.
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Let us suppose that α0 > 0. Substituting v1 = 0 into (19), we have

(20)

2nHhr
nα0D

3/2
2 =

(
〈c, 5E〉+ r

n∑
i=2

vi〈ei, 5E〉
)
P |v1=0

+ 2nrnα0D2

{
(α ∗ v + r′)〈e0, 5E〉 − α0

n∑
i=2

vi〈ei, 5E〉
}
,

where α ∗ v = ∑n
i=2 αivi and D2 = α2

0 + (α ∗ v + r′)2. From (7),
we see that the degree-3 term of P |v1=0 is (2n − 4)rn−1α2

0(α ∗ v)2 −
2rn+1α0κ0κ1v2(α ∗ v).

Lemma 4. A necessary condition for (20) when
∑n

i=2 v
2
i = 1 is

αi = 0 for i = 2, . . . , n.

Proof. The degree-3 term of L|v1=0 is 2rnα0(α∗v){n(α∗v)2〈e0, 5E〉+
r2κ0κ1v2

∑n
i=2 vi〈ei, 5E〉− 2α0(α ∗ v)

∑n
i=2 vi〈ei, 5E〉}. Let us substitute

v2 = cos θ, v3 = sin θ and v4 = 0 into (20). From the cos(6θ) and
sin(6θ) terms in the square of (20), we have either α2 = α3 = 0 or( 〈e2, 5E〉

〈e3, 5E〉
)
= Λ

(
2α0α2(α2

2 + α
2
3)− r2κ0κ1(α2

2 − α2
3)

2α0α3(α2
2 + α2

3)− 2r2κ0κ1α2α3

)
,

where Λ = n(〈e0, 5E〉 ±Hh)/((2α0α2 − r2κ0κ1)2 + 4α2
0α

2
3).

Substituting v2 = 0, v3 = cos θ and v4 = sin θ, we have either
α3 = α4 = 0 or ( 〈e3, 5E〉

〈e4, 5E〉
)
=
n(〈e0, 5E〉 ±Hh)

2α0

(
α3

α4

)
.

Hence, we have three possibilities:

i) αi = 0 for i = 2, 3, 4, or

ii) 〈e2, 5E〉 = nα2(〈e0, 5E〉 ±Hh)/(r2κ0κ1 + 2α0α2) and α3 = α4 = 0,
or

iii) α3 
= 0 and κ1 = 0.

We show that ii) implies i). It is easy to see that the polynomial
identity (αx2 + βx + γ)3 = (ax3 + bx2 + cx + d)2 with α, γ > 0 holds
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if and only if β2 = 4αγ. Applying this observation to (20) with ii), we
find that α2 = 0.

The case iii) cannot happen. Otherwise, one may choose e4 so that
〈e4, 5E〉 = nα4(〈e0, 5E〉 ±Hh)/2α0 = 0. Applying the above observation
with v2 = α4 = 0 to (20), we get α3 = 0.

Applying Lemma 2 to (19), we find that α0α1 + rr′κ0 = 0 and
rκ0

√
α2

0 + r′2 = −α0

√
r2κ2

0 + α
2
1. Hence, κ0 ≡ 0 and α0 > 0 implies

that M is a hypersurface of rotation.

The following lemma holds for n ≥ 2.

Lemma 5. Let M be a hypersurface of rotation in Rn+1
+ that has

constant mean curvature when regarded as a submanifold of Hn+1. If
the axis of the rotation is not perpendicular to xn+1 = 0, then M is a
(Euclidean) sphere.

Proof. We fix a coordinate system onRn+1
+ so that e0 = (a, 0, . . . , 0, b)

with a2 + b2 = 1, a 
= 0 and c′(t) = α0e0. It is easy to see that

P ≡ P |κ0=α1=···=αn=0

= 2rn−1α2
0

{
n(α2

0 + r
′2)−

(
α0 +

(
rr′

α0

)′)}
.

From (19), we see that

2nHhr
nα0(α2

0 + r
′2)3/2 = (〈c, 5E〉+ rv1〈e1, 5E〉)P

+ 2nrn(α2
0 + r

′2){r′〈e0, 5E〉 − α0v1〈e1, 5E〉}.

Hence we have α0 + (rr′/α0)′ = 0 and α0〈c, 5E〉 + rr′〈e0, 5E〉 =
Hhr

√
α2

0 + r′2. Since c(t) =
∫ t

t0
α0e0, the second equation becomes

bα0

∫ t

t0

α0 + brr′ = Hhr
√
α2

0 + r′2.

Substituting α0+(rr′/α0)′ = 0 into this, we find that Hhr
√
α2

0 + r′2 =
b̃α0 for some constant b̃. Hence we find that r2 + (rr′/α0)2 = r2 + α2

0

is constant and that M is a sphere.
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Now we consider the case κ0 
= 0. Using α0α1 + rr′κ0 = 0 and
rκ0

√
α2

0 + r′2 = −α0

√
r2κ2

0 + α
2
1 to simplify the degree-4 term of L4

of L, we find that

L4/2rn+1κ0 = n(r2κ2
0 + α

2
1)

(
κ0〈c, 5E〉 − α1〈e0, 5E〉

)
v41

+ r2κ2
0

(
α0 −

(
α1

κ0

)′) n∑
i=1

〈ei, 5E〉v31vi.

Since the v31vi, i 
= 1, terms must vanish, we have either α0 = (α1/κ0)′

or 〈ei, 5E〉 = 0 for i = 2, . . . , n.
When α0 = (α1/κ0)′, it follows from α0α1+rr′κ0 = 0 that (α1/κ0)×
(α1/κ0)′ + rr′ = 0. Hence r2 + (α1/κ0)2 is a constant. As in the proof
of Theorem 1, we conclude that M is spherical.

If the second case holds, we apply a Möbius transformation to obtain
another (Euclidean) foliation of M . Hence we may assume that the
second condition holds under any Möbius transformation and for all
γ(t) which corresponds to the new foliation. Let c̃(t) be the curve
determined by the hyperbolic centers of the spheres of the foliation.
Then γ(t) and c̃(t) lie on the same plane which is perpendicular to
xn+1 = 0 under any Möbius transformation. It is straightforward to see
that c̃(t) is a reparametrization of a geodesic. Moreover, the geodesic
hyperplanes are perpendicular to c̃(t). Therefore, M is a hypersurface
of rotation unless c̃(t) is a point curve. If c̃(t) is a point, then M is a
(hyperbolic) sphere.

If α0 ≡ 0, then v1 divides the righthand side of (19). And the lefthand
side of (19) is 2nHh|rκ0v1| × {r2κ2

0v
2
1 + (r

′+α · v)2}3/2. Therefore, we
may formally divide (19) by v1, and the resulting equation holds for
v1 ≥ 0. Substituting v1 = 0 into this new equation, we find that

(21) n(〈e0, 5E〉 ±Hh)(α ∗ v)3 + r2κ0κ1v2(α ∗ v)
n∑

i=2

vi〈ei, 5E〉

+ lower degree terms = 0.

Hence we have αi = 0 for i = 2, . . . , n as in Lemma 4. We have only
to repeat the argument for α0 > 0 to conclude that M is either a
hypersurface of rotation or (part of) a sphere.
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(ii) Let us now assume that Hh = 0. One may assume that κ0 
= 0
and α0 > 0 (the case α0 ≡ 0 can be proved as above). We have
αi = 0 for i = 2, . . . , n from (20) and Lemma 4. By a straightforward
computation, we have

L4/2rn+1κ0 = n(r2κ2
0 + α

2
1)(κ0〈c, 5E〉 − α1〈e0, 5E〉)v41

+
(
r2α0κ

2
0 + 2rr

′α1κ0 + 2α0α
2
1

+ r2α1κ
′
0 − r2κ0α

′
1

) n∑
i=1

〈ei, 5E〉v31vi.

If 〈ei, 5E〉 
= 0 for some i ≥ 2, then we have r2α0κ
2
0 + 2rr′α1κ0 +

2α0α
2
1 + r2α1κ

′
0 − r2κ0α

′
1 = 0. From the degree-4 and constant terms

of L, we find that

κ0〈c, 5E〉 − α1〈e0, 5E〉 = 0

and

α0〈c, 5E〉+ rr′〈e0, 5E〉 = 0.

Since 〈c, 5E〉 > 0, we have α0α1 + rr′κ0 = 0 and α0 = (α1/κ0)′. Hence
M is a sphere.

When 〈ei, 5E〉 = 0 for all i ≥ 2, we can argue as in the case Hh 
= 0.
If κ0 ≡ 0, then we have L = 2nrnα0(α · v)3〈e0, 5E〉 − 4rnα2

0(α ·
v)2

∑n
i=1 vi〈ei, 5E〉+lower degree terms. Therefore we have either αi =

0 or n〈e0, 5E〉αi = 2α0〈ei, 5E〉 for i ≥ 2. Since κ0 ≡ 0 and Hh = 0, the
second condition is equivalent to the first. Hence M is a hypersurface
of rotation.

The following theorem and proof about the sphere-foliated minimal
or CMC hypersurface in sphere are analogous to those of the hyperbolic
space case.

Theorem 5. Let M be a sphere-foliated minimal or CMC hypersur-
face in the unit sphere Sn+1 with n ≥ 4. Then it is either a hypersurface
of rotation or a hypersphere.
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Proof. In the sphere, the mean curvature Hs of M satisfies

(22)

2nHs
√
g D

3/2
1 =

(
1 + 〈c, c〉+ r2

2
+ r

n∑
i=1

vi〈ei, c〉
)
P

+ 2n
√
g D1

〈
c+ r

n∑
i=1

viei, (α · v + r′)e0

− (α0 − rκ0v1)
n∑

i=1

viei

〉
≡ S.

Substituting v1 = 0 into (22), we find that the degree-3 term of
S|v1=0 is 2rnα0(α∗v){n(α∗v)2〈c, e0〉+r2κ0κ1v2

∑n
i=2 vi〈c, ei〉−2α0(α∗

v)
∑n

i=2 vi〈c, ei〉}. Hence we have αi = 0 for i = 2, . . . , n for any value
of Hs as in the proof of Theorem 4.

First we assume that Hs 
= 0. Applying Lemma 4 to (22), we have
α0α1 + rr′κ0 = 0. If κ0 ≡ 0, then M is a hypersurface of rotation.
Otherwise, the degree-4 term of S satisfies

S4/2rn+1κ0 = (r2κ2
0 + α

2
1)

(
1 + 〈c, c〉 − r2

2
nκ0 − nα1〈c, e0〉

)
v41

+ r2κ2
0

(
α0 −

(
α1

κ0

)′) n∑
i=1

〈ei, c〉v31vi.

Since the v31vi terms vanish, we have either 〈ei, c〉 
= 0 for some i ≥ 2
and α0 = (α1/κ0)′ = 0 or 〈ei, c〉 = 0 for all i = 2, . . . , n. In the first
case M is a hypersphere.

Let us now suppose that 〈ei, c〉 = 0 for i ≥ 2. Differentiating
〈e2, c〉 = 0, we find that κ1〈e1, c〉 = 0. Since κ0 
= 0, we have κ1 ≡ 0.
We postpone the proof for the case κ1 ≡ 0 after the discussion of the
case Hs = 0.

Let Hs = 0. When α0 > 0 and κ0 
= 0, we have

S4/2rn+1κ0 = (r2κ2
0 + α

2
1)

(
1 + 〈c, c〉 − r2

2
nκ0 − nα1〈c, e0〉

)
v41

+
(
r2α0κ

2
0 + 2rr

′α1κ0 + 2α0α
2
1

+ r2α1κ
′
0− r2κ0α

′
1

) n∑
i=1

〈ei, c〉v31vi.
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If 〈ei, c〉 
= 0 for some i ≥ 2, then we have from the degree-4 and
constant terms of S that

1 + 〈c, c〉 − r2
2

κ0 − 〈c, e0〉α1 = 0

and
1 + 〈c, c〉 − r2

2
α0 + 〈c, e0〉rr′ = 0.

Therefore we have either α0α1 + rr′κ0 = 0 or 1 + 〈c, c〉 − r2 = 0 and
〈c, e0〉 = 0. Since the second condition implies the first, M is either a
hypersurface of rotation or a sphere.

When κ0 = 0, we must have α0 
= 0. Since γ is a line through the
origin, we have S = 2rnα0(α · v)2{n(α · v)〈c, e0〉 − 2

∑
i=1n vi〈c, ei〉}+

lower degree terms. Hence we have αi = 0 for all i = 1, . . . , n, which
implies that M is a hypersurface of rotation.

In short, there are two possibilities (for any value of Hs):

i) 〈ei, c〉 
= 0 for some i ≥ 2 and α0α1 + rr′κ0 = 0. (In this case M
is either a hypersurface of rotation or a sphere.)

ii) 〈ei, c〉 = 0 for all i = 2, . . . , n and κ1 ≡ 0 for any choice of the
north pole. (In this case, γ(t) lies on a plane that contains the origin.)

When ii) holds, we define a new curve c̃(t) connecting the spherical
centers of the spheres of the foliation. It is easy to see that c̃(t) is
a reparametrization of a geodesic which meet orthogonally the totally
geodesic n-spheres containing the spheres of the foliation. When c̃(t)
is not a point curve, M is a hypersurface of rotation. If c̃(t) is a point
curve, then M is a sphere.

In S3, there are foliations that do not belong to any class discussed
above.

Example 2. The Clifford torus is the intersection of S3 with a
quadratic cone in R4 defined by the equation x2

1 + x2
2 − x2

3 − x2
3 =

0. Sterographic projection from the north pole (0,0,0,1) onto the
hyperplane x4 = 0 transforms it into the torus T = {x = (√2 +
cos θ) cosψ, y = (

√
2+ cos θ) sinψ, z = sin θ : 0 ≤ θ, ψ ≤ 2π} [13]. The

Clifford torus is a ruled minimal surface, that is, it admits a foliation
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by great circles. The planes which contain the origin and normal to
1/
√
2(− cosφ,− sinφ, 1), 0 ≤ φ ≤ 2π, meet T in two great circles (they

intersect at two points and their center is the origin in the conformal
metric). The smooth one-parameter family of these great circles does
not belong to any class of foliations discussed above, while the Clifford
torus is rotational. In fact, we have e0 = 1/

√
2(− cosφ,− sinφ, 1), e1 =

(sinφ,− cosφ, 0), e2 = 1/
√
2(cosφ, sinφ, 1), c(φ) = (− sinφ, cosφ, 0)

and r =
√
2. It is straightforward to see that κ0 = −1/√2, 〈c, e2〉 = 0,

α2 = 〈c′, e2〉 
= 0 and κ1 = 1/
√
2.
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