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ON THE COMPUTATION OF MORDELL-WEIL
AND 2-SELMER GROUPS OF ELLIPTIC CURVES

J.E. CREMONA

1. Introduction. Let E be an elliptic curve defined over Q. In this
note, we present related methods to do the following tasks:

1. Prove that a given finite set of points in the Mordell-Weil group
E(Q) is independent;

2. Make the group law in the 2-Selmer group S2(E/Q) explicit,
and hence show that a given finite set of elements in S2(E/Q)
is independent.

The first provides an alternative to computing the height-pairing matrix
of the given set of points and shows that its determinant is nonzero.
While that is easily done, for curves of large rank it requires some
delicate consideration of precision in order to be sure of the result.
The method here, by contrast, involves only “discrete” computations:
finding roots of cubics and evaluating quadratic characters modulo
primes. The method was also described by Silverman in [6], attributed
there to Brumer and me. In fact, Brumer described the method to me
in 1996 and it was apparently used by him and Kramer in verifying
the examples in [2], though the method is not explicitly mentioned
there; so the method goes back to 1975 at least. We give it here as it
is closely related to, and leads to, our second section where we apply
similar ideas to 2-Selmer groups. We illustrate the method with the
Martin-McMillen curve which has 23 independent points.

The second problem arises when doing explicit 2-descents on elliptic
curves with no 2-torsion, as implemented in our program mwrank.
Following the method set out in [1], we represent elements of the Selmer
group S2(E/Q) by quartics g(X) ∈ Z[X] such that the genus 1 curve
Y 2 = g(X) is a 2-covering of E. These quartics are found by a finite
search procedure. In [1], the resulting set of (equivalence classes of)
quartics is treated as a set without making explicit its structure as an
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elementary abelian 2-group. Indeed, one check on the calculations is
to make sure that the size of the set obtained is a power of 2. We will
show how to make explicit use of the group structure on S2(E/Q) via
a homomorphism to (Z/2Z)M for some M > 0. This has a number
of practical advantages in terms of the running time of the resulting
algorithm: we do not need to check equivalences between the quartics
found; for a curve of rank r, we only find and consider r quartics
instead of 2r, saving much time in the search for rational points on
the associated 2-coverings; and the search itself is made faster since,
for every quartic we find, the remaining part of the search region is
reduced by a factor of 2.

Our solutions to both problems generalize immediately to elliptic
curves defined over general number fields. This is particularly true of
the first where it is likely to be considerably simpler than implementing
the height-pairing computation. We restrict ourselves to Q for ease of
exposition.

2. Mordell-Weil groups. The methods rely on explicitly em-
bedding the groups E(Q)/2E(Q) and S2(E/Q) into a direct sum
⊕p∈SE(Qp)/2E(Qp), where S is a finite set of “good” primes. Let
E be given by an equation

E : Y 2 = f(X) = X3 +AX2 +BX + C,

where f(X) ∈ Z[X] had discriminant ∆ �= 0. We may assume that this
model is minimal at all odd primes, and we define a “good” prime to be
one not dividing 6∆. The Galois group G of f is a subgroup of S3 and
even ofA3 if ∆ is a perfect square. We have E(Q)/2E(Q) ∼= (Z/2Z)r+t,
where r is the rank of E(Q) and t = 0, 1 or 2 according to whether
f(X) has 0, 1 or 3 rational roots.

Let p be a good prime. Since p > 2 and E has good reduction at p,
we have

E(Qp)/2E(Qp) ∼= E(Fp)/2E(Fp) ∼= (Z/2Z)kp ,

where kp = 0, 1 or 2 according to whether the number of roots of f(X)
modulo p is 0, 1 or 3. If f(X) is irreducible, then by the Chebotarev
density theorem, the density of the primes with these behaviors is (1/3),
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(1/2), (1/6) when G = S3 and (2/3), 0, (1/3) when G = A3. Since
E(Qp)/2E(Qp) ∼= E(Fp)/2E(Fp) for good primes, in the rest of this
section we use Fp in place ofQp, and our homomorphism can be defined
via arithmetic modulo p.

Primes p for which kp = 0 will be of no use to us since the map
E(Q)/2E(Q)→ E(Fp)/2E(Fp) = 0 is then trivial. It would be simpler
to implement the method using only primes for which kp = 1, but such
an implementation would fail for curves with square discriminant (when
there are no such primes), so we keep both types kp = 1 and kp = 2 in
consideration.

It would also be possible, with more work, to use the local information
at the primes 2 and 3, and also those of bad reduction. The results of
[2] would be useful in those cases. However, for our practical purposes
this is not necessary.

2.1 Definition of the maps εp and ε on E(Q)/2E(Q). Let χ
be the quadratic character modulo p and ψ : F∗

p → Z/2Z its additive
version, so that χ(x) = (−1)ψ(x) for x �= 0.
First let p be a good prime for which kp = 1 and let θp be the unique
root of f(x) modulo p. Then we define a map

ε̄p : E(Fp) −→ F∗
p −→ Z/2Z

by 0 �−→ 0, and

P = (x, y) �−→ (x− θp) �−→ ψ(x− θp);
P = (θp, 0) �−→ f ′(θp) �−→ ψ(f ′(θp)).

This map is a surjective group homomorphism with kernel precisely
2E(Fp) and so gives an isomorphism

E(Fp)/2E(Fp) ∼= Z/2Z.

Composing with the reduction homomorphism E(Q) → E(Fp) gives
the desired map εp : E(Q)/2E(Q)→ Z/2Z:

P �−→ εp(P ) = ε̄p(P ).
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Writing P ∈ E(Q) \ {0} as P = (u/w2, v/w3) with u, v, w ∈ Z and
gcd (u,w) = gcd (v, w) = 1, set

α(P ) =
{
u− θpw2 if u �≡ θpw2 (mod p);
f ′(θp) if u ≡ θpw2 (mod p);

note that we cannot have α ≡ 0 (mod p), else θp is a double root of
f(X) modulo p, which cannot happen for p good. Then εp is given for
P �= 0 by

εp(P ) = ψ(α(P )), P �= 0.

Now let p be a good prime such that kp = 2, and let θi,p for i = 1, 2, 3
be the (distinct) roots of f(X) (mod p). For P = (x, y) ∈ E(Fp) with
2P �= 0, the elements x− θi,p ∈ Fp are nonzero and their product is a
square, and we define

ε̄p : E(Fp) −→ (F∗
p/(F

∗
p)

2)3

by

P = (x, y) �−→ ((x− θ1,p), (x− θ2,p), (x− θ3,p)) (mod (F∗
p)

2),

where the image lies in the subgroup H of (F∗
p/(F∗

p)2)3 of order 4
consisting of elements whose product is 1. We may extend ε̄p to the
points (θi,p, 0) of order 2 in E(Fp) as follows: if x = θi,p, which can
happen for at most one value of i since p is good, replace the component
x− θi,p by f ′(θi,p). Then ε̄p(P ) still lies in H. Finally, ε̄p(0) = 1.
Again, ε̄p is a group homomorphism with kernel 2E(Fp) and image
H; projecting onto the first two coordinates and switching to additive
notation for H, we therefore have an isomoprhism

E(Fp)/2E(Fp) ∼= H ∼= (Z/2Z)2.

As before, we now compose with the reduction map to get εp :
E(Q)/2E(Q) → (Z/2Z)2. Given P = (u/w2, v/w3) ∈ E(Q) \ {0},
for i = 1, 2, 3, set

αi(P ) =
{
u− θi,pw2 if u �≡ θi,pw2 (mod p);
f ′(θi,p) if u ≡ θi,pw2 (mod p).
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Then we have

εp(P ) = (ψ(α1(P )), ψ(α2(P ))) ∈ (Z/2Z)2.

Finally, let S = {p1, p2, . . . , pm} be a set of good primes for which
kp > 0, and set M =

∑m
i=1 kpi

. Then we obtain a homomorphism

ε : E(Q)/2E(Q) −→ (Z/2Z)M

by setting ε(P ) = (εp1(P ), . . . , εpm
(P )). This map is injective provided

that m is large enough, as seen in the following result.

Lemma 2.1. Let P ∈ E(Q)\2E(Q). Then there exists a good prime
p such that εp(P ) �= 0.

Proof. We must find a good prime p such that the reduction P /∈
2E(Fp). The X-coordinate of the points Q for which [2]Q = P in E(Q)
are the roots of a quartic polynomial g(X) ∈ Q[X]. If P /∈ 2E(Q), then
this quartic has no rational roots. Hence there exist (infinitely many)
primes p such that g(X) has no roots modulo p, and for such p we have
P /∈ 2E(Fp) as required.

2.2 Proving independence of points. Let P1, P2, . . . , Pn be
rational points on the elliptic curve E which we wish to prove are
independent. Take a finite set of good primes pi and define the map
ε : E(Q) → (Z/2Z)M as before, factoring through E(Q)/2E(Q). For
1 ≤ i ≤ n, set vi = ε(Pi). Since ε is a homomorphism, if the Pi
are dependent then this dependence relation will also be satisfied by
the vectors vi. So if we can show, using linear algebra over F2, that
the vi are linearly independent, then the points Pi are independent in
E(Q)/2E(Q) and hence also in E(Q).

For this strategy to be successful in proving that a set of independent
points is independent, two conditions must be satisfied. First, the
number of primes m must be large enough for ε to be injective. Second,
the points Pi must be independent in E(Q)/2E(Q), which is a stronger
condition than being independent in E(Q). So if we find that a linear
independent modulo 2 holds between the vectors vi, we first increase
the number of primes, thus adding extra coordinates to the vi. If
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the extended vectors are no longer linearly dependent, we will have
succeeded in showing that the Pi are indeed independent. However,
if the linear relation between the vi persists when m is increased, it
suggests that a linear relation holds between the Pi modulo 2E(Q).

In this case we will have an explicit linear combination Q =
∑n
i=1 ciPi

with each ci ∈ {0, 1}, not all zero, such that ε(Q) = 0. We may
determine whether Q ∈ 2E(Q); if not, increasing m sufficiently will
succeed in proving that the Pi are independent after all. If Q = 0, we
have found a dependence relation between the Pi. On the other hand,
if Q = 2R �= 0, say, then we may replace one of the Pi for which ci = 1
with R and repeat the process. After a finite number of steps, we will
succeed in either proving that the original points are independent or
find a relation between them.

See [6, Appendices D, G] for an alternative description of the algo-
rithm, including a discussion of how many primes should be used and
more details on how to find an explicit dependence relation between
points which are not independent.

A program “indep” implementing this algorithm is available from the
web site http://www.maths.nottingham.ac.uk/personal/jec/ftp/
progs/.

2.3 Example. As an example of the method, we take the curve

E : Y 2 +XY + Y
= X3 − 19252966408674012828065964616418441723X
+ 32685500727716376257923347071452044295907443056345614006,

and the following 23 points in E(Q):

P1 = (2509558762692426075,−417088861635582776427838628)
P2 = (−3152306069115988905, 7877320130079209226656589052)
P3 = (15693029027991085860,−59960725518716592640454389523)
P4 = (−15685545762070490045/9,

210784183032708200332415773604/27)
P5 = (2698930732460382795, 618629431350432390388941352)
P6 = (3055828716067659795,−1545100017628983460760462648)
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P7 = (5176107139118431770,−8468104093201669542836552123)
P8 = (3784518081907585155, 3745177334989174939461966292)
P9 = (3375602798684599395, 2481752453981065849886565352)
P10 = (50254260027721383195, 354939157845809277536295633352)
P11 = (−142695966546348885, 5952303401545410666113166952)
P12 = (−3221315322202018425, 7828039241604579170601658372)
P13 = (2537753825844495495, 412116180825557654373555652)
P14 = (2593670816475114795,−444522199100420910170282648)
P15 = (3653122955244689466, 3332280856915069273216378309)
P16 = (16913850473547768195,−67422028572509502534315689048)
P17 = (9140715955412578142189035/137217796,

−7216319709021278239948381788080225026537/1607369262344)
P18 = (2318736179743409595,−713948812262364148421306948)
P19 = (854939343706550155/9,−149983616867035973534953843496/27)
P20 = (2291515542997719795, 774517082921333828245497352)
P21 = (−1722575558649090805,−7793513279470674099171802548)
P22 = (−5015906559699694713,−1749225525806449612884005132)
P23 = (1207582564254353598375/49,

41339900234776936657866972980836/343).

This curve, and a different list of 23 independent points on it, were
announced by Martin and McMillen in a posting by Miller to the
NMBRTHRY e-mail distribution list1 in March 1998. The points we give
here are not the same ones as originally posted, but they generate
the same subgroup of E(Q). We have LLL-reduced the height-paring
matrix of the original points to obtain this basis, whose elements
have smaller heights (and considerably smaller denominators) than the
original basis.

Using m = 19, with 19 primes between 7 and 157 giving M = 23,
the dimension of the subspace of (Z/2Z)23 spanned by the images
ε(Pi) is only 22; adding a 20th prime 163 increases M to 24 and now
the ε(Pi) are independent in (Z/2Z)24, showing that the 23 points
are independent in E(Q). This computation takes around half a
second on a 333MHz PC. If we compute the height-pairing matrix to a



p 7 31 43 47 53 59 67 71 83 89 97 109 113 127 131 139 149 151 157 163

P1 1,0 1 1 1 1,1 1 0 0 0 1 0 0 0 0 1,1 0 0 0,1 1 1

P2 0,1 1 0 0 1,0 1 1 1 0 1 1 1 0 0 0,1 0 0 0,1 1 1

P3 1,1 1 0 0 1,1 0 1 1 1 1 1 1 0 0 0,0 0 0 0,1 1 0

P4 1,0 0 1 1 1,1 1 1 0 1 1 1 0 0 1 0,0 0 1 1,0 1 0

P5 0,0 1 1 0 1,1 0 1 1 0 1 0 1 0 0 1,1 0 0 1,0 1 0

P6 0,0 1 1 0 1,0 0 0 0 1 1 1 1 0 1 1,1 0 0 1,1 0 1

P7 1,0 0 0 1 1,1 1 1 1 0 0 1 0 0 1 0,0 1 1 0,0 0 1

P8 1,1 0 0 1 0,0 0 1 1 1 1 1 1 1 1 0,1 1 0 1,0 1 0

P9 0,1 0 1 0 0,1 1 0 0 1 0 0 1 1 1 0,0 1 1 1,0 1 1

P10 1,0 1 0 1 1,1 1 1 1 0 1 0 1 1 1 1,1 0 1 1,0 0 1

P11 1,0 0 1 0 1,1 1 0 1 0 1 0 0 1 1 0,1 1 0 0,0 1 0

P12 1,0 0 0 1 0,1 1 1 0 1 0 0 0 0 1 0,1 0 1 0,0 0 1

P13 0,1 1 0 1 0,1 1 0 0 0 1 1 0 0 1 1,1 0 0 0,0 1 1

P14 0,1 1 0 0 1,1 1 1 0 0 0 0 1 0 1 0,1 1 1 1,1 0 0

P15 1,0 0 1 0 1,1 1 1 1 0 0 0 1 1 0 1,0 1 1 1,1 0 1

P16 1,1 0 0 1 0,1 0 0 0 0 0 0 0 0 1 0,1 0 1 0,1 1 0

P17 0,1 0 0 0 1,1 1 0 0 1 0 1 0 0 1 0,1 0 0 0,1 1 0

P18 1,0 0 1 1 1,1 1 1 0 0 0 0 1 1 1 1,0 1 0 1,0 1 1

P19 1,0 0 0 0 0,0 1 0 0 0 1 1 1 1 0 1,1 1 1 0,0 1 0

P20 1,0 0 1 0 0,1 0 1 1 0 1 0 1 1 1 0,1 1 1 1,1 1 0

P21 1,1 0 0 0 0,1 0 0 1 0 1 1 1 0 0 0,0 0 0 1,0 0 0

P22 1,0 0 1 0 1,1 0 1 1 1 0 1 1 0 1 1,1 0 0 1,1 0 1

P23 0,0 0 0 1 1,0 1 1 1 0 1 0 1 1 0 1,0 1 1 0,1 1 0
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precision of 38 decimals using Pari/GP, we find that its determinant is
(approximately) 1.43×1025; this computation takes about two seconds.
The Table on the preceding page gives the image under ε of the 23
points, using these 20 primes. The primes in bold face are those with
kp = 2, otherwise kp = 1. The F2-rank of this matrix is 23.

3. Selmer groups. The process of 2-descent on an elliptic curve E
consists of embedding E(Q)/2E(Q) into the 2-Selmer group S2(E/Q),
which is also a finite elementary abelian 2-group. The cokernel of this
embedding is the 2-torsion subgroup of the Tate-Shafarevich group.

The 2-descent algorithm has two phases: first, compute the Selmer
group S2; second, determine which elements in S2 come from rational
points. The first step is effective, but not the second, since there is (at
present) no known way of deciding in all cases which elements of S2

come from E(Q) and which give nontrivial elements of III.

We give here a brief sketch of the algorithm; for more details, see [1]
or [3].

Elements of S2 may be represented by principal homogeneous spaces,
curves of genus 1 which are 2-coverings of E, with affine equations of
the form

Cg : Y 2 = g(X) = aX4 + bX3 + cX2 + dX + e.

Here g(X) is a quartic polynomial which we may take in Z[X], whose
invariants I and J are related to the standard c4 and c6 invariants of a
minimal model for E in a precise way (essentially, I = c4 and J = 2c6).

For a fixed pair (I, J) we search for all integer quartics g(X) with
these invariants, up to an equivalence which is defined so that two
quartics are equivalent if and only if they determine the same element
in S2. Having found this (finite) set of quartics, we eliminate those for
which the curve Cg does not have points in all completions of Q, since
these do not give elements of S2, and then apply a test for equivalence
to eliminate duplicates. This leaves us with a set of 2s quartics g such
that every element of S2 is represented by exactly one homogeneous
space Cg, and we have determined the Selmer group and its rank, s.
Then we try to (somehow) determine which Cg have rational points and
so come from rational points on E.
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To search for the quartics, we first establish bounds on the leading
coefficient a and the “seminvariant” H = 8ac − 3b2: see [1], [3] or [4]
for improved bounds. Within the finite search region defined by these
bounds, we look for pairs (a,H) satisfying the syzygy

(1) H3 − 48Ia2H + 64Ja3 = − 27R2,

which is satisfied by every quartic g(X) with R = b3 + 8a2d − 4abc.
In practice, we use this syzygy as follows: for each of a finite set of
auxiliary primes p, we precompute and store an array of 0-1 flags
indexed by pairs (a,H) (mod p), such that the flag is equal to 1 if
and only if the left-hand side of (1) is −27 times a square modulo p.
By restricting the search to those pairs (a,H) in the region for which
all flags equal 1, we reduce the time for the search, since the only pairs
we consider are very likely to lead to a solution to the syzygy and hence
to a suitable quartic.

Under this scheme, we do not make any use of the group structure
of S2: the fact that the number of equivalence classes of locally soluble
quartics turns out to be a power of 2 is not used, except as a check on
the computation.

We now show how to define a homomorphism ε = (εp) from S2(E/Q)
to (Z/2Z)M , which extends the map defined in the previous section
(for p > 3). That such an extension should exist is clear, since each
Cg ∈ S2 has (by definition) a Qp-rational point for each prime p and
hence determines a well-defined class in E(Qp)/2E(Qp). However, we
will see that it is possible to define εp directly on the quartic g(X) and
even as a function of the pair (a,H) modulo p. The significance of this
is that we can use ε during the syzygy sieving itself, to ensure that for
each quartic g(X) we construct, the vector ε(g) is independent (over
F2) of all previous ones. We do this by carefully adjusting the array of
sieving flags as we proceed. The effect is that, for a curve of Selmer rank
s, we only compute s quartics, which are automatically independent.
This means that we no longer need to carry out equivalence testing
between quartics, and also that the number of quartic curves Cg on
which we must search for rational points is reduced from 2s to s, which
is a considerable saving for curves of large rank.

3.1 Definition of the maps εp and ε on S2(E/Q). Let g(X) =
aX4 + bX3 + cX2 + dX + e be an integer quartic with invariants I
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and J such that the curve Cg defines an element in the Selmer group
S2(E/Q). Set H = 8ac− 3b2. The syzygy (1) may be written

F (H, 4a) = (H − 4aϕ1)(H − 4aϕ3)(H − 4aϕ3) = − 27R2

where F (X,Y ) = X3−3IXY 2+JY 3 and ϕi for i = 1, 2, 3 are the roots
of the (resolvent) cubic F (X) = F (X, 1) = X3−3IX+J = 0. In terms
of the cubic f(X) = X3 + AX2 + BX + C defining the curve E, we
have F (−4(3X+A)) = −2633f(X), so the roots θi of F (X) (as defined
in the previous section) are related to the ϕi by ϕi = −4(3θi + A),
independently of the specific quartic g(X).

First, let p be a prime with kp = 1, so that exactly one root θ exists
modulo p, and correspondingly one value of ϕ. Set

α(a,H) =
{−3(H − 4aϕ) if H �≡ 4aϕ (mod p);
3(H2 − 16a2I) = F ′(H, 4a) if H ≡ 4aϕ (mod p).

Then εp : S2(E/Q)→ Z/2Z is given by

εp(g) = εp(a,H) = ψ(α(a,H)).

That this is a well-defined homomorphism follows from [5, Proposition
3.2], if we note that our α is 9z in the notation of [5].

Now let p be a prime with kp = 2 so that all three roots θi exist
modulo p, with three corresponding values ϕi. Define αi(a,H) for
i=1, 2, 3 as above, using ϕi in place of ϕ. Note that α1α2α3 is always
a square; when H �≡ 4aϕi for all i, this product is nonzero and equal
to 36R2. Now we set

εp(g) = εp(a,H) = (ψ(α1), ψ(α2)) ∈ (Z/2Z)2.

For every good prime p > 3, we have now defined a homomorphism
εp : S2(E/Q) → (Z/2Z)kp , in terms of the seminvariant pair (a,H)
associated to a quartic g(X) for which the curve Cg is a 2-covering of
E representing an element of S2. Putting these together for m primes
pi, we thus obtain a map

ε : S2(E/Q) −→ (Z/2Z)M
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where M =
∑m

i=1 kpi
. For m (and hence M) large enough, this will

be injective, for the same reasons as before (Lemma 2.1): a quartic
represents the trivial element of S2 if and only if it has a rational root,
and maps to 0 under εp if and only if it has a root modulo p; so if g is
a nontrivial quartic, there will exist a prime p for which εp(g) �= 0.

3.2 Some remarks on implementation. At the start of the
computation (for a given elliptic curve), a supply of good primes p with
kp > 0 is determined, together with the corresponding value(s) of θp;
and for each, a p×p array, indexed by pairs (a,H) modulo p, encoding
whether quartics modulo p exist with this pair (a,H), determined from
whether or not the left-hand side of the syzygy (1) is −27 times a
square. This array also encodes the values of εp(a,H). During the
search, a pair of integers (a,H) is only considered if all the flags for
this pair, for all p, are nonzero.

First, suppose that kp = 1 for all the primes used. When a (locally
soluble) quartic g is found, we note the first “pivotal” prime p for which
εp(g) = 1 and set all the (a,H)-flags modulo p, such that εp(a,H) = 1,
to zero. Then all future quartics g′ found will have εp(g′) = 0. This
reduces the number of nonzero flags, so one effect is to speed up
the remaining part of the search. We also ensure that the quartics
found subsequently are necessarily independent of those found already,
since the vectors ε(g) for the quartics found at any given point are
independent (being in echelon form with respect to a certain ordering
of the primes).

For primes p with kp = 2, the procedure is slightly more complicated.
The first time such a prime is used as a pivot, we do the same as before,
setting all the (a,H) flags, such that εp(a,H) = εp(g), to zero. If the
same prime p is used as a pivot again, then the second time we set
all the remaining (a,H) flags, such that εp(a,H) �= 0, to zero. Then
all future quartics g′ found will have εp(g′) = 0, and the successive
quartics found will be independent since the image vectors ε(g) will by
construction be in echelon form.

If the number of auxiliary primes is not large enough, it may happen
that there will be no suitable pivotal prime at some point, as we may
find a new quartic g with ε(g) = 0 which cannot be used as a pivot.
Such quartics must be stored separately and checked for equivalences;
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at the end, they form a subgroup ker (ε) of S2(E/Q) of order 2s0 say,
where s0 ≥ 0 depends on the number of primes used in the definition
of ε. If we let s1 denote the number of pivotal quartics found, which
is the F2-dimension of im (ε), then the final value of the Selmer rank
s is s = s0 + s1. Ideally, one should choose the number of auxiliary
primes to be large enough so that ε is injective and hence s0 = 0, but
in a general purpose program this is not practical. If we were to use
sufficiently many primes to ensure that ε : S2(E/Q) → (Z/2Z)M was
injective for curves of rank up to (say) 23, then the overheads of the
necessary pre-computations would make the program rather inefficient
for curves of very small rank.

Another complication arises from the fact that when a quartic g is
found which is locally soluble, and hence represents an element of the
Selmer group, we may not be successful in finding a rational point on
the associated homogeneous space Cg. This may happen either because
Cg(Q) is empty or because rational points exist on Cg, but our search
was not extensive enough to find any. We may then wish not to use
this quartic as a pivot, as then we will later find other quartics g′ in
the same coset of the part of S2(Q) which we have so far determined
as g, and we may have more success in finding a rational point on
Cg′ . More generally, there is a danger that the specific basis for the
2-Selmer group which we find may not be optimal, in the sense that
we cannot tell in advance which homogeneous spaces will have rational
points of smallest height. It is possible, using the methods of [5], to
construct quartics representing all elements of the Selmer group from
the quartics which form a basis; but this is not a trivial task and we do
not do this in our implementation. There does not seem to be an easy
way of predicting which quartics will have the smallest rational points.

These considerations make the bookkeeping involved in a complete
implementation (such as our own program mwrank) rather intricate,
but we will not go into further details here.

3.3 Example. Consider the elliptic curve

E : Y 2 = X3 − 9217X + 300985,

which has rank 7 with no 2-torsion in III(E/Q), so that the Selmer rank
is also 7. The discriminant ∆E > 0, so the real points E(R) form two
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connected components. The nonidentity component (or “egg”) contains
rational points such as (5, 505), so the total rank is r = 1+ r′, where r′

is the rank of the connected component E0(Q) = E(Q) ∩ E0(R). We
find r′ by 2-descent.

Without using the map ε, the quartic search finds 64 inequivalent
quartics (as well as a further 24 which are equivalent to these), each
having rational points, which shows that r′ = log2(64) = 6. Around
1400 equivalence tests have to be carried out between quartics during
this computation.

Now using m = 0, 1, 2, 3, . . . , 9 auxiliary primes p ≥ 5 to define the
filtering map ε, we find that the 2-rank of im (ε) increases from 0 up
to 6 (on the identity component), while the order of ker (ε) decreases
from 64 down to 1. When m = 9 (and M = 11), no equivalence tests
are needed at all since ε is injective. In addition, we only need to find
rational points on 7 quartic homogeneous spaces instead of 127 (though
for this curve, all such points are very easy to find).

m #ker (ε) rk (im (ε)) r′ r

0 64 0 6 7
1 32 1 6 7
2 16 2 6 7
3 8 3 6 7
4 4 4 6 7
5 4 4 6 7
6 4 4 6 7
7 4 4 6 7
8 2 5 6 7
9 1 6 6 7

Remark. Regarding R as the completion of Q at the “infinite prime”
p = ∞ allows us to view this example differently. When ∆ > 0,
set k∞ = 1 (otherwise k∞ = 0) and define ε∞ : E(Q)/2E(Q) →
E(R)/2E(R) ∼= Z/2Z in the obvious way. Now add one component,
given by the value of ε∞, to the map ε : E(Q)/2E(Q)→ (Z/2Z)M+1.
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In this way, we may treat the infinite prime in the same way as the
others. On the level of the Selmer group, when ∆ > 0, the quartics
g considered also have positive discriminant, so have either 0 or 4 real
roots, and we set ε(g) = 1 if and only if the number of real roots is
4. These are called quartics of “Type I” in [1] and [3]. In practice,
the effect is that after finding one soluble quartic of Type I, we may
restrict the subsequent search to quartics of Type II (with ε(g) = 0).
This trick was already mentioned in [3], and all we have done here is
to extend it from R to the p-adic completions of Q.

A similar trick for the prime p = 2 also has important practical use
and will be discussed in a separate paper, since some new ideas are
required. There may also be some benefit from using primes of bad
reduction in the sieving process, but we have not investigated this.

ENDNOTES

1. See http://listserv.nodak.edu/scripts/wa.exe?A2=ind9803&L=nmbrthry
&F=&S=&P=970
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