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MULTILATERAL A, SERIES
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ABSTRACT. In this article we derive some identities for
multilateral basic hypergeometric series associated to the root
system A,. First, we apply Ismail’s [15] argument to an A,
g-binomial theorem of Milne [25, Theorem 5.42] and derive a
new A, generalization of Ramanujan’s 171 summation the-
orem. From this new A, 1%; summation and from an A,
1¥1 summation of Gustafson [9], we deduce two lemmas for
deriving simple A,, generalizations of bilateral basic hyperge-
ometric series identities. These lemmas are closely related to
the Macdonald identities for A,. As samples for possible ap-
plications of these lemmas, we provide several A, extensions
of Bailey’s 212 transformations, and several A, extensions of
a particular 212 summation.

1. Introduction. The theory of basic hypergeometric series (cf.
[8]), consists of many known summation and transformation formulas.
The most important of these is probably the g-binomial theorem, a
summation first discovered by Cauchy [6]. Surprisingly, the ¢-binomial
theorem admits a bilateral generalization, the 111 summation theorem,
first discovered by Ramanujan [11]. Other important identities for ba-
sic hypergeometric series include the ¢-Gaufl summation and Heine’s
2¢1 transformations. These and many other basic hypergeometric series
identities conspicuously appear in combinatorics and in related areas,
such as number theory, statistics, physics and representation theory of
Lie algebras, see Andrews [1].
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Multiple basic hypergeometric series associated to the root system
A,,, or equivalently associated to the unitary group U(n+1), have been
investigated by various authors. Many different types of such series
exist in the literature. The multi-variable series we consider in this
article have their origin in the work of the three mathematical physicists
Biedenharn, Holman and Louck, see [12] and [13]. Their work was done
in the context of the quantum theory of angular momentum, using
methods relying on the representation theory of U(n). In the sequel,
substantial developments have taken place. Extensive investigations
in the theory of multiple basic hypergeometric series associated to
the root system A, have been carried out by Gustafson, Milne and
their co-workers. As a result many of the classical formulas for basic
hypergeometric series (cf. [8]), have already been generalized to the
setting of the A,, series. For some selected results on multiple basic
hypergeometric series associated to A, see the references [5, 7, 9, 10,
18-22, 24-30].

There are different methods for obtaining identities for A, basic
hypergeometric series. Partial fraction decompositions and ¢-difference
equations are often involved in initially deriving such identities (e.g., [5,
10] and [18]). Further, where summations for multi-dimensional basic
hypergeometric series are already known, multi-dimensional matrix
inversions can often be utilized for obtaining new summation theorems
for multi-dimensional basic hypergeometric series, see [5, 25, 26,
28-30]. But there is also another, simpler, way of obtaining identities
for A, basic hypergeometric series. By utilizing Lemma 7.3 of Milne
[25] see Lemma 4.1 in this article, and by using identities of the classical
one-dimensional theory, simple identities for A,, series can be derived.

In this article, we find two multilateral generalizations of [25, Lemma
7.3] (see Lemmas 4.3 and 4.9). These lemmas are closely related to
the Macdonald [17] identities for the affine root system A,,. By using
our lemmas combined with bilateral one-dimensional series identities,
we are able to derive simple multi-lateral identities for A, series.
We give some particular applications of this method. The A, 2o
transformations and summations given in this article are just samples of
the possible applications. It must be said that the identities obtained by
this method concern A,, series of “simpler type” and are apparently not
as deep as many of the A,, identities in the above-mentioned references.
Nevertheless, in spite of, or maybe even because of the “simplicity” of
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these A, series, our formulas could be useful in future applications.

Our article is organized as follows: In Section 2 we introduce some
notation and give some background information. In Section 3 we ap-
ply Ismail’s [15] analytic continuation argument to an A, ¢-binomial
theorem of Milne [25, Theorem 5.42] to derive a new A, extension of
Ramanujan’s [11] ;%; summation theorem. In [19] a similar argument
was used to find the first U(n) generalization of the 11 summation.
More recently, motivated by [23], Kaneko [16] utilized this type of
argument to derive a 117 summation theorem for multiple basic hy-
pergeometric series of a Macdonald polynomial argument. In Section 4
we deduce from our new A, 197 summation and from Gustafson’s [9,
Theorem 1.17] 191 summation two lemmas for deriving simple multilat-
eral series identities in A,,. We discuss the connection of these lemmas
with the Macdonald identities for A,,, partly following the similar anal-
ysis of [19]. Finally, in Section 5, we apply these lemmas to classical
(one-dimensional) formulas for 215 series. As a result, we deduce sev-
eral (different) A,, extensions of Bailey’s [3] 212 transformations, and
moreover, deduce several (different) A,, extensions of a particular sum-
mation for 91, series.

2. Background and notation. Let us first recall some standard
basic hypergeometric notation (cf. [8]). Let ¢ be a complex number
such that 0 < |¢| < 1. We define the g¢-shifted factorial for all integers
k by

(@)oo = (a:@)oe == [ [ (1 = ag’)
j=0
(@)oo _
(aq") o
For brevity we employ the usual notation

and

(@) = (a;9)x ==

(a1, am)e = (a1)k - - - (@m)k,

where k is an integer or infinity. Further, we utilize the notations

a1,a2,... ,0p

(2.1) r®s 1q,2
b15b27"' 7bs
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0 14+s—r
=Y (a1,03, ..., ar)k (—1)Fq(3) J
. k=0 (Qabla"' 7bs)k ’

and

a1,0a2,... ,0yr

(2.2) rPs iq, 2
bl;an"' abs

00 s—r
— Z (al,ag,... ’a/'r)k (_1)kq(g) Zk;7
k=—o00 (b17 b27 e 1b3)k
for basic hypergeometric .¢s series, and bilateral basic hypergeometric
s series, respectively. See [8, pages 25 and 125] for the criteria of
when these series terminate or, if not, when they converge. In this
article, we make use of some of the elementary identities for g-shifted
factorials listed in [8, Appendix IJ.

Next, we note the convention for naming the multiple series in this
article as A, basic hypergeometric series. We consider multiple series
of the form

>, S,
ki,...,kn=—00
where k = (kq, ..., ky), which reduce to classical basic hypergeometric
series when n = 1. Such a multiple series is called an A, basic

hypergeometric series if the summand S(k) contains the factor

k; k.
;9" — xiq™7
(2.3) H <—Z — _aj‘ )
4 J

1<i<j<n

A typical example is the lefthand side of (3.3). A reason for naming
these series as A, series is that (2.3) is closely associated with the
product side of the Weyl denominator formula for the root system A,
(see [4] and [31]).

For multi-dimensional series, we also employ the notation |k| for
(kv + -+ + k,) where k = (ki1,..., k). The convergence of multiple
series can be checked by application of the multiple power series ratio
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test [14]. For explicit examples of how to use the multiple power series
ratio test, see [25, Section 5].

3. An A, extension of Ramanujan’s 17); summation. One
of the most important summation theorems for basic hypergeometric
series is the classical g-binomial theorem (cf. [8]),

(3.1) 190 34,2 | = (a2)o0

where |z| < 1.

A bilateral extension of (3.1) is Ramanujan’s [11] 137 summation
theorem (cf. [8]),

) _(g,b/a,az,q/az)
32 Wl T gz ban)

where |b/a| < |z| < 1. Clearly the b = ¢ case of (3.2) is (3.1).

Theorem 5.42 of [25] is one of the many multi-variable generalizations
of (3.1). Tt can be stated as follows:

Theorem 3.1 (An A,, ¢g-binomial theorem). Let a,x1,... 2z, and z
be indeterminate, let n > 1, and suppose that none of the denominators
in (3.3) vanishes. Then

63 Y ( 11 (%)HGQ)

k1,... ,kn=0 “1<i<j<n ij=1 ks

ﬁ m?kf‘kl(a)‘kl(_1)(n71)\qu—(‘§‘)+n > (’?;)Zk|)

provided |z| < |q%x;" [T, @i| forj=1,... ,n.
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We now apply Ismail’s [15] argument and extend Theorem 3.1 to

Theorem 3.2 (An A, 191 summation). Let a,by,... by, x1,... , &y
and z be indeterminate, let n > 1, and suppose that mone of the
denominators in (3.4) vanishes. Then

o> (I (ML (5)

kiy...skpn=—00 “1<i<j<n i,j=1 i

Hxnkf\kl (@) (— )(n—1>|kq—(“)+"2l(kz'i)zkl)

Y

_ (az,q/az b1 gt " /a) H ((i/75)q)o

(Z,bl. 1 ﬂ/az q/a i=1 331/33]) i) oo
provided |by...byg'""/a| < |z| < |q(”71)/2xj_"H?:1zi\ for j =
1,...,n.

Proof. We apply Ismail’s argument successively to the parameters
b1,... b, using (3.3). The multiple series identity in (3.4) is analytic
in each of the parameters by, ... , b, in a domain around the origin. Now
the identity is true for by = ¢'*™1, by = ¢'t™2,... and b, = ¢' T
by the A, g¢-binomial theorem in Theorem 3.1 (see below for the
details). This holds for all my,... ,m, > 0. Since lim,,, . ¢*T™ =0
is an interior point in the domain of analyticity of b;, by analytic
continuation we obtain an identity for b;. By iterating this argument
for by, ... ,b,, we establish (3.4) for general by,... ,b,.

14+m;

The details are displayed as follows: Setting b; = ¢ , for ¢ =

1,...,n, the left side of (3.4) becomes

k. k. n —1

Tiq" — X597 Ti 14m;

sy X (I (L) I (Ze)
1<i<j<n ¢ J J k

—m; <k;<oo i,j=1 i
i=1,...,n

H 2Rl () g (—1) (Dl g (5 #0200 @-)Zm)

i=1

We shift the summation indices in (3.5) by k; — k;—m; fori=1,... | n
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and obtain
(3.6)

— (I 1, ST mi+1 n— _ - m|—nm;
g () 20 (M) ()¢ Diml(g) iz ‘m‘Hxl l
i=1

n -1 o —m;+k;

—midks
Ti 14m, x;q —xjq T

() s (o (s

i,7 J 1<i<j<n v J

i,j=1 Mk, k=0

n —1
< IT (Shqttrmim (ag™ ™)y (—1) DIkl g= ()4 30, (5) ik
ij=1 \Ti

= ki

=3 (M) )

=1

I ﬁ ((((Ii/l'j)q)mj I (xiq—mi _qu_mj>

=

X
X/ X5 . m ;i — L
i=1 ij=1 i/ J)Q)mﬂ i <i<i<n g J
oo — . . — . .
<y (I (M)
xr;q~ i — g
k1, kn=0 “1<i<j<n id 34
n T —1
% H <_7/q1+mjm,;)
T
ij=1 "7 ki

L

y (aq7|m|)|k‘(_1)<n71>|k\q7(“§‘)+nZi;l (%) Ik

X ﬁ(xiq_mi)"’“"_|k).

i=1
Next, we apply the y; — —m;, i = 1,... ,n, case of [25], specifically
(3.7)

11 (I—@ el (R

X
i j
3,7=1
n —m; —m
|m|—nm; Tiq Tt —T;q 7V
X z; ,
X
=1

1<i<j<n i
and the a — ag~ ™! 2; — z,g7™, i = 1,...,n, case of the multi-
dimensional summation theorem in (3.3) to simplify the expression
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obtained in (3.6) to

(5] e o g (1)

(Q/a>|m|(z)oo =1 X ;

Now this can easily be further transformed into

(g fa,a2,9/a2)0 11 ((26/25)0)s0
(¢/a,2,¢" ™1 faz)oe 22 ((@i/2)g"T™)o0”

which is exactly the b; = ¢'*™, i = 1,... ,n, case of the right side of
(3.4). m

If we set z — —z/a and b; = 0, i = 1,...,n in (3.4) and then
let @ — oo, we obtain an A,, generalization of Jacobi’s triple product
identity, equivalent to Theorem 3.7 of [19].

4. Two lemmas for deriving multilateral A, series identities.
As an immediate consequence of a fundamental theorem for A,, series
[18], the first author [25] of this article derived the following lemma,
which is

Lemma 4.1 (Milne). Let ay,...,a, and z1,...,2, be indetermi-
nate, let N be a nonnegative integer, let n > 1, and suppose that none
of the denominators in (4.1) vanishes. Then if f(m) is an arbitrary
function of nonnegative integers m, we have

N k. k.

a1a2 Tig™ — L9

S (tetidn - 3 (R

— Ti — Ty
m=0 ki,...,kn>01<i<j<n

(41) 0<|k\<N

< JJ Slnle g,

3,7=1

With Lemma 4.1 and one-dimensional basic hypergeometric series
identities, (simple) identities for A, series can be derived. Some
examples are given in [25].
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In this section we provide two new lemmas see Lemmas 4.3 and 4.9,
which similarly can be used for deriving simple A, generalizations of
bilateral basic hypergeometric series identities. We make use of our A,
extension of Ramanujan’s 111 summation in Theorem 3.2 and of an A,,
1%1 summation by Gustafson [9] see Theorem 4.5.

Since for |by -+ b,g* " /a| < |2 < 1,

W ¢ g,z | = (q,b1...b0¢" " "/a,az,q/az)
) ) -

bl . bnql—n (bl CIE bnql_nv q/a7 Z, bl s bnql_n/az)oo ’

by Ramanujan’s 171 summation (3.2) we immediately see from (3.4)

that
S (I (B g (2 e
) P (2) [l
1<i<j<n Ti—Tj i Sk i

ki,... ,kn=—00 ij=1

x (@) (—1)(n_1)‘k|q_(‘k‘)+" > ( é")zlk)

oo

. (b . bnq n oo xl/xj (a)k Zk:
a (@)oo H Zoo (b1 bpg' "),

ij=1 ((zi/x;)b )oo [

(provided |z < 1 and [by...byg" ™" /a| < z| < [¢" V22" [[1, i
forj=1,...,n).

In (4.2) we equate coefficients of (a),,z™ and extract

Proposition 4.2. Letby,...,b, and x1,... ,x, be indeterminate, let

m be an integer, let n > 1, and suppose that none of the denominators
n (4.3) vanishes. Then

(4.3)
ks k; n -1 n
> T (=) I (=2e) Tt
T, — Ty x; i
—00<ky,... ,kp<oo N1<Ki<j<n ¢ J ij=1 "7 ki i=1
|k|=m

x (—1) Dl =(E) 20 1@))

by B TS ((xi/zj)q 1
B (q) H x’b/x_]) oo (bl S bnql_")m

i,j=1
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We state Proposition 4.2 although it is just a special case of Propo-
sition 4.6. We utilize the m = 0 case of Proposition 4.2 in the proof of
Theorem 5.7.

Now, if we multiply both sides of (4.3) by

(9)oo S RCTED L) .
b AL (g 1

ij=1

for suitable f(m) and sum over all integers m, we obtain

Lemma 4.3. Let by,... ,b,,x1,...,x, be indeterminate, let n > 1,
and suppose that none of the denominators in (4.4) vanishes. Then if
f(m) is an arbitrary function of integers m, we have

(4.4)
S Jm ey B
L (bl . bnqlin)m (bl “e bnqlin) =1 (g_:q)oo
9] xlqlﬁ _ qukj n ZT; !
X (I (M) T ()
Fpo oo N<idj<n i J 3,j=1 J ki

n

provided the series converge.

Thus, with Lemma 4.3, we can use one-dimensional bilateral series
identities to obtain identities for multilateral A,, series.

The special case of Lemma 4.3, where b; = ¢, fort =1,... ,nis worth
noting:
Corollary 4.4. Let zq,...,x, be indeterminate, let n > 1 and

suppose that none of the denominators in (4.5) vanishes. Then if f(m)
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s an arbitrary function of nonnegative integers m, we have

4 — f(m) _ — ziq" — xq"
as Y-y (T (RLeu
m=0 m ki, kn=0 N1<i<j<n ¢ J

n

1
<L), e

ki =1

e (D EL(5) ),

provided the series converge.

Corollary 4.4 can also be obtained by specializing Lemma 4.1.
Namely, by setting

m

fm) — (=1~ (2 ) (aras .. .an) ™ f(m)

in Lemma 4.1, and then letting N — oo and a; — oo, fori=1,... ,n,
we also obtain Corollary 4.4.

Next, we put our attention towards the derivation of another lemma
for deriving multilateral series identities. For this we utilize Gustafson’s
[9] multivariable generalization of Ramanujan’s 171 summation (3.2).

Theorem 4.5 ((Gustafson) An A,, 191 summation). Let aq,... ,an,
bi,...,bn,z and xz1,...,x, be indeterminate, let n > 1, and suppose
that none of the denominators in (4.6) vanishes. Then

ki,...,kn=—001<i<j<n

(al"'anzaq/al~~'anz)oo - ((l'z/xj)q,xzbj/xjaz)oo
(z,b1 ... bpq /a1 ... an2) o i ((zi/xj)bj, xiq/Tj0;) 00

provided |by ...b,q* " /a1 ...a,| < 2| < 1.
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Since, for |by...b,g* " /a1 ... a,| < |z| <1,

ay...0ap

(q,b1 - bpg " /ay ... an,a1 ... an2,q/a1 .. .0n2)00
(by...bpgt ™, q/ay .. .an,2,b1 ... bugt "/ a1 .. an2) oo

by Ramanujan’s 197 summation (3.2) we immediately see from (4.6)
that

(4.7)
Z I (xiq’“ — qukj> ﬁ ((i/2)a;)k: i
ki,... skp=—001<i<j<n Ti = T 1,5=1 ((xl/xj)bj)h

l'z/l'J q,l'zb /xjaz)oo

© (g,by...bpgt " /ay ..

B (bl...bnql_”,q/al.. )oo ﬁ

((
i, 5=1 (( xl/xj)ijsz/xjaz)oo

= (@1...an)k
X s
D oo
(provided |by ...b,q' ™" /ay ... a,] < |2| < 1).

In (4.7) we equate coefficients of 2™ and extract

Proposition 4.6. Let ay,...,an, b1,... by, and x1,... ,x, be
indeterminate, let m be an integer, let n > 1, and suppose that none of
the denominators in (4.8) vanishes. Then

ziq" — ;g ((@i/zj)a;)

ay Y I (MR I

—cokr o kn<oo1<i<i<n N L1 T Y i1 (i) 23)b ),
|k|=m

bi...bugt ™" q/ar ... an)eo

q,b1 ... bpgt 7" /ay .. an) 0o

. ((Ii/xj>Q7xibj/Ijai)oo . (al---an)m
* Hl ((@i/2)bj, xiq/xj0i)00 (b1 bng" ")’

provided |by ...bpq* " /a1 .. .an| < 1.
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The b; = b, i = 1,... ,n, case of Proposition 4.6 was established in
[19, Theorem 1.21].

A specialization of Proposition 4.6 gives Proposition 4.2. Namely,
if we divide both sides of (4.8) by (a1 ...an)m and then let a; — oo,
i=1,...,n, we obtain (4.3).

The m = 0 case of Proposition 4.6 was established by Gustafson in
[9, Theorem 1.15]:

Theorem 4.7 ((Gustafson) An A,,_; ¢ sSummation). Letay,... ,an,
bi,...,by and x1,... ,x, be indeterminate, let n > 1, and suppose that
none of the denominators in (4.9) vanishes. Then

(4.9) 3 I (Iz’qki —w’“") 1] (ee/zs)ash
—0o<ki,n kn<oo 1<i<j<n Li = ij=1 (i /25)b;)k;
[k|=0

_ (bl --'bnq vQ/al ﬁ xz/fj Qal'zb /xjaz)oo
(g,b1...bpq " /ay .. ((zi/x)bj, xiq/z0:) 00

provided |by ... by ™" /ay ... a,| < 1.

The n = 2 case of Theorem 4.7 is equivalent to Bailey’s [2] very
well-poised 1 summation (cf. [8]).

We utilize Theorem 4.7 in the proof of Theorem 5.9.

From Theorem 4.7, we immediately deduce a 111 /616 generalization
of the Macdonald identities for A,,, generalizing Theorem 1.24 of [19].
The analysis is similar to that in [19] where the b; = b, i = 1,... ,n,
case of Theorem 4.7 was utilized to obtain [19, Theorem 1.24]. The
following result appears implicitly in [10, Section 7].

Theorem 4.8 ((Gustafson) A 11; generalization of the Macdonald
identities for A,). Let ai, ... ,an,b1,... b, and x1, ..., x, be indeter-
minate, let n > 1, and suppose that none of the denominators in (4.10)
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vanishes. Then

(4.10)
Z ﬁ i— 0(1 Z (z l)krg() H /‘Tj a]
€S, i=1 —ooSkl,...,k,,LsOo ig=1 (@il T3)bs)w,
[k|=0
bi...byg'™", < 0n)oo i
_ (b q 1_q/al @) 11 <1_x_>
(q,b1...bpgt~"/ay ...an)00 L<isi<n xj
% H ((zi/z))g; (zibj/zjai))
((@i/z;)bj, (zig/j0:)) 00
provided |by ... b,q ™" /ay ... a,| < 1, where S, is the symmetric group

of order n and e(o) is the sign of the permutation o.

Replacing a; and b; by —1/c and 0, respectively, for i = 1,... ,n, in
Theorem 4.8, simplifying and then letting ¢ — 0 yields Equation (4.3)
of [18] which is equivalent to the Macdonald identities for A, (see [18,
Section 4]). Thus, Theorem 4.8 may be viewed as a generalization of

the Macdonald identities for A,, with the extra parameters ai,... ,a,
and by,...,by.
For future reference, we write down the b; = a;q, 71 = 1,... ,n, case of

Theorems 4.8 and 4.6. Note that this case is valid since the convergence
condition |by ...b,q "™ /a;y ... a,| < 1 becomes |q| < 1. After a routine

simplification, (4.10) becomes
(4.11)

> < le -
oES,
% Z > =Dk H — (xi/zj)a))

Iz/I])a]q )

—00§k17'~7kn§00 INES 1
K|=0
(a1...anq,q/ay ...an)oo T
- I (=
(9:4)o0 1<i<j<n i

% H xl/xj q, xlaj/l'jal)Q)oo

ij=1 xl/xj)a]qa( Zq/x]a/z))oo
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Similarly, (4.8) becomes

(4.12)

Z H <$iqki - qukj> H (1— (xi/xj)aj)

o S P

—00<k1,... kn<oo 1<i<j<n Li = € ij=1 (1 (;vz/xj)ajq )
[k|=m

_ (al -Qn, q /al n oo H xl/‘r] q, faj/xjaz)Q)oo
(1—(],1. Oolj 1 z/l'] a;q, (sz/xjal))OO

Equations (4.11) and (4.12) extend (3.16) and (3.17) of [19], respec-
tively, to which they reduce when a; =a fori=1,... n.

Now let us return to our objective of finding a multilateral general-
ization of Lemma 4.1. If we multiply both sides of (4.8) by

(q,b1-. “Mfaran)ee T ((@i/75)b), 2iq/T500) 0 o(m)
(b1-.-bnq1 ”,Q/a1 n)oo o1 (@ifag)a, wibj/xjai) 7
for suitable g(m) and sum over all integers m, we obtain
Lemma 4.9. Letaq,...,a,,b1,...,b,,21,...,2, be indeterminate,

let n > 1 and suppose that none of the denominators in (4.13) vanishes.

Then, if g(m) is an arbitrary function of integers m, we have
(4.13)

oo

Z (a1...an)m (m) _(q,b1...bnql_”/al...an)oo
(b

1 ..bnql—")mg 7(b1...bnq1—",q/a1 ce i) oo

% H xz/xj b]axzq/x]az)oo

((i/x;)q, wibj/x50:) 00

m=—0o0

zjl

ki K

ki, kn=—001<i<j<n

- ((xz/x])a])
<11 e o

provided the series converge.



774 S.C. MILNE AND M. SCHLOSSER

Hence, besides Lemma 4.3, we can also use Lemma 4.9 with one-
dimensional bilateral series identities to obtain identities for multilat-
eral A, series. Lemma 4.9 generalizes the N — oo case of Lemma 4.1
by additional parameters by, ... ,b,, since the special case b; = ¢ for
t=1,...,nof Lemma 4.9 boils down to the N — oo case of Lemma 4.1.

5. Applications: Some 5%, formulas in A,. In this section
we illustrate the usefulness of the lemmas of the preceding section and
provide some multi-dimensional extensions of Bailey’s [3] 212 trans-
formations, associated to the root system A,. Further, as interesting
special cases of these 21 transformations in A,,, we provide some 519
summation sin A4,,.

Using Ramanujan’s 14; summation (3.2) and elementary manipula-
tions of series, Bailey [3] derived the transformation

a,b (az, 4, ¢, 42y a, °F
' a’ b’ ab
(5.1) 292 1q,2 | = —daq s sq, 4,
¢, d (2,d, 55 bz )oo az,c

were max(|z], |ed/abzl,|d/al, |c/b]) < 1.

Bailey’s 2105 transformation can be iterated. The result is [3, (2.4)]
(5.2)

abz abz
a,b (az,bz, =L —dq) ¢’ d
22/12 g,z | = Y7 abz abz 002¢2 g cd ,
b
(37%,C7d)oo ' abz
c,d a az,bz

where max(|z|, |ed/abz]) < 1.

We can specialize (5.1), or (5.2), to obtain a summation theorem for a
particular 91y series. If d = bg and z = ¢/a in (5.1), then the series on
the right side reduces just to one term, 1, and we have the summation

a,b

(5.3) 22 i, 4 =
¢, bg

(¢,9,bq/a,c/b)
(¢/a,bq,q/b,¢)’

where max(|g/al, |c]) < 1.

In the following subsections, we combine our Lemmas 4.3 and 4.9
from Section 4 together with the above one-dimensional 215 formulas.
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In subsection 5.1 we derive several multivariable extensions of Bailey’s
219 transformation formulas (5.1) and (5.2). In subsection 5.2 we derive
multivariable extensions of the 915 summation in (5.3).

5.1 Some A, extensions of Bailey’s a2 transformations. We give
several, but not all, of the possible A,, 212 transformations which arise
from Lemmas 4.3 and 4.9.

We start with two multivariable extensions of (5.1) which arise from
Lemma 4.3.

Theorem 5.1 (An A, 29 transformation). Let a,b,cq,... ¢y, d,
L1y s TpsYls--- > Yn ond z be indeterminate, let n > 1, and suppose
that none of the denominators in (5.4) vanishes. Then
(5.4)

. . -1
i < H (Iz’qk” —Ijqk’> ﬁ (ﬂﬁz )
Zid T g T iy
k1,... ,kp=—00 *1<i<j<n J i,7=1 J k;
5 ki (@5 0) (=) () S (%) |k
<[] W(—l) q ‘2 =112/ 2
i=1

~ (az,d/a,cy ... cpg' " /b, dq/abz) o
(z,d,q/b,cy . ..cpdg'—"/abz) o
T ((@i/75)a: (Yis ¥5)¢5)
) H (e/9)0: (@i /21)e) 0
o) T n ; 71nn17
S ( I (yzq‘ y{q )H (gg) T

Yi — Y5 Yj

k1,... . kn=—00 “1<i<j<n i,j=1 ki =1
n . k|
o 10852/ Disd 1y ()0 0, () (‘1) )
(az)|x| a

n—1

provided |cy...codg' ™" /ab] < |z| < |¢77 x;" [y @il and ;...
n—1 _ .
cndz' " fabl < |dfal < |¢77 y; " TTimy il forj=1,...,n.
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Proof. We have for max(|z|, |c1 . .. ¢, dg* ™" /abz|,|d/al, |c1 . .. caq* ™" /b]) < 1,
(5.5)

a,b (az,d/a,cy...conqg* =" /b,dg/abz)se
22 A (2,d,q/b,cq ...cpdgt—™/abz)
c1 qulfn d ,a,4/0,C1 ... Crhaq [eS)
a,abz/d
X 2,(/)2 74, g )

az,c1...Chqt "

by Bailey’s 219 transformation in (5.1). Now we apply Lemma 4.3
to the 219s on the left and on the right side of this transformation.
Specifically, we rewrite the 219 on the left side of (5.5) by the b; — ¢;,
i=1,...,n and

case of Lemma 4.3. The 215 on the right side of (5.5) is rewritten by
the b; — ¢, x; — y;, i =1,... ,n, and

fm) = M(g)m

(az)m a

case of Lemma 4.3. Finally, we divide both sides of the resulting
equation by

(@)oo T (@i/5)¢)) o0
(5.6) - H ((zi/7§)q) 00

(c1. - ng" ™) oo P

and simplify to obtain (5.4). O

Theorem 5.2 (An A, 51, transformation). Let aj,as,... ,an,b,
Clyeve s Cps@yT1yees s Ty Y1y s Yn and 21, . .. , 2y be indeterminate, let
n > 1 and suppose that none of the denominators in (5.7) vanishes.
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Write A=ay...an, C=c1...cp and Z = z1 ...z, for short. Then

S k. k. n
Tiq™ — X597 Zi nki— k|
; <1<H ( T — T > 11 (chj> Hm
. 0o <i<j<n ki =1
A 1—n b k »
o AL 1y = () #0200 ("2)Z|k>
(d) x|

(Cq'~",dq" "' /A, Cq* " /b,dg™ JAbZ ) s ﬁ oy, 9% )
(Z,d,q/b,Cd/AbZ)

ij=1 y]q’x )oo

B LG5 B ),

k1,... kn=—00 “1<i<j<n Yi i,j=1

n
nkif\k|
it

(Ag'~ n,M)Ik\ DIk *(‘k‘)JF”Z (%) dg"1 k|
S (o7 e ) (A) )

provided that |Cd/Ab| < |Z| < |¢"=D/22 " [TiL, | and |Cd/Ab| <
" JA| < gD 2y T il forj=1,...,n

Proof. We have for max(|Z|,|Cd/AbZ|, |dg" 1 /Al,|Cqt~"/b]) < 1
(5.8)

1—-n
" Agb 7| - (AZg'™™, dg" ' /A, Cq' " /b,dq" JAVZ )
2 qu n d b (Zad7Q/baCd/AbZ)oo
Aq1—7L7Aqu1—n/d
X 21 1q, qu;l )
Aqu_n,qu_"

by Bailey’s 219 transformation in (5.1). Now we apply Lemma 4.3
to the 219s on the left and on the right side of this transformation.
Specifically, we rewrite the 219 on the left side of (5.8) by the b; — ¢;,
i=1,...,n,and

(Ag' " b)m

@n 2

f(m) =
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case of Lemma 4.3. The 212 on the right side of (5.8) is rewritten by
the b; — a;2;, v; — y;, 1 =1,... ,n and

(Aql_",Aqul_"/d)m (dqn1>m

case of Lemma 4.3. Finally, we divide both sides of the resulting
equation by (5.6) and simplify to obtain (5.7). O

Next, we give two multivariable extensions of (5.1), which arise from
Lemma 4.9.

Theorem 5.3 (An A, 219 transformation). Let ai,aq,...,an,b,
Clyeoe s Cpydy X1y e s s Ty Y1, - - - ,Yn and z be indeterminate, let n > 1
and suppose that none of the denominators in (5.9) vanishes. Write
A=ay...a, and C =cy...cy, for short. Then

(5.9)
ziq — 250" (@if)a)e, O g
k1 ,,..zn:_oo1<g<n( LTi—Zj )Zpl (zi/zjc))k, (d)\kl
~ (Az,d/A,Cq' " /b,dq/Abz)
N (z d,q/b,Cdg'—"/Abz)
yz/y] Cj, yzq/y]az) (xi/xj)Q7 (xicj/xjai))oo
) H (wi/zj)cs, (xiq/zjai), (Yi/yi)qs (Yici /Yiai)) o

zjl

ki o ok
" Z 1 (yzqyi yﬂ)

k1,...,kn=—001<i<j<n - y]

" ((yi)yi)a ), (Abz/d) k|
g H ((yi/yj)ei)r,  (Az) (A) )

3,j=1

provided |Cdq'~"/Ab| < |z| < 1 and |Cdg* =" /Ab| < |d/A| < 1.
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Proof. We have for max(|z|,|Cdg' " /Abz, |d/A|,|Cq*~"/b]) < 1,

. A, (Az,d/A, Cq'~" [b, dg/Ab2).o.
4,2 | =
P g (2,d,q/b, Cdg' [ Abz)o
(5.10) ’
A, Abz/d
><2¢2 7Q7% )
Az, Cqg'—m

by Bailey’s 219 transformation in (5.1). Now we apply Lemma 4.9
to the 219s on the left and on the right side of this transformation.
Specifically, we rewrite the 219 on the left side of (5.10) by the b; — ¢;,
i=1,...,n and

case of Lemma 4.9. The 219 on the right side of (5.10) is rewritten by

the b; — ¢;, z; — y;, i =1,...,n, and
~ (Abz/d)m, (d m

case of Lemma 4.9. Finally, we divide both sides of the resulting
equation by

(0,Cq" "/ A)oo 11 ((@i/2))es, (1ig/750:)) 0
(Cai™ 4/ Ao =2 ((@i/75)a; (Tici/Tj03)) oo

(5.11)

and simplify to obtain (5.9). O

Theorem 5.4 (An A,, 219 transformation). Letay,... ,an,b1,... by,
Cydiy e ydny @1y es s Ty Yls--- ,Yn and 21, . .. , 2, be indeterminate, let
n > 1, and suppose that none of the denominators in (5.12) vanishes.
Write A=ay...an, B=by...b,, D=dy...d, and Z = 21 ...z, for
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short. Then
(5.12)

= ;g™ —x]q L (wi/x;)b; v(Aq17")|k‘ k|
kl,...§_m1<g<n( Li )1__[ ((@i/z;)di)k, () g
_ (D/A,¢/B)w
(Z,cDJABZ)
" ﬁ ((i/yj)ajzj, (yidiq/yjaibiz:), (xi/2;)q, (xid;j /b))
((wi/x5)dj, (xiq/25b:), (yi/Y;)as (Yidia;zj/y;aibizi)) s

ij=1

- yiq" — yig"
~ Z 11 T mi—u

By kn=—o0 1<i<j<n —Yi

n b Zg/yj ) (Aqlfn)‘kl 2 k|
. H yz/yg a;zj)k;, () <A> ’

1,j=1

provided |cD/AB| < |Z] <1 and |cD/AB| < |D/A| < 1.

Proof. We have, for max(|Z|, |cD/ABZ|,|D/A|,|c/B|) < 1

AqlinaB 1-n
Sl (2.Dq"",q/B,cD/ABZ)
(5.13) ’
Aqt™ ABZ/D
X 2o i, 2
AZg ™, c

by Bailey’s 219 transformation in (5.1). Now we apply Lemma 4.9
to the 219s on the left and on the right side of this transformation.
Specifically, we rewrite the 215 on the left side of (5.13) by the a; +— b;,
bi—d;,i=1,...,n, and

oy = AL
g(m) O Z

case of Lemma 4.9. The 215 on the right side of (5.13) is rewritten by
the Q; — aibizi/di, b, = QiZ, Tj =Yg, = 1, .o, and

- 252 (2)
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case of Lemma 4.9. Finally, we divide both sides of the resulting
equation by

(¢,D¢' " /B)se 17 ((wi/x;)ds, (£iq/7;b)) oo
GM) - D a/Bye L (g, G J,00)

and simplify to obtain (5.12). O

i,=1

Finally, we provide two multivariable extensions of (5.2) that arise
from Lemmas 4.3 and 4.9, respectively.

Theorem 5.5 (An A, 2y transformation). Let ay,asg,... ,an,b,
Clyeon s Cpy @y X1y e s s Ty Y1y 5 Yn GNA 21, ... , 2y be indeterminate, let
n > 1, and suppose that none of the denominators in (5.15) vanishes.
Write A=a1...an, C=c1...cp, and Z = z1 ...z, for short. Then

(5.15)
o0 k. k. n
Z H Z;q™ — X549 J> H (£C> H:Enkl k|
— j
kl,u.,kn—oo(lgi<j§n< Ti = & ig=1 \YI ki =y
1—-n
y (Agq 7b)|k\(_1)(n—1)|k\q (1) 4n >0 ( )Zkl)
(d) x|
_ (bZ,Cq/AbZ,dq" | AbZ) o ﬁ (zi/25)q, (Yi/y;)a;25) 0o
(¢"/A,q/b,d)s o (Wilyi)as (wafz5)¢)) 00
o0 , ks
Yiq™ — Y;q4
o (I (M)
iy kn=—o0 N1<i<j<n Yi—Yj
—1 n
<A1 (Fe), T
i,j=1 ki =1
(AbZ/C, Aqulin/d)\H (_1)(n71)\k|
(bZ) x|
(3o, (5 )( Cd )“')
X q s
AbZ

provided that |Cd/Ab] < |Z] < \q("fl)/ij_” [T, zi| and |Cd/Ab| <
|Cd/AbZ| < [¢" D2y [T il forj=1,...,n
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Proof. We have for max(|Z|,|Cd/AbZ]|) < 1,

(5.16)
Aql—n7 b 1-n n
" 7 (AZg' ™, bZ,Cq/AbZ,dq"™ | AbZ) o
14, =
v quin,d (qn/AaQ/ba quinad)oo
AbZ/C, AbZg " /d
X 2¢2 4, % )
AZg ", bZ

by Bailey’s 2o transformation in (5.2). Now we apply Lemma 4.3
to the 219s on the left and on the right side of this transformation.
Specifically, we rewrite the 315 on the left side of (5.16) by the b; — ¢;,
i=1,...,n,and

(Ag'™,b),

@n 2

flm) =

case of Lemma 4.3. The 215 on the right side of (5.16) is rewritten by
the b; — a;2;, x; — y;,i=1,... ,n, and

 (AbZ/C, AbZq " fd) [ Cd \™
flm) = (bZ)m (AbZ )

case of Lemma 4.3. Finally, we divide both sides of the resulting
equation by (5.6) and simplify to obtain (5.15). O

Theorem 5.6 (An A, 219 transformation). Leta,... ,an, b1,... by,
Cydiy e ydn, T1yoos yTny Y1y--- s Yn and 21,...,2n be indeterminate,
letn > 1, and suppose that none of the denominators in (5.17) vanishes.
Write A=ay...an, B=by...b,, D=dy...d, and Z = 21 ...z, for
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short. Then
(5.17)

_ (BZ,cq"/ABZ)

(@A 0

y ﬁ ((yi/vyj)ajzj, (yidiq/yjaibizi), (xi/7;)q, (xid; /7b;i)) o
((xi/x5)dy, (wig/x50:), (i/Y5)a: (yidiajz;/yjaibizi)) o

ij=1

ki o Ak
D =

ki, skn=—001<i<j<n Yi

% ﬁ (yia;b;z;/yid))k, (ABqun/C)Ik( cD >kl
((i/yj)a;z))k, (BZ) x| ABZ ’

7,7=1
provided |cD/AB| < |Z] < 1.

Proof. We have for max(|Z|,|cD/ABZ|) < 1

(5.18)
1-n
Ag" B (AZg*~™, BZ,cq" /ABZ, Dq/ABZ)w
2’(/}2 34, Z| = 1—
c, Dql—n (qn/A7Q/B,C, Dq n)oo
ABZq'*""/c, ABZ/D
X 2¢2 54, ACBDZ )
AZ¢"—", BZ

by Bailey’s 219 transformation in (5.2). Now we apply Lemma 4.9
to the 219s on the left and on the right side of this transformation.
Specifically, we rewrite the 2105 on the left side of (5.18) by a; — b;,
bj—d;,i=1,...,n, and
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case of Lemma 4.9. The 219 on the right side of (5.18) is rewritten by

the a; — a;b;z;/d;, b; — a;z;, x; — y;, i =1,...,n, and
ABZg¢" /)y [ ¢D \™
g(m) = 9
(BZ)m ABZ

case of Lemma 4.9. Finally, we divide both sides of the resulting
equation by (5.14) and simplify to obtain (5.17). O

5.2 Some A, 2ty summations. Here we work out (all) the A,
extensions of the 9t summation in (5.3) that arise from Lemmas 4.3
and 4.9, respectively.

First we give two multivariable extensions of (5.3) which arise from
Lemma 4.3.

Theorem 5.7 (An A, 212 summation). Let a,b,c1,...,c, and
Z1,...,Ty be indeterminate, let n > 1, and suppose that none of the
denominators in (5.19) vanishes. Then
(5.19)

i H ziq" — gk ﬁ T ! ﬁ nk;—|k|
T —z . Ti
ki, skn=—00 N1<i<j<n ’ J ig=1 "7 ki i=1
k n ki k
(@) (_l)m_mkq('2)+nzu(2)<g)' )
(bq) k| a

_ (Q7bq/a’ Cy. qu1 n/b e’} ﬁ ( xl/x]
(¢/a, an q/b) (zi/z5) CJ

zgl

provided |cy...cog* "/a| < |q/a| < |¢" V2" [Ty @i for j =
1,...,n.

Proof. We have, for max(|q/al,|c1 ...cqg'™"|) <1,
(5.20)

b —n
@ | (@a,bq/aer. . cng' 7" /)

277[}2 4y | = 1— )
Cl...qulin,bq (Q/aabQ7Q/b7 C1...Cnq n)oo

by the 2t» summation in (5.3). Now we apply Lemma 4.3 to the 919
of this summation. Specifically, we rewrite the 215 in (5.20) by the
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bi—c,t1=1,... ,n,and
(@b, (g)m
flm) = (b@)m \a

case of Lemma 4.3. Finally, we divide both sides of the resulting
equation by (5.6) and simplify to obtain (5.19).

For an alternative proof, set z = ¢/a and d = bq in Theorem 5.1. In
this case the multilateral series on the right side of (5.4) reduces to

vig" — yjqti )
zw( [T (% =w

—oo<ki,..., 1<i<j<n Yi—Y;
[k|=0

X H (—cj> - ﬁyfkﬁ‘kl

i,j=1 ki =1
()i (R
~ (_1)(n71)\k|q ( 2 )+ Zi:l( 2 )>
_ (Cl qu n oo H yz/y]

(@)oo ((Wi/yj)ej) oo

the last evaluation by the m = 0 case of Proposition 4.2. o

1,7=1

Theorem 5.8 (An A, 22 summation). Let a,by,... by, c and
Z1,...,Zy be indeterminate, let n > 1, and suppose that none of the
denominators in (5.21) vanishes. Then

(5.21)

oo

(I ()
1<i<j<n Ti = Tj

k:l,u. ,knzfoo

i (o),

X —(a’bl(')“b”)|k (_1)(n—1)\k|q (‘ DRSO 1(2) <2>kl)
C)lk| a

_ (g,b1-..bug/a,c/by .. . bn)so (wi/z)q
-
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provided |cq/a| < |q/al < |q("’1)/2x;” [ @i forj=1,... ,n.

Proof. We have for max(|q/al,|c|) < 1,

a,bl...bn

(5.22) 29 ¢, 1| =
c,by...bng

(QaQ7b1~-~an/a,C/b1...bn)Oo
(q/a’bl"'bn%Q/bl---bn,C)oo,

by the 212 summation in (5.3). Now we apply Lemma 4.3 to the 919
of this summation. Specifically, we rewrite the 215 in (5.22) by the
b;—biq,i=1,...,n,and

(a,by...bp)m (q)m
m)=-————|-=
f(m) O "
case of Lemma 4.3. Finally, we divide both sides of the resulting
equation by
(9)os ﬁ ((zi/;)b;) 00

(bl .- -bnqlin)oo =1 (('IZ/I])Q)OO

and simplify to obtain (5.21).

For an alternative proof, set ¢; = biq, z; = q/a;, i = 1,... ,n and
b+ by...b, in Theorem 5.5. In this case, the multilateral series on
the right side of (5.15) is terminated from below and from above and
reduces just to one term, 1. In the resulting equation, we replace A by
ag" ' and d by c. o

Finally, we give four multivariable extensions of (5.3) that arise from
Lemma 4.9.

Theorem 5.9 (An A, 299 summation). Let a1,... ,an,b,c1,... ,¢n
and x1,...,%y, be indeterminate, let n > 1 and suppose that none of
the denominators in (5.23) vanishes. Then

00 z; ki_xj k; n Ti/2j)j5 )k,
sz > I (L) T (e

ki, kn=—001<i<j<n 1,5=1

(b) | q a
% (bq)‘k| <a1 .. .an)
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_ (g,bq/ay...an,c1...caq " /b)oo . ((xi/z5)q, (xicj/2ja:)) oo
(bq,q/b,c1...cngt ™/ ar ... an)so ((xi/z)eg, (2iq/x505)) 00

i,j=1

provided max(|c1 ... cng' 7", |q/a1 ... an]) < 1.

Proof. We have for max(|g/ay ...an],|c1...cagt™"|) <1,

Ay ...Gn,b

(5.24) 219 .
Cl...cng "™, by
(q,q,bq/ay ...an,c1...caq" " /b)oo
(q/ay...an,bq,q/b,c1...cn@' ")

)

by the 2t» summation in (5.3). Now we apply Lemma 4.9 to the 919
of this summation. Specifically, we rewrite the 219 in (5.24) by the
bir—c,t1=1,... ,n,and

oo = (i)

case of Lemma 4.9. Finally, we divide both sides of the resulting
equation by (5.11) and simplify to obtain (5.23).

For an alternative proof, set z = ¢/a;...a, and d = bq in Theo-
rem 5.3. In this case, the multilateral series on the right side of (5.9)
reduces to

—00<ky, .. kp <00 1<i<j<n Yi—Yi ig=1 (/Y3
|k|=0
_(eeend M ag/aran)oo 1 ((/93)4s (Wi /9504)) s
(@:c1-veng' =" ar . an)oo <2 ((yi/y5)es: (4:0/Y5i)) o0
the last evaluation by Theorem 4.7. o

Theorem 5.10 (An A, 2t summation). Let a,bq,...,b,,c and
Z1,...,Ty be indeterminate, let n > 1 and suppose that none of the
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denominators in (5.25) vanishes. Then

(5:25) ) y
LX) e ()

_ (by...bng/a,c/by...bp)oo i ((@i/zj)q, (xibj/xb:)q) o
(¢/a, ) ((wi/x5)bjq, (zig/ ;b))

Q|

i,5=1 e

provided max(|c|,|q/al) < 1.

Proof. We utilize the 212 summation in (5.20) and apply Lemma 4.9
to the 919 in that summation. Specifically, we rewrite the 219 in (5.20)
by the a; — b;, b; — b;q, 1 =1,... ,n, and

oo =522

case of Lemma 4.9. Finally, we divide both sides of the resulting
equation by

n

(¢,9)o0 ((zi/2)biq, (xig/2ibi))
(b1...bnq,q/b1...bp)oo 1__[ ((@i/z;)q, (b /25b:)q) o

and simplify to obtain (5.25).

For an alternative proof, set z; = ¢/a; and d; = biq, i = 1,... ,n,
in Theorem 5.4. In this case, the multilateral series on the right side
of (5.12) is terminated from below and from above and reduces just to
one term, 1. In the resulting summation, replace A by ag™ '. ]

Theorem 5.11 (An A, 292 summation). Let a,by,... by, c1,... ,¢q
and x1,...,x, be indeterminate, let n > 1, and suppose that none of
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the denominators in (5.26) vanishes. Then
(5.26)

oo ks k;
> 1 (—W — it )
P
k1,... ,kn=—00 1<i<j<n ¢ J

((zi/r;)b; ()Ik\ q I
* H (bl an)\k| (a)

ij=1 xz/x.])c])

_ (q,b1 .. nQ/a )oo (zi/zj)q, (@icj/2;bi)) oo
(/a bi.. H /xj)c],(:z:zq/x] i))oo

provided max(|cy ... co,qg ™", |q/a]) < 1

Proof. Write B = by...b, and C = ¢1...¢,. We have for
max(|g/al, [Cq'™"]) < 1,
B .

(5.27) oo ‘ g4 = (4,9, Bg/a,Cq'"/B)os
Cg-" By (¢/a, Bq,q/B,Cq"")oo’

)

by the 219 summation in (5.3). Now we apply Lemma 4.9 to the 919
of this summation. Specifically, we rewrite the 915 in (5.27) by the
a;— b, bj—c¢,1=1,...,n, and

otm = (%)

case of Lemma 4.9. Finally, we divide both sides of the resulting
equation by

n

(qchlin/B Z/xj Cj, zzQ/I] ))
(Cq*",q/B) s H (zi/2)q; (wicj[7;bi))oo

2]1

and simplify to obtain (5.26).

For an alternative proof, set z; = q/a;, i =1,... ,n,and c = by ... b,q
in Theorem 5.6. In this case, the multilateral series on the right side
of (5.17) is terminated from below and from above and reduces just to
one term, 1. In the resulting summation, replace d; by ¢;, 1 =1,... ,n,
and A by ag" 1. O
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Theorem 5.12 (An A, 219 summation). Letay,... ,an,b1,...,by,¢,
and x1,...,x, be indeterminate, let n > 1, and suppose that none of
the denominators in (5.28) vanishes. Then
(5.28)

9] xiqk‘i_qukj
kl,i..%:=—oo1<g<n< Ti L )
((wi/z5)a;)k, (bl-"bn)kl< q )kl
(@i/z)bj@)k, () ai...an

(g,¢/b1- . b)oo 7T ((@i/25)q, (:bjq/7;50i)) 00
(q/b1...by,C)so ((zi/x))bjq, (Tig/Tjai))00

ij=1

ij=1

provided max(|c|,|q/a1 ... an]) < 1.

Proof. Write A=aj...an, B="b;...b,. Wehave for max(|q/Al,|c|) <
L,

A, B
(5.29) Jhn » (4,9, Bq/A,c/B)

c, Bq (Q/Aanaq/Bvc)oo,

le

by the 212 summation in (5.3). Now we apply Lemma 4.9 to the 919
of this summation. Specifically, we rewrite the 212 in (5.29) by the
bi—biq,i=1,...,n,and

case of Lemma 4.9. Finally, we divide both sides of the resulting
equation by

(0, Ba/A)se 17 ((@:/75)b;q, (2:q/20i)) 00
(Ba,a/A)oo 2 ((wi/75)a, (2idjq/7;ai)) oo

and simplify to obtain (5.28).

For an alternative proof, set z; = ql/"/bi and d; = aiql/”, i =
1,...,n, in Theorem 5.6. In this case, the multilateral series on the
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right side of (5.17) is terminated from below and from above and
reduces just to one term, 1. In the resulting summation, replace a;
by big' /™ and b; by a; for i =1,... ,n. i
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