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ITERATIVE APPROXIMATION OF SOLUTIONS
TO NONLINEAR EQUATIONS OF φ-STRONGLY
ACCRETIVE OPERATORS IN BANACH SPACES

ZEQING LIU, MICHEL BOUNIAS AND SHIN MIN KANG

ABSTRACT. Suppose that X is an arbitrary Banach space
and T : X → X is a uniformly continuous φ-strongly accretive
operator. It is proved that, for a given f ∈ X, the Ishikawa
iteration method with errors converges strongly to the solu-
tions of the equations f = Tx and f = x + Tx under suitable
conditions. Related results deal with the iterative approxima-
tion of fixed points of φ-strongly pseudocontractive operators.
Our results generalize, improve and unify the corresponding
results in [2] [11], [13] [16], [19], [20], [23] [26] and [28].

1. Introduction. Let X be an arbitrary Banach space with norm
‖ · ‖ and dual X∗ and J denote the normalized duality map from X
into 2X∗

given by

JX = {f∗ ∈ X∗ : ‖f∗‖2 = ‖x‖2 = Re 〈x, f∗〉},

where 〈·, ·〉 stands for the generalized duality pairing between X and
X∗. It is well known that, if X∗ is convex, then J is single-valued. In
the sequel we shall denote the single-valued duality mapping by j.

An operator T with domain D(T ) and range R(T ) in X is called
strongly accretive if there exists a constant k > 0 such that for all
x, y ∈ D(T ), there exists j(x− y) ∈ J(x− y) satisfying

(1.1) Re 〈Tx− Ty, j(x− y)〉 ≥ k‖x− y‖2.

Without loss of generality we may assume k ∈ (0, 1). If k = 0 in (1.1),
then T is called accretive. Furthermore, T is called φ-strongly accretive
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if there exists a strictly increasing function φ : [0,∞) → [0,∞) with
φ(0) = 0 such that for all x, y ∈ D(T ), there exists j(x− y) ∈ J(x− y)
satisfying

(1.2) Re 〈Tx− Ty, j(x− y)〉 ≥ φ(‖x− y‖)‖x− y‖.

Closely related to the class of strongly accretive operators is the class
of strongly pseudocontractive operators where an operator T is called
a strong pseudocontraction if there exists a constant t > 1 such that
for all x, y ∈ D(T ), there exists j(x− y) ∈ J(x− y) satisfying

(1.3) Re 〈Tx− Ty, j(x− y)〉 ≤ 1
t
‖x− y‖2.

If t = 1 in (1.3), then T is called pseudocontractive. We call T φ-
strongly pseudocontractive if there exists a strictly increasing function
φ : [0,∞) → [0,∞) with φ(0) = 0 such that for all x, y ∈ D(T ), there
exists j(x− y) ∈ J(x− y) satisfying

(1.4) Re 〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − φ(‖x− y‖)‖x− y‖.

If I denotes the identity operator on X, then it follows from inequal-
ities (1.1) to (1.4) that T is pseudocontractive, respectively, strongly
pseudocontractive, φ-strongly pseudocontractive, if and only if (I − T )
is accretive, respectively, strongly accretive, φ-strongly accretive. If T
is accretive and (I + rT )(D(T )) = X for all r > 0, then T is called
m-accretive.

The classes of operators introduced above have been studied by
several researchers, see, for example, [1] [28]. Osilike [23] proved
that the class of strongly accretive operators, respectively, the class of
strongly pseudocontractive operators, is a proper subclass of the class
of φ-strongly accretive operators, respectively, the class of φ-strongly
pseudocontractive operators.

We recall the following iterative processes due to Ishikawa [17], Mann
[21] and Liu [19], respectively.

(a) Let K be a nonempty convex subset of X, and let T : K → K be
an operator. For any given x0 ∈ K the sequence {xn}∞n=0 defined by

xn+1 = (1−an)xn+anTyn, yn = (1−bn)xn+bnTxn for all n ≥ 0,
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is called the Ishikawa iteration sequence, where {an}∞n=0 and {bn}∞n=0

are real sequences in [0, 1] satisfying appropriate conditions.

(b) In particular, if bn = 0 for all n ≥ 0, then the sequence {xn}∞n=0

defined by

x0 ∈ K, xn+1 = (1 − an)xn + anTxn for all n ≥ 0,

is called the Mann iteration sequence.

(c) Let K be a nonempty convex subset of X, and let T : K → X
be an operator. For any given x0 ∈ K the sequence {xn}∞n=0 defined
iteratively by

xn+1 = (1−an)xn+anTyn+vn, yn = (1−bn)xn+bnTxn+un

∀n ≥ 0,

where {xn}∞n=0 and {yn}∞n=0 are in K, {un}∞n=0 and {vn}∞n=0 are two
summable sequences in X, i.e.,

∑∞
n=0 ‖un‖ < ∞ and

∑∞
n=0 ‖vn‖ < ∞,

{an}∞n=0 and {bn}∞n=0 are real sequences in [0, 1] satisfying suitable
conditions, is called the Ishikawa iteration sequence with errors.

(d) If, with K,T and x0 as in (c), the sequence {xn}∞n=0 defined
iteratively by

xn+1 = (1 − an)xn + anTxn + un for all n ≥ 0,

where {xn}∞n=0 is in K, {un}∞n=0 is a summable sequence in X and
{an}∞n=0 is a real sequence in [0, 1] satisfying suitable conditions, is
called the Mann iteration sequence with errors.

It is clear that the Ishikawa and Mann iterative processes are all
special cases of the Ishikawa and Mann iterative processes with errors,
respectively.

The accretive operators were introduced independently in 1967 by
Browder [1] and Kato [18]. An early fundamental result in the theory
of accretive operators, due to Browder, states that the initial value
problem

du

dt
+ Tu = 0, u(0) = u0,

is solvable if T is locally Lipschitzian and accretive on X. Martin [22]
indeed generalized the result of Browder to the continuous accretive
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operators. That is, he proved that if T : X → X is strongly accretive
and continuous, then T is surjective, so that the equation

(1.7) Tx = f

has a solution for any given f ∈ X. Meanwhile, he proves also that if
T : X → X is accretive and continuous, then T is m-accretive, so that
the equation

(1.8) x + Tx = f

has a solution for any given f ∈ X.

In [4], Chidume proved that if X = Lp, or lp, p ≥ 2, and K is a
nonempty closed convex and bounded subset of X and T : K → K
is a Lipschitz strongly pseudo-contractive operator, then the Mann
iteration method converges strongly to the unique fixed point of T .
Afterwards, several authors applied the Mann iteration method and
the Ishikawa iteration method to approximate fixed points of strong
pseudo-contractions and to approximate solutions of equations (1.7)
and (1.8) (see, for example, [2], [3], [5] [11], [13] [16], [20], [23], [25],
[26], [28]). Using the Mann and Ishikawa iteration methods with errors,
Liu [19] and Osilike [24] also obtained the convergence theorems for
strongly accretive operators under certain conditions.

Motivated and inspired by the above works, the purpose of this paper
is to study the iterative approximation of solutions to equations (1.7)
and (1.8) in the case when T is a uniformly continuous φ-strongly
accretive operator and X is an arbitrary Banach space. By the
way, we also obtain the iterative approximation of fixed points for
a uniformly continuous φ-strongly pseudo-contractive operator. Our
results generalize, improve and unify the corresponding results of Chang
[2], Chang, Cho, Lee and Kang [3], Chidume [4] [8], Chidume and
Osilike [9] [11], Deng [13] [15], Deng and Ding [16], Liu [19], Liu
[20], Osilike [23] [25], Tan and Xu [26] and Zeng [28] and others.

2. Preliminaries. The following lemmas play a crucial role in the
proofs of our main results.

Lemma 2.1 [19]. Let {αn}, {βn} and {γn} be three nonnegative real
sequences satisfying the inequality

αn+1 ≤ (1 − ωn)αn + βn + γn,
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for all n ≥ 0, where {ωn} ⊂ [0, 1],
∑∞

n=0 ωn = ∞, βn = o(ωn) and∑∞
n=0 γn < ∞. Then limn→∞ αn = 0.

Lemma 2.2. Let {an}∞n=0 be a nonnegative and bounded sequence
and φ : [0,∞) → [0,∞) strictly increasing and φ(0) = 0. Assume that
A(an) = (φ(an))/(1 + an + φ(an)) for all n ≥ 0. Then the following
statements are equivalent:

(i) inf{A(an) : n ≥ 0} = 0;

(ii) inf{φ(an) : n ≥ 0} = 0;

(iii) There exists a subsequence {ank
}∞k=0 of {an}∞n=0 such that ank

→
0 as k → ∞.

Proof. Note that 0 ≤ A(an) ≤ φ(an) for all n ≥ 0. This means that
(ii) implies (i).

Set inf{φ(an) : n ≥ 0} = r. Suppose that r > 0. Since {an}∞n=0

is bounded, there exists d > 0 satisfying an ≤ d for all n ≥ 0. It
follows that A(an) ≥ r/(1 + d + φ(d)) for all n ≥ 0. It is clear that
inf{A(an) : n ≥ 0} ≥ r/(1 + d + φ(d)) > 0. That is, (i) implies (ii).

Assume that (ii) holds. Then there is a subsequence {ank
}∞k=0 of

{an}∞n=0 satisfying φ(ank
) → 0 as k → ∞. It follows from boundedness

of {an}∞n=0 that there exists a subsequence {ankj
}∞j=0 of {ank

}∞k=0 such
that ankj

→ t as j → ∞. Clearly, t ≥ 0. We claim that t = 0. If
not, then t > 0. Therefore, there exists a subsequence {ankjm

}∞m=0

of {ankj
}∞j=0 with ankjm

≥ t/2 for all m ≥ 0. Note that φ is strictly
increasing. Thus 0 = limm→∞ φ(ankjm

) ≥ φ(t/2) > 0. This is a
contradiction. Hence, (ii) implies (iii).

Assume that (iii) holds. If inf{φ(an) : n ≥ 0} = s > 0, then φ(an) ≥ s
for all n ≥ 0. Since φ is strictly increasing, an ≥ φ−1(s) > 0 for all
n ≥ 0. Therefore, each subsequence of {an}∞n=0 does not converge to
zero. This is a contradiction. This completes the proof.

Lemma 2.3. Suppose that X is an arbitrary Banach space and
T : X → X is a continuous φ-strongly accretive operator. Then the
equation Tx = f has a unique solution for any f ∈ X.
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Proof. Given f ∈ X and n ≥ 1, define Tn : X → X by Tnx =
(1/n)x + Tx for all x ∈ X. Then, for any x, y ∈ D(T ), there exists
j(x− y) ∈ J(x− y) satisfying

(2.1)
〈Tnx− Tny, j(x− y)〉 ≥ ‖x− y‖2/n + φ(‖x− y‖)‖x− y‖

≥ ‖x− y‖2/n.

That is, Tn is strongly accretive. Since Tn is continuous, it follows from
Deimling [12, Theorem 13.1] that the equation Tnx = f has a solution
xn ∈ X. In view of (2.1), we have

φ(‖xn − x1‖)‖xn − x1‖ ≤ 〈Tnxn − Tnx1, j(xn − x1)〉
= 〈f − (x1/n) − Tx1, j(xn − x1)〉
= 〈(1 − (1/n))x1, j(xn − x1)〉
≤ ‖x1‖ · ‖xn − x1‖,

which implies that φ(‖xn − x1‖) ≤ ‖x1‖. Consequently, {xn}∞n=0 is a
bounded sequence. This yields that Txn → f as n → ∞. Note that,
for all n > 0 and m > 0,

‖xn−xm‖ ≤ φ−1(‖Txn−Txm‖) ≤ φ−1(‖Txn−f‖ + ‖Txm−f‖),

which means that {xn}∞n=0 is a Cauchy sequence. Hence, {xn}∞n=0

converges to some p ∈ X. From the continuity of T , we get that
Txn → Tp as n → ∞. Therefore, Tp = f .

Suppose that the equation Tx = f has another solution q ∈ X −{p}.
Then there is j(p− q) ∈ J(p− q) such that

0 = 〈Tp−Tq, j(p−q)〉 ≥ φ(‖p−q‖)‖p−q‖,

which implies that φ(‖p − q‖) = 0. Since φ is strictly increasing,
φ(0) = 0 and ‖p−q‖ > 0 so that φ(‖p−q‖) > 0. This is a contradiction.
Therefore, the equation Tx = f has a unique solution in X. This
completes the proof.

3. Main results. In the sequel, F (T ) denotes the set of fixed points
of T . Now we prove the following theorems.
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Theorem 3.1. Suppose that X is an arbitrary Banach space and
T : X → X is a uniformly continuous φ-strongly accretive opera-
tor. Assume that {un}∞n=0, {vn}∞n=0 are sequences in X and {an}∞n=0,
{bn}∞n=0 are sequences in [0, 1] satisfying the conditions

∞∑
n=0

a2
n < +∞,

∞∑
n=0

‖vn‖ < +∞, ‖vn‖ = o(an), lim
n→∞ ‖un‖ = 0;

(3.1)

lim
n→∞ bn = 0,

∞∑
n=0

an = +∞ and an �= 0, n ≥ 0.(3.2)

Then for any given f ∈ X, the sequence {xn}∞n=0 defined for arbitrary
x0 ∈ X by

(3.3)
yn = (1 − bn)xn + bn(f + xn − Txn) + un, n ≥ 0,

xn+1 = (1 − an)xn + an(f + yn − Tyn) + vn, n ≥ 0,

converges strongly to the solution of the equation Tx = f provided that
the sequences {xn − Txn}∞n=0 and {yn − Tyn}∞n=0 are bounded.

Proof. It follows from Lemma 2.3 that the equation Tx = f has a
unique solution q ∈ X. Define S : X → X by Sx = f +(I −T )x for all
x ∈ X. Obviously, S is uniformly continuous and q is a unique fixed
point of S. Thus, for any x, y ∈ X, there exists j(x − y) ∈ J(x − y)
satisfying

Re 〈(I − S)x− (I − S)y, j(x− y)〉 = Re 〈Tx− Ty, j(x− y)〉
= φ(‖x− y‖)‖x− y‖
≥ A(x, y)‖x− y‖2,

where

A(x, y) =
φ(‖x− y‖)

1 + ‖x− y‖ + φ(‖x− y‖) ∈ [0, 1)

for all x, y ∈ X. This implies that

Re 〈(I − S −A(x, y))x− (I − S −A(x, y))y, j(x− y)〉 ≥ 0,
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and it follows from Lemma 1.1 of Kato [18] that

(3.4) ‖x− y‖ ≤ ‖x− y + r[(I−S−A(x, y))x− (I−S−A(x, y)) y]‖,
for all x, y ∈ X and r > 0. In view of (3.3), we have

(3.5)

xn = xn+1 + anxn − anSyn − vn

= (1 + an)xn+1 + an(I − S −A(xn+1, q))xn+1

− (1 −A(xn+1, q))anxn + (2 −A(xn+1, q))a2
n(xn − Syn)

+ an(Sxn+1 − Syn) − [1 + (2 −A(xn+1, q))an]vn.

Note that

(3.6) q = (1+an)q + an(I−S−A(xn+1, q))q − (1−A(xn+1, q))anq.

It follows from (3.4), (3.5) and (3.6) that

‖xn − q‖ ≥ (1 + an)
∥∥∥xn+1 − q

+
an

1 + an
[(I − S −A(xn+1, q))xn+1

− (I − S −A(xn+1, q))q)]
∥∥∥

− an(1 −A(xn+1, q))‖xn − q‖
− (2 −A(xn+1, q))a2

n‖xn − Syn‖ − an‖Sxn+1 − Syn‖
− [1 + (2 −A(xn+1, q))an]‖vn‖

≥ (1 + an)‖xn+1 − q‖ − an(1 −A(xn+1, q))‖xn − q‖
− (2 −A(xn+1, q))a2

n‖xn − Syn‖
− an‖Sxn+1 − Syn‖ − [1 + (2 −A(xn+1, q))an]‖vn‖,

which implies that

(3.7)

‖xn+1 − q‖ ≤ 1 + (1 −A(xn+1, q))an

1 + an
‖xn − q‖

+ (2 −A(xn+1, q))a2
n‖xn − Syn‖

+ an‖Sxn+1 − Syn‖ + [1 + (2 −A(xn+1, q))an]‖vn‖
≤ (1 −A(xn+1, q)an + a2

n)‖xn − q‖
+ M1a

2
n‖xn − Syn‖ + an‖Sxn+1 − Syn‖ + M2‖vn‖,
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for some constants M1 ≥ 0, M2 ≥ 0. Put

d = sup{‖Sxn−q‖+‖Syn−q‖ : n ≥ 0}+‖x0−q‖, D = d+
∞∑

n=0

‖vn‖.

It is easy to verify that ‖xn − q‖ ≤ D and ‖xn − Syn‖ ≤ 2D for all
n ≥ 0. Using (3.1), (3.2) and (3.3), we have

‖xn+1 − yn‖ ≤ (1 − an)‖xn − yn‖ + an‖Syn − yn‖ + ‖vn‖
≤ ‖xn − yn‖ + an‖Syn − xn‖ + ‖vn‖
≤ bn‖xn − Sxn‖ + ‖un‖ + 2Dan + ‖vn‖
≤ 2D(an + bn) + ‖un‖ + ‖vn‖ → 0,

as n → ∞. It follows from the uniform continuity of S that ‖Sxn+1 −
Syn‖ → 0 as n → ∞. From (3.7) and (3.1), we have

(3.8)

‖xn+1 − q‖ ≤ [1 −A(xn+1, q)an + a2
n]‖xn − q‖

+ 2DM1a
2
n + an‖Sxn+1 − Syn‖ + M2‖vn‖

≤ [1 −A(xn+1, q)an]‖xn−q‖ + (1 + 2M1)Da2
n

+ an‖Sxn+1 − Syn‖ + M2‖vn‖
≤ [1 −A(xn+1, q)an]‖xn − q‖

+ (1 + 2M1)Da2
n + o(an),

for all n ≥ 0. Assume that inf{A(xn+1, q) : n ≥ 0} = r. We assert that
r = 0. Otherwise r > 0. Using (3.8), we obtain that

‖xn+1 − q‖ ≤ (1 − ran)‖xn − q‖ + (1 + 2M1)Da2
n + o(an),

for all n ≥ 0. By virtue of (3.1), (3.2) and Lemma 2.1, we infer
immediately that ‖xn − q‖ → 0 as n → ∞. Lemma 2.2 implies that
r = 0. This is a contradiction. Hence r = 0. It follows from Lemma 2.2
that there exists a subsequence {xni+1}∞i=0 of {xn+1}∞n=0 such that
xni+1 → q as i → ∞. Using (3.1) and (3.2), we conclude that, given
ε > 0, there exists a positive integer m such that, for all n ≥ m,

‖xnm+1 − q‖ < ε,(3.9)

(1+2M1)Dan + ‖Sxn+1−Syn‖ + M2
‖vn‖
an

< min
{
ε

2
,

φ(ε)ε
1+2ε+φ(2ε)

}
.

(3.10)
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Now we claim that

(3.11) ‖xnm+j − q‖ ≤ ε,

for all j ≥ 1. Obviously, (3.9) ensures that (3.11) holds for j = 1.
Assume that (3.11) holds for j = k. If ‖xnm+k+1− q‖ > ε, we conclude
that by (3.8) and (3.10)

(3.12)

‖xnm+k+1 − q‖ ≤ ‖xnm+k − q‖ + anm+k[(1 + 2M1)Danm+k

+ ‖Sxnm+k+1 − Synm+k‖ + M2‖vnm+k‖(anm+k)−1]

< ε + min
{
ε

2
,

φ(ε)ε
1 + 2ε + φ(2ε)

}
anm+k < 2ε.

In view of (3.9), (3.10) and (3.12), we obtain the following estimates:

‖xnm+k+1 − q‖ ≤
(

1 − φ(ε)
1 + 2ε + φ(2ε)

anm+k

)
‖xnm+k − q‖

+ anm+k[(1 + 2M1)anm+k + ‖Sxnm+k+1 − Synm+k‖
+ M2‖vnm+k‖(anm+k)−1]

≤
(

1 − φ(ε)
1 + 2ε + φ(2ε)

anm+k

)
ε

+ min
{
ε

2
,

φ(ε)ε
1 + 2ε + φ(2ε)

}
anm+k

≤ ε.

That is,
ε < ‖xnm+k+1 − q‖ ≤ ε,

which is impossible. Hence, ‖xnm+k+1 − q‖ ≤ ε. By induction, (3.11)
holds for all j ≥ 1. It follows from (3.11) that xn → q as n → ∞. This
completes the proof.

From Theorem 3.1 we have the following results.

Theorem 3.2. Suppose that X is an arbitrary Banach space and T :
X → X is a uniformly continuous φ-strongly accretive operator. As-
sume that {un}∞n=0, {vn}∞n=0 are sequences in X and {an}∞n=0, {bn}∞n=0
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are sequences in [0, 1] satisfying (3.1) and (3.2). Suppose that the range
of I −T is bounded. Then, for any given f ∈ X, the sequence {xn}∞n=0

defined as in (3.3) converges strongly to the solution of the equation
Tx = f .

Corollary 3.1. Suppose that X is an arbitrary Banach space and
T : X → X is a uniformly continuous φ-strongly accretive operator.
Assume that {vn}∞n=0 is a sequence in X and {an}∞n=0 is a sequence in
(0, 1] satisfying

(3.13)
∞∑

n=0

an = +∞,
∞∑

n=0

a2
n < +∞,

∞∑
n=0

‖vn‖ < +∞, ‖vn‖ = o(an).

Then for any given f ∈ X, the sequence {xn}∞n=0 defined for arbitrary
x0 ∈ X by

(3.14) xn+1 = (1 − an)xn + an(f + xn − Txn) + vn, n ≥ 0,

converges strongly to the solution of the equation Tx = f provided that
the sequence {xn − Txn}∞n=0 is bounded.

Theorem 3.3. Suppose that X is an arbitrary Banach space and T :
X → X is a uniformly continuous φ-strongly accretive operator. As-
sume that {un}∞n=0, {vn}∞n=0 are sequences in X and {an}∞n=0, {bn}∞n=0

are sequences in [0, 1] satisfying (3.1) and (3.2). Then, for any given
f ∈ X, the sequence {xn}∞n=0 defined for arbitrary x0 ∈ X by

(3.15)
yn = (1 − bn)xn + bn(f − Txn) + un, n ≥ 0,

xn+1 = (1 − an)xn + an(f − Tyn) + vn, n ≥ 0,

converges strongly to the solution of the equation x + Tx = f provided
that the sequences {Txn}∞n=0 and {Tyn}∞n=0 are bounded.

Proof. Put S = I+T . It is easy to see that S is a uniformly continuous
φ-strongly accretive operator and

f − Tx = f − (S − I)x = f + x− Sx,
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for all x ∈ X. It follows from Theorem 3.1 that {xn}∞n=0 converges
strongly to the solution of the equation Sx = f . This completes the
proof.

From Theorem 3.3 we have

Theorem 3.4. Suppose that X is an arbitrary Banach space and T :
X → X is a uniformly continuous φ-strongly accretive operator. As-
sume that {un}∞n=0, {vn}∞n=0 are sequences in X and {an}∞n=0, {bn}∞n=0

are sequences in [0, 1] satisfying (3.1) and (3.2). If the range of T is
bounded, then for any given f ∈ X, the sequence {xn}∞n=0 defined as in
(3.15) converges strongly to the solution of the equation x + Tx = f .

Corollary 3.2. Suppose that X is an arbitrary Banach space and
T : X → X is a uniformly continuous φ-strongly accretive operator.
Assume that {vn}∞n=0 is a sequence in X and {an}∞n=0 is a sequence
in (0, 1] satisfying (3.13). Then, for any given f ∈ X, the sequence
{xn}∞n=0 defined for arbitrary x0 ∈ X by

(3.16) xn+1 = (1 − an)xn + an(f − Txn) + vn, n ≥ 0

converges strongly to the solution of the equation x + Tx = f provided
that the sequence {Txn}∞n=0 is bounded.

Theorem 3.5. Suppose that X is an arbitrary Banach space and K
is a nonempty closed subset of X. Assume that {un}∞n=0, {vn}∞n=0 are
sequences in X and {an}∞n=0, {bn}∞n=0 are sequences in [0, 1] satisfying
(3.1) and (3.2). Suppose that T : K → X is a uniformly continuous
φ-strongly pseudocontractive operator with F (T ) �= ∅. If the sequence
{xn}∞n=0 generated from an arbitrary x0 ∈ K by

(3.17)
yn = (1 − bn)xn + bnTxn + un,

xn+1 = (1 − an)xn + anTyn + vn, n ≥ 0,

satisfies that {xn}∞n=0 and {yn}∞n=0 are in K and {Txn}∞n=0 and
{Tyn}∞n=0 are bounded, then {xn}∞n=0 converges strongly to the fixed
point of T .
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Proof. We claim that F (T ) is a singleton. Suppose that T has
two fixed points p, q in K and p �= q. Note that T is φ-strongly
pseudocontractive. Then

‖p− q‖2 = Re 〈Tp− Tq, j(p− q)〉 ≤ ‖p− q‖2 − φ(‖p− q‖)‖p− q‖,

which implies that φ(‖p − q‖) = 0. Since φ is strictly increasing and
φ(0) = 0, so that p = q. This is a contradiction. That is, F (T ) = {q}
for some q ∈ K.

Since T is φ-strongly pseudocontractive, I−T is φ-strongly accretive.
Thus, for any x, y ∈ K, we have

Re 〈(I−T )x−(I−T )y, j(x−y)〉 ≥ φ(‖x−y‖)‖x−y‖ ≥ A(x, y)‖x−y‖2,

where A(x, y) = (φ(‖x− y‖)/1 + ‖x − y‖ + φ(‖x− y‖)) ∈ [0, 1) for all
x, y ∈ K. That is,

Re 〈(I − T −A(x, y))x− (I − T −A(x, y))y, j(x− y)〉 ≥ 0,

and it follows from Lemma 1.1 of Kato [18] that

‖x− y‖ ≤ ‖x− y + r[(I − T −A(x, y))x− (I − T −A(x, y))y]‖,

for all x, y ∈ K and r > 0. The rest of the proof of this theorem is
similar to that of our Theorem 3.1 and is therefore omitted.

Corollary 3.3. Suppose that X is an arbitrary Banach space and K
is a nonempty closed subset of X. Assume that {vn}∞n=0 is a sequence in
X and {an}∞n=0 is a sequence in (0, 1] satisfying (3.13). Suppose that
T : K → X is a uniformly continuous φ-strongly pseudocontractive
operator with F (T ) �= ∅. If the sequence {xn}∞n=0 generated from an
arbitrary x0 ∈ K by

(3.18) xn+1 = (1 − an)xn + anTxn + vn, n ≥ 0,

is contained in K and the sequence {Txn}∞n=0 is bounded, then {xn}∞n=0

converges strongly to the fixed point of T .

Remark 3.1. The following example shows that the condition that T
has a fixed point in K is necessary in Theorem 3.5 and Corollary 3.3.
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Example 3.1. Let R denote the reals with the usual norm and
K = [0, 1]. Define T : K → R by Tx = rx + 2 for all x ∈ K and some
r ∈ (0, 1). Set φ(x) = (1 − r)x for all x ≥ 0. It follows that

〈Tx− Ty, j(x− y)〉 = ‖x− y‖2 − φ(‖x− y‖)‖x− y‖,

for all x, y ∈ K. Hence, T is a uniformly continuous φ-strongly
pseudocontractive operator. However, T has no fixed point in K.

It follows from Theorem 3.5 and Corollary 3.3 that

Theorem 3.6. Suppose that X is an arbitrary Banach space and K
is a nonempty closed convex subset of X. Assume that T : K → K
is a uniformly continuous φ-strongly pseudocontractive operator with
F (T ) �= ∅, and {an}∞n=0, {bn}∞n=0 are sequences in [0, 1] satisfying

(3.19) lim
n→∞ bn = 0,

∞∑
n=0

an = +∞,

∞∑
n=0

a2
n < +∞.

If the sequence {xn}∞n=0 generated from an arbitrary x0 ∈ K by

(3.20) yn = (1−bn)xn+bnTxn, xn+1 = (1−an)xn+anTyn, n ≥ 0,

satisfies that {Txn}∞n=0 and {Tyn}∞n=0 are bounded, then it converges
strongly to the fixed point of T .

Corollary 3.4. Suppose that X is an arbitrary Banach space and
K is a nonempty closed convex subset of X. Assume that T : K → K
is a uniformly continuous φ-strongly pseudocontractive operator with
F (T ) �= ∅ and {an}∞n=0 is a sequence in [0, 1] satisfying

(3.21)
∞∑

n=0

a2
n < +∞,

∞∑
n=0

an = +∞.

If the sequence {xn}∞n=0 generated from an arbitrary x0 ∈ K by

(3.22) xn+1 = (1 − an)xn + anTxn, n ≥ 0,
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satisfies that {Txn}∞n=0 is bounded, then it converges strongly to the
fixed point of T .

Remark 3.2. Theorems 3.1 3.6 extend, improve and unify Theorems
3.3, 3.4 and 5.2 of [2], Theorems 3.2, 3.4, 4.2 and 5.2 of [3], the theorem
of [4], Theorems 1 and 2 of [5], Theorem 2 of [6], Theorems 2 and 4
of [7], Theorems 4, 5, 6, 9, 10 and 13 of [8], Theorems 1, 2, 3 and
4 of [9], Theorem 1 of [10], Theorems 1, 2 and 3 of [11], Theorems
1 and 2 of [13], Theorems 1, 2, 3 and 4 of [14], Theorems 1 and 2
of [15], Theorems 1 and 2 of [16], Theorem 1 of [19], Theorem 1 of
[20], Theorem 1 of [23], Theorems 1 and 3 of [24], Theorem 1 of [25],
Theorems 4.1 and 4.2 of [26] and Theorems 1.2 and 3.4 of [28] in the
following sense:

1. The Mann iteration method in [3] [5], [8], [9], [20] and the
Ishikawa iteration method in [2], [3], [6] [10], [13] [16], [23], [25],
[26], [28] are replaced by the more general Ishikawa iteration method
with errors introduced by Liu [19].

2. The assumptions that the equation f = Tx has solutions in [2],
[3], [23], [25] and an ≤ bn in [6] [9] are omitted.

3. Theorems 3.1 3.6 hold in arbitrary Banach spaces whereas the
results of [2] [11], [13] [16], [19], [23], [26], [28] have been proved in
the restricted real uniformly smooth Banach spaces, Lp, or lp, spaces,
p-uniformly convex Banach spaces, smooth real Banach spaces and p-
uniformly smooth real Banach spaces, respectively.

4. The Lipschitz strongly pseudocontractive operators in [2] [10],
[13] [16], [20], [26], [28], the uniformly continuous strong pseudocon-
tractive operators in [2], [3], [8], [11], the Lipschitz strongly accretive
operators in [2], [3], [5], [7], [9], [13] [16], [19], [24], [26], [28], the
uniformly continuous strong accretive operators in [8], [11], [24] and
the Lipschitz φ-strongly accretive operators in [23], [25] are replaced
by the more general uniformly continuous φ-strongly accretive opera-
tors and uniformly continuous φ-strongly pseudocontractive operators,
respectively.

Remark 3.3. The iteration parameters {an}∞n=0 and {bn}∞n=0 in The-
orems 3.1 3.6 and Corollaries 3.1 3.4 do not depend on any geometric
structure of the underlying Banach space X or on any property of the
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operator T . A prototype for {an}∞n=0 and {bn}∞n=0 in our results is
an = bn = 1/(n + 2) for all n ≥ 0.

Acknowledgments. The authors would like to thank the referee for
his helpful suggestions towards the improvement of this paper. This
work was supported in part by the National Natural Science Foundation
of China (69973019).

REFERENCES

1. F.E. Browder, Nonlinear mappings of nonexpansive and accretive type in
Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875 882.

2. S.S. Chang, Some problems and results in the study of nonlinear analysis,
Nonlinear Anal. 30 (1997), 4197 4208.

3. S.S. Chang, Y.J. Cho, B.S. Lee and S.M. Kang, Iterative approximations of
fixed points and solutions for strongly accretive and strongly pseudo-contractive
mappings in Banach spaces, J. Math. Anal. Appl. 224 (1998), 149 165.

4. C.E. Chidume, Iterative approximation of fixed points of Lipschitz strictly
pseudo-contractive mappings, Proc. Amer. Math. Soc. 99 (1987), 283 288.

5. , An iterative process for nonlinear Lipschitzian strongly accretive
mappings in Lp spaces, J. Math. Anal. Appl. 151 (1990), 453 461.

6. , Approximation of fixed points of strongly pseudo-contractive mappings,
Proc. Amer. Math. Soc. 120 (1994), 545 551.

7. , Iterative solution of nonlinear equations with strongly accretive oper-
ators, J. Math. Anal. Appl. 192 (1995), 502 518.

8. , Iterative solution of nonlinear equations in smooth Banach spaces,
Nonlinear Anal. 26 (1996), 1823 1834.

9. C.E. Chidume and M.O. Osilike, Ishikawa iteration process for nonlinear
Lipschitz strongly accretive mappings, J. Math. Anal. Appl. 192 (1995), 727 741.

10. , Nonlinear accretive and pseudo-contractive operator equations in
Banach spaces, Nonlinear Anal. 31 (1998), 779 789.

11. , Iterative solution of nonlinear accretive operator equations in arbi-
trary Banach spaces, Nonlinear Anal. 36 (1999), 863 872.

12. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

13. L. Deng, On Chidume’s open questions, J. Math. Anal. Appl. 174 (1993),
441 449.

14. , An iterative process for nonlinear Lipschitz and strongly accretive
mappings in uniformly convex and uniformly smooth Banach spaces, Acta Appl.
Math. 32 (1993), 183 196.

15. , Iteration processes for nonlinear Lipschitzian strongly accretive
mappings in Lp spaces, J. Math. Anal. Appl. 188 (1994), 128 140.



ITERATIVE APPROXIMATION OF SOLUTIONS 997

16. L. Deng and X.P. Ding, Iterative approximation of Lipschitz strictly pseudo-
contractive mappings in uniformly smooth Banach spaces, Nonlinear Anal. 24
(1995), 981 987.

17. S. Ishikawa, Fixed point by a new iteration method, Proc. Amer. Math. Soc.
44 (1974), 147 150.

18. T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan
19 (1967), 508 520.

19. L.S. Liu, Ishikawa and Mann iterative process with errors for nonlinear
strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995),
114 125.

20. L.W. Liu, Approximation of fixed points of a strictly pseudocontractive
mapping, Proc. Amer. Math. Soc. 125 (1997), 1363 1366.

21. W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4
(1953), 506 510.

22. R.H. Martin, Jr., A global existence theorem for autonomous differential
equations in Banach spaces, Proc. Amer. Math. Soc. 26 (1970), 307 314.

23. M.O. Osilike, Iterative solution of nonlinear equations of the φ-strongly
accretive type, J. Math. Anal. Appl. 200 (1996), 259 271.

24. , Ishikawa and Mann iteration methods with errors for nonlinear
equations of the accretive type, J. Math. Anal. Appl. 213 (1997), 91 105.

25. , Iterative solution of nonlinear φ-strongly accretive operator equations
in arbitrary Banach spaces, Nonlinear Anal. 36 (1999), 1 9.

26. K.K. Tan and H.K. Xu, Iterative solutions to nonlinear equations of strongly
accretive operators in Banach spaces, J. Math. Anal. Appl. 178 (1993), 9 21.

27. , Aproximating fixed points of nonexpansive mappings by the Ishikawa
iteration process, J. Math. Anal. Appl. 178 (1993), 301 308.

28. L.C. Zeng, Iterative approximation of solutions to nonlinear equations of
strongly accretive operators in Banach spaces, Nonlinear Anal. 31 (1998), 589 598.

Department of Mathematics, Liaoning Normal University, P.O. Box 2000

Dalian, Liaoning, 116029, People’s Republic of China

Universite d’ Avignon & INRA, Unite de Biomathematique & Toxicolo-

gie, Faculte des Sciences, F 84000 Avignon, France

Department of Mathematics and Research Institute of Natural Science,

Gyeongsang National University, Chinju 660-701, Korea

E-mail address: smkang@nongae.gsnu.ac.kr


