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TRANSMUTATION KERNELS FOR THE
LITTLE q-JACOBI FUNCTION TRANSFORM

ERIK KOELINK AND HJALMAR ROSENGREN

ABSTRACT. The little q-Jacobi function transform de-
pends on three parameters. An explicit expression as a sum of
two very well-poised 8W7-series is derived for the dual trans-
mutation kernel relating little q-Jacobi function transforms
for different parameter sets. A product formula for the dual
transmutation kernel is obtained. For the inverse transform,
the transmutation kernel is given as a 3ϕ2-series, and a prod-
uct formula as a finite sum is derived. The transmutation
kernel gives rise to intertwining operators for the second or-
der hypergeometric q-difference operator, which generalize the
intertwining operators arising from a Darboux factorization.

1. Introduction. The Jacobi transform is an integral transform
on the positive half-line with a hypergeometric 2F1-series as its ker-
nel. This transform is a two-parameter extension of the Fourier-cosine
transform and the Mehler-Fock transform and also contains the Han-
kel transform as a limit case. The inversion formula for the Jacobi
transform can be found explicitly in several ways, using asymptotics,
spectral analysis, group theory or intertwining properties. This trans-
form has a long history and we refer the reader to the survey paper
[13] by Koornwinder.

There are several levels of q-analogues of the Jacobi function and of
the corresponding transform pair (see [9] for an overview and refer-
ences). Here we consider the so-called little q-Jacobi function and the
corresponding transform. The little q-Jacobi function transform has
been studied by Kakehi, Masuda and Ueno [7, 6] as the (spherical)
Fourier transform on the quantum SU(1, 1) group using the interpre-
tation of the little q-Jacobi functions on the quantum SU(1, 1) group
using the interpretation of the little q-Jacobi functions as matrix ele-
ments of unitary irreducible representations of Uq(su(1, 1)) (see [14]).
On the other hand, the little q-Jacobi function transform occurs when
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studying the action of so-called twisted primitive elements in the prin-
cipal unitary series representations of Uq(su(1, 1)), and this has been
the motivation for the study of this paper. However, the paper is
completely analytic in nature, and the quantum group theoretic inter-
pretation is only discussed briefly in Section 6.

The little q-Jacobi function transform can be obtained from the spec-
tral analysis of the second order hypergeometric q-difference operator

(1.1) L = L(a,b) = a2

(
1 +

1
x

)
(Tq − Id ) +

(
1 +

aq

bx

)
(T−1

q − Id ),

where Tqf(x) = f(qx) on a suitable Hilbert space (see Kakehi [6] or
[8, Appendix A], where a slightly more general result is given). So we
have eigenfunctions to L in terms of basic hypergeometric series (see
[4, Chapter 1]). The little q-Jacobi function is defined as

(1.2) φλ(x; a, b; q) = 2ϕ1


 aσ, a/σ

; q,− bx
a

ab


 , λ =

1
2

(σ + σ−1).

The notation for q-hypergeometric series follows Gasper and Rahman
[4], and we assume 0 < q < 1;

k+1ϕk


 a1, a2, . . . , ak+1

; q, z
b1, . . . , bk


 =

∞∑
j=0

(a1, a2, . . . , ak+1; q)j
(q, b1, . . . , bk; q)j

zj ,

(1.3)

(a1, . . . , ak+1; q)j = (a1; q)j . . . (ak+1; q)j ,

(a; q)j =
j−1∏
i=0

(1 − aqi), j ∈ Z≥0 ∪ {∞}.

The radius of convergence is 1 for generic parameters, but there exists
a one-valued analytic continuation to C \ R≥1 (see [4, Section 4.5]).

The little q-Jacobi function satisfies Lφλ(·; a, b; q) = (−1 − a2 +
2aλ)φλ(·; a, b; q). For later use, we note that the little q-Jacobi functions
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are eigenfunctions for the eigenvalue λ of

(1.4)

L(a,b) =
1
2a
L(a,b) +

1
2

(a+ a−1)

=
a

2

(
1 +

1
x

)
Tq −

(
a

2x
+

q

2bx

)
Id

+
1
2a

(
1 +

aq

bx

)
T−1
q .

For simplicity, we assume that a, b > 0, ab < 1 and y < 0, but
the results hold, mutatis mutandis, for the more general range of the
parameters as discussed in [8, Appendix A]. Then the operator L is
an unbounded symmetric operator on the Hilbert space H(a, b; y) of
square integrable sequences u = (uk)k∈Z with respect to the weights

(1.5)
∞∑

k=−∞
|uk|2(ab)k

(−byqk/a; q)∞
(−yqk; q)∞

,

where the operator L is initially defined on the sequences with finitely
many nonzero entries.

Note that (1.5) may be written as a q-integral. Indeed, by associating
to u a function f on yqZ by f(yqk) = uk and using the notation (see
[4, Section 1.11]),

(1.6)
∫ ∞(y)

0

f(x) dqx = y

∞∑
k=−∞

f(yqk)qk,

we see that for a = q(α+β+1)/2 and b = q(α−β+1)/2, the sum in (1.5)
can be written as

(1.7) yα
∫ ∞(y)

0

|f(x)|2xα (−xq−β; q)∞
(−x; q)∞

dqx, �α > −1.

Using the q-binomial theorem (see [4, Section 1.3]), we see that the
quotient of q-shifted factorials in (1.7) tends to (1 + x)β as q tends to
1. In the paper we will use the correspondence between u ∈ H(a, b; y)
and functions f given by f(yqk) = uk repeatedly.
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The spectral analysis of L, or equivalently L(a,b), on H(a, b; y) can be
completely carried out, and this leads to corresponding transform

(1.8)
(Fa,b,yu)(λ) =

∞∑
k=−∞

ukφλ(yqk; a, b; q)(ab)k
(−byqk/a; q)∞

(−yqk; q)∞
,

uk =
∫
R

(Fa,b,yu)(λ)φλ(yqk; a, b; q) dν(λ; a, b; y; q),

for an explicit measure dν(·; a, b; y; q) described in (1.11). Here we use
the one-valued analytic continuation of the 2ϕ1-series. Then F = Fa,b,y

extends to an isometric operator from H(a, b; y) onto L2(dν(·; a, b; y; q)).

The goal of this paper is to establish a number of links between two
little q-Jacobi function transforms for different parameters (a, b, y). Our
main interest lies with the dual transmutation kernels P satisfying

(1.9) (Fc,d,y[δtu])(µ) =
∫
R

(Fc,d,yu)(λ)Pt(λ, µ) dν(λ; a, b; y; q),

where (δtu)k = tkuk for an extra parameter t. Note that the kernel
P is analogous to a nonsymmetric Poisson kernel, and to a Poisson
kernel for (a, b) = (c, d) for a family of orthogonal polynomials. In
our main result, Theorem 2.1, we present an explicit expression for
the kernel in case ad = bc. The result is much inspired by Mizan
Rahman’s summation formulas [8, Appendix B]. We similarly study
the transmutation kernel P for the inverse transform,

(F−1
c,d,xf)l =

∞∑
k=−∞

(F−1
a,b,yf)kPk,l(ab)k

(−byqk/a; q)∞
(−yqk; q)∞

.

An explicit expression for the transmutation kernel is obtained in case
dx = by in Theorem 2.2. For the transmutation kernels we show that
these kernels do indeed satisfy the transmutation property, i.e., they
intertwine the second order q-difference operator L(a,b) for different
parameters (a, b). This is closely related to results on q-analogues of
Erdélyi’s fractional integrals recently obtained by Gasper [3], and we
give new proofs of some of his main results using the little q-Jacobi
function transform (1.8). The main results are formulated in Section 2.
The proofs of the statements are contained in Sections 3, 4 and 5,
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where in Section 3 we prove some summation formulas, amongst others
an extension of Ramanujan’s 1ψ1-summation, that are of independent
interest. In the final section, Section 6, we discuss some of the quantum
group theoretic interpretations of these results.

The little q-Jacobi functions may also be considered as q-analogues
of the Bessel function (see [9] for further references). It would be
interesting to see if the (generalized) transmutation kernels can be
evaluated also for other entries in the Askey-Wilson function scheme
as described in [9].

We now give the precise form of the spectral measure dν in (1.8). The
measure can be obtained from the c-function expansion for the little
q-Jacobi function (see Kakehi [6] or [8, Appendix A]), analogously to
the case of the Jacobi transform. Explicitly,

(1.10)

φλ(yqk; a, b; q) = c(σ; a, b; q)Φσ(yqk; a, b; q)
+ c(σ−1; a, b; q)Φσ−1(yqk; a, b; q),

Φσ(yqk; a, b; q) = (aσ)−k
2ϕ1



aσ, qσ/b

; q,− q1−k

y

qσ2


 ,

c(σ; a, b, y; q) =
(b/σ, a/σ; q)∞
(σ−2, ab; q)∞

(−byσ,−q/byσ; q)∞
(−by/a,−qa/by; q)∞

,

valid for σ2 /∈ qZ. Then Φσ is the asymptotically free solution;
LΦσ(·; a, b; q) = (−1 − a2 + 2aλ)Φσ(·; a, b; q) on yqZ with, as before,
λ = (σ+σ−1)/2. The measure dν in (1.8) can be obtained from (1.10)
(see [6], [8, Appendix A]). For this we now assume that a > b, which we
can do without loss of generality, cf. Lemma 5.2 and (5.8). Explicitly,
we have

(1.11)
1
C

∫
R

f(λ) dν(λ; a, b; y; q)

=
1

2π

∫ π

0

f(cos θ)w(eiθ) dθ +
∑

k∈Z≥0

|aqk|>1

f

(
1
2

(aqk + a−1q−k)
)
wk

+
∑
k∈Z

|q1−k/by|>1

f

(
− 1

2

(
q1−k

by
+ byqk−1

))
vk,
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where

C = (ab, ab,−by/a,−aq/by,−y,−q/y; q)∞,

w(z) =
(z2, z−2; q)∞

(az, a/z, bz, b/z,−byz,−q/byz,−by/z,−qz/by; q)∞
,

wk =
1 − a2q2k

1 − a2

(a2, ab; q)k
(q, aq/b; q)k

(ab)−k

× (a−2; q)∞
(q, ab, b/a,−aby,−q/aby,−by/a,−aq/by; q)∞

,

vk =
[(q2−2k/b2y2) − 1]q−k(k−1)(q2/b2y2)k−1

(q, q,−q1−k/y,−aq1−k/by,−b2yqk−1,−abyqk−1; q)∞
.

Note that the integral plus the first sum and the sum over −Z≥0 in
the second sum can be written as dm (λ; a, b,−by,−q/by | q), where
dm (·; a, b, c, d | q) denotes the standard (nonnormalized) Askey-Wilson
measure (see [2], [4, Chapter 6]). So the measure in (1.11) has an
absolutely continuous part supported on [−1, 1], and for a < 1 there
are no other discrete mass points in dν apart from the infinite series
tending to −∞ (see [6], [8, Section 5], [9]). It should be observed that
(1.8) can be formally obtained from the limit transition of the Askey-
Wilson polynomials to the little q-Jacobi functions (see [9, Sections 2.3,
4.1, 6.1]).

Later in this paper, especially in Section 3, we use the notation for
very well-poised series (cf. [4, Section 2.1]):

(1.12) r+1Wr(a1; a4, . . . , ar+1; q, z)

=
∞∑
j=0

1 − a1q
2j

1 − a1

(a1, a4, . . . , ar+1; q)jzj

(q, qa1/a4, . . . , qa1/ar+1; q)j

= r+1ϕr


 a1, q

√
a1,−q√a1, a4, . . . , ar+1

; q, z√
a1,−√

a1, qa1/ar, . . . , qa1/ar+1


 .

2. Statement of main results. In this section we describe the
main results of the paper. We start with the dual transmutation kernel
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for the little q-Jacobi function, i.e., we want an explicit expression for
(2.1)

Fa,b,y [k �→ tkφµ(xqk; c, d; q)](λ)

=
∞∑

k=−∞
(abt)kφµ(xqk; c, d; q)φλ(yqk; a, b; q)

(−byqk/a; q)∞
(−yqk; q)∞

=
∞∑

k=−∞
(abt)k2ϕ1


 cτ, c/τ

; q,−qk dx
c

cd




2ϕ1


 bσ, b/σ

; q,−yqk
ab




using (1.8) and Heine’s transformation formula [4, (1.4.6)]. Here
λ = (σ + σ−1)/2 and µ = (τ + τ−1)/2. In general, we do not have
an explicit expression, but we have the following theorem, which will
be proved in Section 3.

Theorem 2.1. Let a > b > 0, ab < 1, y > 0. Define the dual
transmutation kernel

Pt(λ, µ; qα; a, b) = Fa,b,y[k �−→ tkφµ(yqk; aqα, bqα; q)](λ).

Then using the notation λ = (σ + σ−1)/2 and µ = (τ + τ−1)/2 with
|σ|, |τ | ≥ 1, the series defining Pt by (1.8) is absolutely convergent for
|abqαστ | < |abt| < 1. For |t| > q/ab, t /∈ a2q2α+Z≥0 , t /∈ b2q2α+Z≥0 , Pt

can be expressed explicitly as

Pt(λ, µ; qα; a, b)

=
(bσ±1, bqατ±1, aq2ασ±1/t, aqατ±1/t, q,−yabt,−q/abyt; q)∞

(ab, abq2α, b/a, qασ±1τ±1/t, a2q2α/t, abt,−y,−q/y; q)∞

× 8W7(a2q2α−1/t; aqατ±1, aσ±1, abq2α−1/t; q, q/abt)

+
(aσ±1, aqατ±1, bq2ασ±1/t, bqατ±1/t, q,−b2yt,−q/b2yt; q)∞

(ab, abq2α, a/b, qασ±1τ±1/t, b2q2α/t, abt,−by/a,−qb/ay; q)∞

× 8W7(b2q2α−1/t; bqατ±1, bσ±1, abq2α−1/t; q, q/abt).

The expression for the dual transmutation kernel remains valid for λ a
discrete mass point of the measure dν(·; a, b; y; q) as defined in (1.11).
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Moreover, for qα|τ | < |t| < 1/
√
ab and qβ−α|tρ| < |s| < tq−2α/

√
ab,

where ν = (ρ+ ρ−1)/2, |ρ| ≥ 1, the product formula

Ps(µ, ν; qβ; aqα, bqα)

=
∫
R

Pq2αs/t(λ, ν; qα+β; a, b)Pt(λ, µ; qα; a, b) dν(λ; a, b; y; q)

is valid.

As remarked in Section 1, the little q-Jacobi functions can be obtained
as a limit of the Askey-Wilson polynomial. In this limit transition, one
of the parameters tends to zero and another one of the parameters
tends to ∞ exponentially. This case is not considered in Askey et
al. [1] where the nonsymmetric Poisson kernel for the Askey-Wilson
polynomials is derived. Note that the expression [1, (3.9)-(3.11)] is
much more complicated than the expression in Theorem 2.1. Motivated
by the quantum group theoretic interpretation (see Section 6), we
should compare Theorem 2.1 to the nonsymmetric Poisson kernel for
Al-Salam and Chihara polynomials, which consists of one very well-
poised 8W7-series; see Askey, Rahman and Suslov [1, (14.8)] and Ismail
and Stanton [5, Theorem 4.2].

For the transmutation kernel we have the following result.

Theorem 2.2. Define the transmutation kernel

Pk,l(a, b, y; r, s) = F−1
a,b,y [λ �−→ φλ(yql/s; ar, bs; q)]k

=
∫
R

φλ(yql/s; ar, bs; q)φλ(yqk; a, b; q) dν(λ; a, b; y; q).

For r, s > 0, rs < 1, the transmutation kernel is given by

Pk,l(a, b, y; r, s) = (ab)−l (ab, rs, qk−l+1,−yqk; q)∞
(q, abrs, rsqk−l,−byqk/ar; q)∞

× 3ϕ2


 ql−k, r, ar/b

; q, q
rs,−arq1−k/by




with the convention Pk,l(a, b, y; r, s) = 0 for k < l. Moreover, the
transmutation kernel satisfies the product formula for r, s, t, u > 0,
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rs < 1, tu < 1,
p∑

l=k

Pk,l(a, b, y; r, s)Pl,p

(
ar, bs,

y

s
; rt, su

)
(abrs)l

(−ybql/ar; q)∞
(−yql/s; q)∞

= Pk,p(a, b, y; rt, su).

See (4.7) for the explicit expression for the product formula in terms
of the 3ϕ2-series. The resulting product formula is already contained in
Gasper [3, (1.7)], and it can also be obtained from a general expansion
formula [4, (3.7.9)] with k = r = t = u = 2, s = 1, due to Verma using
transformation formulas for 3ϕ2-series (see also [3, Section 4]).

Note that for r = 1, or s = 1, the transmutation kernel in Theorem 2.2
simplifies; for k ≥ l and |s| < 1,

Pk,l(a, b, y; 1, s) = (ab)−l (ab,−yqk; q)∞
(abs,−byqk/a; q)∞

(s; q)k−l

(q; q)k−l

and letting s ↑ 1 gives

lim
s↑1

Pk,l(a, b, y; 1, s) = δk,l(ab)−k (−yqk; q)∞
(−byqk/a; q)∞

in accordance with (1.5) and (1.8).

The last main result deals with intertwining operators for the second
order q-difference operator L(a,b) as in (1.4). The intertwining prop-
erties are also known as transmutation properties and for the Jacobi
function transform the intertwining operators are known as the Abel
transform (see [13]).

Theorem 2.3. (i) Let a, b ∈ C \ {0}, ν, µ ∈ C with |qν−µb/a| < 1.
Define the operator

(Wν,µ(a, b)f)(x) =
(−x; q)∞

(−xq−µ; q)∞
q−µ2

(
b

a

)µ

xµ+ν

×
∞∑
p=0

f(xq−µ−p)q−pν (qν ; q)p
(q; q)p

× 3ϕ2


 q−p, q−µ,−q1+µ−νa/bx

; q, q1−µ(b/a)
q1−p−ν ,−qµ+1/x
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for any function f with |f(xq−p)| = O(qp(ε+ν)) for some ε > 0. Then
Wν,µ(a, b) ◦ L(a,b) = L(aq−ν ,bq−µ) ◦Wν,µ(a, b) on the space of compactly
supported functions and for |aσ| < qν

(Wν,µ(a, b)Φσ(·; a, b; q))(yqk)

= yµ+ν (aσ, bσ; q)∞
(aq−νσ, bq−µσ; q)∞

Φσ(yqk; aq−ν , bq−µ; q).

(ii) Let a, b > 0, ab < 1, ν > 0 and µ ∈ C \Z≤0. Define the operator

(Aν,µ(a, b)f)(x) =
(−bxqµ/a; q)∞

(−bxqµ−ν/a; q)∞

×
∞∑
k=0

f(xq(µ+k))(ab)k
(qν ,−xqµ; q)k
(q,−bxqµ/; q)k

× 3ϕ2


 q−k, qµ,−bxqµ−ν/a

; q, q
q1−ν−k,−xqµ




for any bounded function. Then L(aqν ,bqµ) ◦ Aν,µ(a, b) = Aν,µ(a, b) ◦
L(a,b) on the space of functions compactly supported in (0,∞). More-
over,

(2.2) (Aν,µ(a, b)φλ(·; a, b; q))(x) =
(abqν+µ; q)∞

(ab; q)∞
φλ(x; aqν , bqµ; q).

The operators Wν,µ(a, b) and Aν,µ(a, b) are q-analogues of the (gen-
eralized) Abel transform (see [13, Section 5]). Note that Theorem 2.3
gives q-integral representations for the little q-Jacobi function and the
asymptotically free solution Φσ of (1.10).

The 3ϕ2-kernel of Aν,µ(a, b) is the same as the transmutation kernel.
In order to see this, we first invert the summation for the 3ϕ2-series in
(2.2) using [4, Ex. 1.4(ii)] and next transform it using [4, (III.13)].
Hence (2.2) is equivalent to (4.1). This shows that the transform
with the transmutation kernel does indeed satisfy the transmutation
property.
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3. The dual transmutation kernel. The goal of this section is to
prove Theorem 2.1. We start with proving some general results which
are of independent interest and come back to the proof of Theorem 2.1
later.

We first formulate a general proposition generalizing Rahman’s sum-
mation formulas in [8, Appendix B]. Note that in case the argument
of the basic hypergeometric series has absolute value bigger than 1, we
implicitly use the one-valued analytic continuation to C \ R≥1.

Proposition 3.1. Let x, y ∈ C \R≥0. Consider the sum

S =
∞∑

n=−∞
zn2ϕ1


 a, b

; q, xqn

c




2ϕ1


 d, e

; q, yqn

f


 ,

which is absolutely convergent for max(|ad|, |ae|, |bd|, |be|) < |z| < 1. If,
furthermore, abde = cf , fx = dey, q < |z| and z/abf , z/cde /∈ qZ≥0 ,
then S equals

(e, d, c/a, c/b, abd/z, abe/z, af/z, bf/z, q, yz, q/yz; q)∞
(c, f, c/ab, ae/z, be/z, ad/z, bd/z, abf/z, z, y, q/y; q)∞

× 8W7

(
abf

qz
; a, b,

f

e
,
f

d
,
cf

qz
; q,

q

z

)

+
(a, b, f/d, f/e, ade/z, bde/z, cd/z, ce/z, q, xz, q/xz; q)∞
(c, f, f/de, ae/z, be/z, ad/z, bd/z, cde/z, z, x, q/x; q)∞

× 8W7

(
cde

qz
; d, e,

c

a
,
c

b
,
cf

qz
; q,

q

z

)
.

Remark 3.2. Using the transformation formulas for very well-poised
series we can find more expressions for the sum S, some of which are
valid also if one of the conditions q < |z|, z/abf , z/cde /∈ qZ≥0 is
violated (see (3.11), (3.12) and (3.13) below). Here we have chosen
the expression as a sum of two very well-poised series that shows the
symmetries (a, b, c, x) ↔ (d, e, f, y), a↔ b and d↔ e, which are obvious
in the sum. (Note that the conditions abde = cf , fx = dey also display
this symmetry.) The expression also displays the symmetry x ↔ y,
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(a, b, d, e) ↔ (c/a, c/b, f/e, f/d). For the righthand sides, this follows
from abde = cf and fx = dey. For the sum S this follows from a double
application of Heine’s transformation [4, (III.3)], since fx = dey and
abx = cy.

The following lemma is of use in the proof of Proposition 3.1 and
is of independent interest. Note that in case k = 0 the series in the
summand can be summed by the q-binomial formula, and we obtain
Ramanujan’s 1ψ1-summation formula (see [4, (5.2.1)]).

Lemma 3.3. For max(|a1|, . . . , |ak+1|) < |z| < 1, and for x ∈
C \ R≥0, we have

∞∑
n=−∞

k+1ϕk


 a1, . . . , ak+1

; q, xqn

b1, . . . , bk


 zn

=
(a1, . . . , ak+1, b1/z, . . . , bk/z, q, xz, q/xz; q)∞
(b1, . . . , bk, a1/z, . . . , ak+1/z, z, x, q/x; q)∞

.

Proof. By shifting the summation parameter we can assume, without
loss of generality, that 1 ≤ |x| < q−1. The series

∑∞
n=1 is absolutely

convergent for |z| < 1. Let us assume for the moment that |qb1 . . . bk| <
|xqna1 . . . ak+1| for n ≤ 0. Then the analytic continuation of the r+1ϕr-
series in the summand for |xqn| ≥ 1 is given by

(3.1) k+1ϕk


 a1, . . . , ak+1

; q, xqn

b1, . . . , bk




=
(a2, . . . , ak+1, b1/a1, . . . , bk/a1, a1xq

n, q1−n/a1x; q)∞
(b1, . . . , bk, a2/a1, . . . , ak+1/a1, xqn, q1−n/x; q)∞

× k+1ϕk

(
a1, qa1/b1, . . . , qa1/bk

qa1/a2, · · · , qa1/ak+1 ; q, q
1−nb1...bk

xa1...ak+1

)

+ idem (a1; a2, . . . , ak+1),

where idem (a1; a2, . . . , ak+1) after an expression stands for the sum
of k terms obtained from the previous expression by interchanging a1
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with each ai, i = 2, 3, . . . , k + 1 (see [4, (4.5.2)]). Note that (1.10) is
the case k = 1 of (3.1).

Using the theta product identity

(3.2) (aqn, q1−n/a; q)∞ = (−a)−nq−n(n−1)/2(a, q/a; q)∞

we see that the n-dependence in (3.1) simplifies. Indeed, since

(3.3)
(a1xq

n, q1−n/a1x; q)∞
(xqn, q1−n/x; q)∞

= a−n
1

(a1x, q/a1x; q)∞
(x, q/x; q)∞

the sum
∑0

n=−∞ of the first term in the righthand side of (3.1) times
zn is absolutely convergent for |z/a1| > 1. Hence the sum is absolutely
convergent for max(|a1|, . . . , |ak+1|) < |z| < 1.

Next we split the sum
∑∞

n=1 +
∑0

n=−∞, using the series for the
k+1ϕk-series in the first sum and (3.1) in the second sum. Interchanging
summations we see from (3.3) that the sums over n are all geometric.
So we see that the lefthand side of the lemma equals

(3.4)

z

∞∑
j=0

(a1, . . . , ak+1; q)j
(q, b1, . . . , bk; q)j

(qx)j

1 − qjz

+
(a2, . . . , ak+1, b1/a1, . . . , bk/a1, a1x, q/a1x; q)∞

(b1, . . . , bk, a2/a1, . . . , ak+1/a1, x, q/x; q)∞

×
∞∑
j=0

(a1, qa1/b1, . . . , qa1/bk; q)j
(q, qa1/a2, . . . , qa1/ak+1; q)j

×
(

qb1 . . . bk
xa1 . . . ak+1

)j 1
1 − a1qj/z

+ idem (a1; a2, . . . , ak+1).

The sums in (3.4) can be written as k+2ϕk+1-series. The first sum in
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(3.4) equals

(3.5)

z

z−1k+2ϕk+1


 a1, . . . , ak+1, z

; q, qx
b1, . . . , bk, qz




=
z

z−1
(a1, . . . , ak+1, b1/z, . . . , bk/z, q, xqz, 1/xz; q)∞
(b1, . . . , bk, a1/z, . . . , ak+1/z, qz, xq, 1/x; q)∞

+
z

z−1
(a2, . . . , ak+1, b1/a1, . . . , bk/a1, a1xq, 1/a1x, z, qz/a1; q)∞

(b1, . . . , bk, a2/a1, . . . , ak+1/a1, xq, 1/x, qz, z/a1; q)∞

× k+2ϕk+1


 a1, qa1/b1, . . . , qa1/bk, a1/z

; q, qb1...bk

xa1...ak+1

qa1/a2, . . . , qa1/ak+1, qa1/z




+ idem (a1; a2, . . . , ak+1),

where we have used [4, (4.5.2)], cf. (3.1), once again. (The first
k+2ϕk+1-series reduces to 1, since an upper parameter is equal to 1.)
The k + 1 k+2ϕk+1-series in (3.5) are the same as in (3.4), and a
simple calculation reveals that they occur with opposite coefficients.
Hence, using (3.5) in (3.4) leaves only the first term on the righthand
side of (3.5). This proves the result for the condition |qb1 . . . bk| <
|xqna1 . . . ak+1| for n ≤ 0, and the general case follows by analytic
continuation in the parameters of the k+1ϕk-series.

Proof of Proposition 3.1. The sum
∑∞

n=0 in S is absolutely convergent
for |z| < 1. As in the proof of Lemma 3.3, we can use (3.1) for k = 1
twice to see that the sum

∑−1
n=−∞ in S is absolutely convergent for |z| >

max(|ad|, |ae|, |bd|, |be|). For n large enough we have |xqn|, |yqn| < 1,
so let us assume first |x| < 1 and |y| < 1. We can use the series
representation (1.3) twice to write

(3.6) 2ϕ1


 a, b

; q, x
c




2ϕ1


 d, e

; q, y
f




=
∞∑
k=0

(d, e; q)k
(q, f ; q)k

yk4ϕ3


 a, b, q−k, q1−k/f

; q, qfxdey

c, q1−k/d, q1−k/e


 ,
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cf. Rahman’s proof in [8, Appendix B]. The terminating 4ϕ3-series in
the summand in (3.6) is balanced for abde = cf and dey = fx, the
assumptions in the proposition. Hence it can be transformed into a
terminating very well-poised 8W7-series; see (1.12) for the notation, by
[4, (III.19)]. It follows that (3.6) equals

(3.7)
∞∑
k=0

(e, ab, bd; q)k
(q, f, abd; q)k

yk 8W7

(
abd

q
; a, b,

f

e
, q−k, qk−1cf ; q,

qd

f

)
.

The 8W7-series in (3.7) can be rewritten as a sum of two nontermi-
nating 8W7-series using Bailey’s three-term transformation [4, (III.37)]
with (a, b, c, d, e, f) replaced by (afqk/e, adqk, aq/c, q/e, a, f/e).
Recalling that abde = cf , we find

(3.8)

(afqk, qk+1 f
e , aq

k+1, eqk, ca ,
c
b , d; q)∞

(afqk+1/e; q)∞

× 8W7

(
afqk

e
; adqk,

aq

c
,
q

e
, a,

f

e
; q, beqk

)

=
(fqk, aeqk, qk+1, c, bd, c/ab, ad; q)∞

(abd; q)∞

× 8W7

(
abd

q
; a, b,

f

e
, q−k, qk−1cf ; q,

qd

f

)

+
ed

f

(edq/f, cdqk, adeqk, dqk+1, cqk+1/b; q)∞
(qf/de, fcqk/e, qd/f, q1−k/e, cdqk+1/b; q)∞

× (q/e, a, f/e, b, dq1−k/f, qkf/d; q)∞

× 8W7

(
dcqk

b
; adqk,

dq

f
,
q

b
, d,

c

b
; q, beqk

)
.

Note that the other two 8W7-series in (3.8) are obtained from each
other by interchanging (a, b, c, x) with (d, e, f, y). Using (3.8) in (3.7)
and recalling that abde = cf and dey = fx leads to the following
expression for (3.6)

(3.9)
∞∑
k=0

yk
(abdqk, afqk, qk+1f/e, aqk+1, e, c/a, c/b, d; q)∞
(f, aeqk, q, c, bdqk, c/ab, adqk, afqk+1/e; q)∞

× 8W7

(
afqk

e
; adqk,

aq

c
,
q

e
, a,

f

e
; q, beqk

)
+ Idem ((a, b, c, x); (d, e, f, y)),
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where Idem ((a, b, c, x); (d, e, f, y)) means that we have the same sum
with the parameter sets (a, b, c, x) and (d, e, f, y) interchanged.

Since we assume |y| < 1 and |be| < 1, the double series in (3.9)
is absolutely convergent. Interchanging summations and recalling
abde = cf shows that

(3.10)

2ϕ1


 a, b

; q, x
c




2ϕ1


 d, e

; q, y
f




=
∞∑
j=0

(be)j
(e, c/a, c/b, d, afqj , qj+1f/e, aqj+1, abdqj ; q)∞

(f, q, c, c/ab, ae, bd, afqj/e, adqj ; q)∞

× (aq/c, q/e, a, f/e; q)j
(q, fq/de; q)∞

(
1 − afq2j

e

)

× 6ϕ5


 q, ae, bd, afqj/e, adqj , afq1+2j/e

; q, yqj

abdqj , afqj , qj+1f/e, aqj+1, afq2j/e




+ Idem ((a, b, c, x); (d, e, f, y)),

assuming that abde = cf , dey = fx, |x| < 1, |y| < 1 and |be| < 1. As
a function of y, the lefthand side has a unique analytic continuation
to C \ (R≥1 ∪ (de/f)R≥1). The y-dependence in the first sum on the
righthand side is only at the argument spot of the 6ϕ5-series, which has
a unique analytic continuation to C \ R≥1. As j → ∞, the 6ϕ5-series
tends to 1, so the convergence with respect to y in the righthand side
of (3.10) is uniform on compact sets. Similarly the 6ϕ5-series in the
other sum has a unique analytic extension to C \ [(de/f)R≥1]. Hence
(3.10) remains valid for y ∈ C \ (R≥1 ∪ (de/f)R≥1) after using the
analytic continuation of the 2ϕ1- and 6ϕ5-series. In particular, this
means that (3.10) is valid for abde = cf , dey = fx, |be| < 1 and
y ∈ C \ (R≥1 ∪ (de/f)R≥1).

To prove the result, we replace x and y by xqn and yqn in (3.10),
multiply by zn and sum over n ∈ Z. If we assume for the moment that
max(q, |ae|, |bd|, |ad|, |af/e|, |cd/b|) < |z| < 1, then we can interchange
summations and use Lemma 3.3 twice to sum the inner sum. Some
cancellation occurs, and after using the theta product identity (3.2)



TRANSMUTATION KERNELS 719

twice, we see that S equals
(3.11)

(e, c/a, c/b, d, yz, q/yz, q; q)∞
(f, c, c/ab, z, q/z, ae/z, bd/z, y, q/y; q)∞

×
∞∑
j=0

(
be

z

)j(
1 − afq2j

ez

)
(aq/c, q/e, a, f/e; q)j

(q, fq/de; q)j

× (abdqj/z, afqj/z, fqj+1/ez, aqj+1/z; q)∞
(afqj/ez, adqj/z; q)∞

+ Idem ((a, b, c, x); (d, e, f, y))

=
(e, c/a, c/b, d, q, yz, q/yz, abd/z, af/z, qf/ez, aq/z; q)∞
(f, c, c/ab, y, q/y, z, q/z, ae/z, bd/z, qaf/ze, ad/z; q)∞

× 8W7

(
af

ze
;
aq

c
,
q

e
, a,

f

e
,
ad

z
; q,

be

z

)
+ Idem ((a, b, c, x); (d, e, f, y)).

For q < |z| we can use [4, (III.23)] using abde = cf to transform the
8W7-series in the required form. Finally, use continuation in z to find
the result.

Remark 3.4. (i) A proposition of this type has been proved first by
Mizan Rahman for two special cases (see [8, Appendix B]). To see
how the two special cases are contained in the result, we consider it
in the form (3.11). To the first 8W7-series, we apply [4, (III.37)] with
(a, b, c, d, e, f) replaced by (af/ze, ad/z, aq/c, f/e, a, q/e) to write it as
a sum of two very well-poised 8W7-series, of which the second is the
same 8W7-series as the second in (3.11). It turns out that we can add
the coefficients using the theta product identity as in [4, Ex. 2.16] with
(x, λ, µ, ν) replaced by (

√
xyz,

√
xz/y,

√
ef/dz,

√
x/yz). This yields

(3.12) S =
(q, d, e, abd/z, f/z, adq/f, bdq/f, yz, q/yz; q)∞

(f, z, ad/z, bd/z, e/z, qd/f, qc/e, y, q/y; q)∞

× 8W7

(
abd

f
; a, b,

q

e
,
c

z
,
qz

f
; q, d

)

+
(q, a, b, f/e, qde/f, qd/z, cd/z, ade/z; q)∞

(c, f, ad/z, bd/z, ae/z, qd/f, cdq/bz, y, q/y, x, q/x, z/e, qe/z; q)∞
,

× (cq/bz, ey, q/ey, xz/e, qe/xz; q)∞8W7

(
cd

bz
; d,

dq

f
,
q

b
,
c

b
,
ad

z
; q,

be

z

)



720 E. KOELINK AND H. ROSENGREN

valid for |d| < 1 and on any subregion of max(|ad|, |ae|, |bd|, |be|) <
|z| < 1 in the complex z-plane as long as the righthand side is analytic
in this subregion. The first case proved by Mizan Rahman [8, Appendix
B.1] corresponds to f = qz in (3.12) so that the first 8W7-series reduces
to 1, and the second case proved by Mizan Rahman [8, Appendix B.3]
corresponds to ey ∈ qZ in (3.12) so that the second term vanishes.

(ii) The proof of Proposition 3.1 is inspired by Rahman’s method
as presented in [8, Appendix B.3] but is of a different nature. In
Rahman’s case, the balance 4ϕ3-series is written as a q-integral using
[4, (2.10.19)], which is a three-term transformation for balanced 4ϕ3-
series. In this paper, we use Bailey’s three-term transformation [4,
(2.11.1)] for very well-poised 8ϕ7-series, which can be deduced from [4,
(2.10.19)]. Note that the result as a sum of two very well-poised series
cannot be simplified.

(iii) Note that (3.11) and (3.12) give alternative expressions for
the sum S of Proposition 3.1 and together with the obvious sym-
metries in S we find more expressions for S in terms of a sum of
two very well-poised 8W7-series. We can also rewrite the result as
a sum of three balanced 4ϕ3-series as follows. Start with (3.12) with
(a, b, c, x) ↔ (d, e, f, y), apply [4, (III.36)] with (a, b, c, d, e, f) replaced
by (ade/c, q/b, f/z, d, e, qz/c) to the first 8W7-series to write it as a sum
of two balanced 4ϕ3-series and apply [4, (III.36)] with (a, b, c, d, e, f)
replaced by (af/ez, q/e, f/e, aq/c, ad/z) to the second 8W7-series to
write it as a sum of two balanced 4ϕ3-series of which one also occurs
in the previous transformation. The balanced 4ϕ3-series can be taken
together using the theta product identity [4, Ex. 2.16] with (x, λ, µ, ν)
replaced by (

√
bxz/a,

√
axz/b,

√
abx/z,

√
yz/c) resulting in the follow-

ing expression:

S =
(q, a, b, c/z, xz, q/xz; q)∞
(c, z, a/z, b/z, x, q/x; q)∞

4ϕ3


 d, e, z, qz/c

; q, q
f, qz/b, qz/a




+
(q, d, b, c/a, af/z, e, ax, q/ax, yz/a, qa/yz; q)∞
(c, f, b/a, z/a, ad/z, ae/z, x, q/x, y, q/y; q)∞

× 4ϕ3


 a, qa/c, ad/z, ae/z

; q, q
qa/b, qa/z, af/z




(3.13)
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+
(q, d, a, c/b, bf/z, e, bx, q/bx, yz/b, qb/yz; q)∞
(c, f, a/b, z/b, bd/z, be/z, x, q/x, y, q/y; q)∞

× 4ϕ3


 b, qb/c, bd/z, be/z

; q, q
qb/a, qb/z, bf/z


 ,

valid on any subregion of max(|ad|, |ae|, |bd|, |be|) < |z| < 1 in the
complex z-plane as long as the righthand side is analytic in this
subregion.

As observed the case ey ∈ qZ is special, and we see later that
this case corresponds to the infinite set of discrete mass points in the
spectral measure dν of the little q-Jacobi function transform. However,
ey = q1−l with l → ∞ violates the conditions for absolute convergence
of S as given in Proposition 3.1, so we have to deal with this case
separately. Using Heine’s transformation [4, (III.1)], we see in this
case,

(3.14)

2ϕ1


 d, e

; q, yqn

f


 =

(d, eyqn; q)∞
(f, yqn; q)∞

2ϕ1


 f/d, yqn

; q, d
eyqn




=
(d, q1−l+n; q)∞

(f, yqn; q)∞
2ϕ1


 f/d, yqn

; q, d
q1−l+n


 ,

initially for |yqn| < 1 and by analytic continuation in y to the general
case for n ∈ Z and y ∈ C \R>0. Note that the righthand side of (3.14)
displays q-Bessel coefficient behavior, which means that for l > n the
series on the righthand side of (3.14) starts at l − n, see the proof of
Proposition 3.5.

We now prove the necessary result in some greater generality.

Proposition 3.5. Let max(|ya|, |yb|) < |z| < 1, |y| < 1, x ∈ C\R>0
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and |qcd| < |xab|, then

∞∑
k=−∞

zk2ϕ1


 a, b

; q, xqk

c


 (qk+1; q)∞

(dqk; q)∞
2ϕ1


 dqk, e

; q, y
qk+1




=
(q, b, c/a, dz/a, ax, q/ax, eya/z; q)∞

(d, c, b/a, z/a, x, q/x, ya/z; q)∞

× 4ϕ3


 a, aq/c, aq/dz, ya/z

; q, qcdxab
aq/b, aq/z, eya/z




+
(q, a, c/b, dz/b, bx, q/bx, eyb/z; q)∞

(d, c, a/b, z/b, x, q/x, yb/z; q)∞

× 4ϕ3


 b, bq/c, bq/dz, yb/z

; q, qcdxab
bq/a, bq/z, eyb/z




+
(q, a, b, c/z, zx, q/zx, ey; q)∞
(z, c, a/z, b/z, x, q/x, y; q)∞

4ϕ3


 z, zq/c, q/d, y

; q, qcdxab
zq/a, zq/b, ey


 .

Remark. The conditions for Proposition 3.5 are less severe than
in Proposition 3.1. However, if we want the three 4ϕ3-series to be
balanced, we need the extra conditions cd = xab and abq = cde.

Proof. As k → ∞, the summand is O(1), so we need |z| < 1 for
absolute convergence. As k → −∞ the first 2ϕ1-series behaves like
C1a

−k +C2b
−k by (3.1) for k = 1 and for the second 2ϕ1-series we use

its q-Bessel coefficient behavior; for k < 0,

(qk+1; q)∞
(dqk; q)∞

2ϕ1


 dqk, e

; q, y
qk+1




=
∞∑

j=−k

(q1+k+j ; q)∞(e; q)j
(dqk+j ; q)∞(q; q)j

yj =
∞∑
p=0

(q1+p; q)∞(e; q)p−k

(dqp; q)∞(q; q)p−k
yp−k

=
(q; q)∞(e; q)−k

(d; q)∞(q; q)−k
y−k

2ϕ1


 d, eq−k

; q, y
q1−k


 ,
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which is O(y−k) as k → −∞. So the sum is absolutely convergent as
k → −∞ for |z| > |ya| and |z| > |yb|.

Let T be the sum; then interchanging summation over k and the
summation for the series representation of the q-Bessel coefficient gives

T =
∞∑
j=0

( ∞∑
k=−j

zk2ϕ1


 a, b

; q, xqk

c


 (q1+k+j ; q)∞

(dqk+j ; q)∞

)
(e; q)j
(q; q)j

yj .

Consider the inner sum, say Tj , for j fixed. Shifting the summation
parameter and using the series representation for the 2ϕ1-series gives

Tj =
∞∑
l=0

z−j (a, b; q)l
(c, q; q)l

xlq−jl
∞∑
p=0

(q1+p; q)∞
(dqp; q)∞

zpqpl

= z−j (q, dz; q)∞
(d, z; q)∞

3ϕ2


 a, b, z

; q, xq−j

c, dz




using the q-binomial theorem. This is only valid for |xq−j | < 1, but
since the sum is uniformly convergent on compacta, Tj is analytic in
x ∈ C \ R>0, so the result remains valid using the unique analytic
continuation of the 3ϕ2-series to C \ R>0.

So this gives

(3.15) T =
(g, dz/q)∞
(d, z; q)∞

∞∑
j=0

(e; q)j
(q; q)j

(
y

z

)j

3ϕ2


 a, b, z

; q, xq−j

c, dz


 ,

where we assume that we use the unique analytic continuation for the
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3ϕ2-series. Since x ∈ C \ R>0 and |qcd| < |xab|, we have for all j ≥ 0

3ϕ2


 a, b, z

; q, xq−j

c, dz




= zj
(a, b, cz , d, zx,

q
zx ; q)∞

(c, dz, az ,
b
z , x,

q
x ; q)∞

3ϕ2


 z, zqc ,

q
d

; q, q
1+jcd
xab

zq
a ,

zq
b




+ aj
(b, z, ca ,

dz
a , ax,

q
ax ; q)∞

(c, dz, ba ,
z
a , x,

q
x ; q)∞

3ϕ2


 a, aqc ,

aq
dz

; q, q
1+jcd
xab

aq
b ,

aq
z




+ bj
(a, z, cb ,

dz
b , bx,

q
bx ; q)∞

(c, dz, ab ,
z
b , x,

q
x ; q)∞

3ϕ2



b, bqc ,

bq
dz

; q, q
1+jcd
xab

bq
a ,

bq
z


 ,

using (3.1) and the theta product identity (3.2). Using this in (3.15)
and the q-binomial theorem three times gives the result.

Corollary 3.6. Let S be the sum in Proposition 3.1 and assume
ey = q1−l for l ∈ Z. Then the series is absolutely convergent for
|da|, |db| < |z| < 1. Assuming, moreover, abde = cf and fx = dey, we
have that S equals the sum of three balanced 4ϕ3-series

S =
(q, a, b, cz , zx,

q
zx ; q)∞

(z, c, az ,
b
z , x,

q
x ; q)∞

4ϕ3


 z, zqc ,

q1−l

y , d
; q, q

zq
a ,

zq
b , f




+
(d, q, b, ca ,

zyql

a , ax, q
ax ,

fa
z ; q)∞

(f, yql, c, ba ,
z
a , x,

q
x ,

da
z ; q)∞

(
z

a

)l

× 4ϕ3


 a, aqc ,

aq1−l

yz , adz
; q, q

aq
b ,

aq
z ,

af
z




+
(d, q, a, cb ,

zyql

b , bx, q
bx ,

fb
z ; q)∞

(f, yql, c, ab ,
z
b , x,

q
x ,

db
z ; q)∞

(
z

b

)l

× 4ϕ3


 b, bqc ,

bq1−l

yz , bdz
; q, q

bq
a ,

bq
z ,

bf
z


 .
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Remark. Note that putting e = q1−l/y in the expression (3.13) for S
gives the same result using (3.2). Hence, the expressions for S derived
in Proposition 3.1, (3.11), (3.12) and (3.13), remain valid in the case
ey ∈ qZ.

Proof. Use (3.14) in S as in Proposition 3.1, shift the summation
parameter k = n − l, and apply Proposition 3.5 with x �→ xql,
e �→ f/d, d �→ yql, y �→ d and use the theta product identity (3.2)
to find an explicit expression for S as a sum of three 4ϕ3-series for
|da|, |db| < |z| < 1, |d| < 1, x ∈ C \ R>0, |qcy| < |xab|. Under the
conditions abde = cf and fx = dey we see that these 4ϕ3-series are the
balanced 4ϕ3-series as stated. The condition |d| < 1 can be removed
by analytic continuation in d.

Proof of Theorem 2.1. We start off with the general dual transmu-
tation kernel as in (2.1) assuming |σ|, |τ | ≥ 1. This sum is of the type
as considered in Proposition 3.1, and the conditions in Proposition 3.1
lead to ad = bc and adx/c = by or ad = bc and x = y. We put c = aqα

and d = bqα, and we apply Proposition 3.1 with a �→ aqα/τ , b �→ aqατ ,
c �→ abq2α, d �→ b/σ, e �→ bσ, f �→ ab, x �→ −bx/a, y �→ −y and
z �→ abt. This gives the required expression for the dual transmuta-
tion kernel under the conditions |abqαστ | < |abt| < 1 and q < ab|t|,
t /∈ a2q2α+Z≥0 , t /∈ b2q2α+Z≥0 .

The previous paragraph deals with the case λ ∈ [−1, 1] or σ = eiθ.
For the discrete mass points, we first consider σl = −q1−l by l ∈ Z
such that |σl| > 1. Corollary 3.6 then applies, since b < 1, |σl| > 1,
qαab < |abt| < 1. From the remark following Corollary 3.6 we see
that the expression for the dual transmutation kernel remains valid
for this set of discrete mass points of dν(·; a, b; y; q). The (possibly
empty) set of discrete mass points of the form σl = aql, l ∈ Z≥0

such that |σl| > 1 make one of the 2ϕ1-series terminating after using
the symmetry described in Remark 3.2, and the result for the dual
transmutation kernel remains valid. This proves the first statement of
Theorem 2.1.

We now investigate when {tkφµ(xqk; c, d; q)}k∈Z ∈ H(a, b; y). From
(1.2) and (1.5) we see that we need the condition |t2ab| < 1 for
convergence as k → ∞. For k → −∞, we use the theta product
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identity (3.2) to find

(3.16)

(ab)k
(−byqk/a; q)∞

(−yqk; q)∞
= a2k (−q1−k/y; q)∞

(−q1−ka/by; q)∞
(−by/a,−aq/by; q)∞

(−y,−q/y; q)∞

which is O(a2k) as k → −∞. The asymptotic behavior of the little
q-Jacobi function as |x| → ∞ on a q-grid follows from the expansion
(1.10); for k → −∞,

(3.17) tkϕµ(xqk; c, d; q) =




O((t/c)k) |τ | = 1,
O((t/cτ)k) |τ | > 1, c(τ ; c, d, x; q) �= 0,
O((tτ/c)k) |τ | > 1, c(τ ; c, d, x; q) = 0.

This implies that for generic µ we need |t2τ−2c−2a2| > 1 for conver-
gence of (1.5) as k → −∞. We conclude

(3.18)
∣∣∣∣cτa

∣∣∣∣ < |t| < 1√|ab| =⇒ {tkφµ(xqk; c, d; q)}k∈Z ∈ H(a, b; y).

Under the assumption of (3.18), the L2-theory for the little q-Jacobi
function transform implies that the sum in (2.1) converges in L2(dν(·; a,
b; y; q)). In the special case c = aqα, d = bqα, x = −bx/a, the conditions
(3.18) are implied by abqα|τ | < ab|t| < 1, since 0 < ab < 1. Hence,
Pt(·, µ; qα; a, b) ∈ L2(dν(·; a, b; y; q)) for qα|τ | < |t| < 1/

√
ab.

Assuming |qατ | < |t| < 1/
√
ab, we find from (1.8)

tkφµ(yqk; aqα, bqα; q)

=
∫
R

φλ(yqk; a, b; q)Pt(λ, µ; qα; a, b) dν(λ; a, b; y; q).

Taking linear combinations shows that, for v = {vk}k∈Z with only
finitely many nonzero coefficients, we have

(3.19) Faqα,bqα,y[δtv](µ)

=
∫
R

Fa,b,y [k �→ q2αkvk](λ)Pt(λ, µ; qα; a, b) dν(λ; a, b; y; q),

using the notation as in (1.9). Again, using the L2-theory of (1.8),
(3.19) remains valid for {q2kαvk}k ∈ H(a, b; y), since this makes the
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integrand integrable with respect to dν(·; a, b; y; q). Now we take vk =
skt−kφν(yqk; aqα+β , bqα+β ; q), which gives the product formula. This
is valid for |qα+βρ| < |q2αs/t| < 1/

√
ab by (3.18) where ν = (ρ+ρ−1)/2

with |ρ| ≥ 1. Note that these two conditions on s and t imply
|abq2α+βρτ | < |abq2αs| < 1, which are precisely the conditions for
the absolute convergence of the lefthand side of (3.19), cf. (2.1).

4. The transmutation kernel. In this section we prove The-
orem 2.2. The results in this section give another point of view to
Gasper’s results [3] on q-analogues of Erdélyi’s fractional integrals, see
also Section 5.

Rewriting Gasper’s q-analogue [3, (1.8)] of Erdélyi’s fractional
integral gives

(4.1)

2ϕ1


 arσ, ar/σ

; q,− byql

ar
abrs




=
(ab, rs; q)∞
(q, abrs; q)∞

∞∑
k=0

(ab)k
(qk+1,−byqk+l/a; q)∞
(rsqk,−byqk+l/ar; q)∞

× 3ϕ2


 q−k, r, ar/b

; q, q
rs,−arq1−l−k/by




2ϕ1


 aσ, a/σ

; q,− byql+k

a
ab


 ,

for |rs| < 1, |ab| < 1. In Section 5 (see Theorem 2.3(ii)), we give
an alternative derivation of (4.1) using intertwining operators for the
second order q-difference operator L as in (1.1). Indeed, as remarked
in Section 2, (2.2) is equivalent to (4.1). We can also prove (4.1) using
the connection coefficient formula

(4.2)

(bσ, b/σ; q)m =
(
ab,

b

a
; q

)
m

m∑
k=0

(q−m; q)kqk

(q, ab, q1−ma/b; q)k
(aσ, a/σ; q)k,

which is the q-Saalschütz summation formula [4, (II.12)]. So (4.1)
links two little q-Jacobi functions with different parameter sets but
with related argument. Without this condition on the arguments, we
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have not been able to find a simple expression for the kernel, even if
we allow the summation parameter to run over Z instead of Z≥0.

Note that (4.1) may be viewed as a connection coefficient problem for
two sets of orthogonal functions. Having in mind the limit transition of
Askey-Wilson polynomials to little q-Jacobi functions (see [9, Sections
2.3, 4.1, 6.1]), we see that (4.1) can be viewed as the limit case of the
connection coefficient problem for Askey-Wilson polynomials (see [2,
Section 6]).

In case s = 1 the 3ϕ2-series in (4.1) reduces to a terminating 2ϕ1-
series that can be summed by the q-Chu-Vandermonde summation
[4, (II.6)] yielding

(4.3)

2ϕ1


 arσ, ar/σ

; q,− byql

ar
abr




=
(ab, r,−yql; q)∞

(q, abr,−byql/ar; q)∞
∞∑
k=0

(ab)k
(qk+1,−byqk+l/a; q)∞

(rqk,−yqk+l; q)∞

× 2ϕ1


 aσ, a/σ

; q,− byql+k

a
ab


 ,

which is equivalent, by [4, (1.4.6)], to

(4.4)

2ϕ1


 bσ, bσ

; q,−yql
abr




=
(ab, r; q)∞
(q, abr; q)∞

∞∑
k=0

(ab)k
(qk+1; q)∞
(rqk; q)∞

× 2ϕ1


 bσ, bσ

; q,−yql+k,
ab


 ,

valid for y ∈ C \ R>0. This can be proved easily using the q-
binomial theorem. See also (5.7) and (5.13) for similar results. Another
interesting case of (4.1) is r = 1, which reduces the 3ϕ2-series to 1. This
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gives (4.4) after renaming. In Section 5 (see Theorem 2.3) we show that
(4.1) can be derived from (4.4).

Proof of Theorem 2.2. Fix y and define u = {uk}k∈Z by

uk = (ab)−l (ab, rs; q)∞
(q, abrs; q)∞

(qk−l+1,−yqk; q)∞
(rsqk−l,−byqk/ar; q)∞

× 3ϕ2


 ql−k, r, ar/b

; q, q
rs,−arq1−k/by




with the convention uk = 0 for k < l. Using [4, (III.12)] the 3ϕ2-series
can be written as

3ϕ2


 ql−k, r, ar/b

; q, q
rs,−arq1−k/by




=
(−yql; q)k−l

(−byql/ar; q)k−l
3ϕ2


 ql−k, ar/b, s

; q,− byqk

a
rs,−yql


 ,

so that uk = O(1) as k → ∞. It follows that u ∈ H(a, b; y). Then (4.1)
states that the little q-Jacobi transform of u (see (1.8)) is

(Fa,b,yu)(λ) = φλ(yql/s; ar, bs; q) = 2ϕ1


 arσ, ar/σ

; q,− byql

ar
abrs


 ,

λ =
1
2

(σ + σ−1).

By the inversion formula of (1.8), we find the result for the transmuta-
tion kernel as in Theorem 2.2.

Note that we can write

(4.5)
∞∑

l=−∞
ul(abrs)l

(−byql/ar; q)∞
(−yql/s; q)∞ Pk,l(a, b, y; r, s)

= (F−1
a,b,yFar,bs,y/su)k
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valid for u = {uk}k having only finitely many nonzero coefficients. In
particular, choosing ul = Pl,p(ar, bs, y/s; t, u) for l ≤ k and ul = 0 for
l > k under the assumptions u, t > 0, |ut| < 1, we find from (4.5)

(4.6)
∞∑

l=−∞
Pk,l(a, b, y; r, s)Pl,p(ar, bs, y/s; t, u)(abrs)l

(−byql/ar; q)∞
(−yql/s; q)∞

=
(
F−1
a,b,yFar,bs,y/s

[
l �→

(
F−1
ar,bs,y/s

[
λ �→ φλ

(
yqp

su
; art, bsu; q

)]
l

)]
k

)

=
(
F−1
a,b,y

[
λ �→ φλ

(
yqp

su
; art, bsu; q

)])
k

= Pk,p(a, b, y; rt, su),

which is the product formula.

If we plug the explicit expression for the transmutation kernel into the
product formula, we obtain, after relabeling, the following expression.
For k ∈ Z, p ∈ Z≥0, r, s, t, u > 0 with rs < 1, tu < 1, we have

(4.7)
p∑

l=0

(tu; q)p−l

(q; q)p−l
3ϕ2


 ql−p, t, art/bs

; q, q
tu,−artq1+l−k/by


 (rs; q)l

(q; q)l

× 3ϕ2


 q−l, r, ar/b

; q, q
rs,−arq1−k/by


 (rs)p−ltl

(−arq1−k/by; q)l
(−artq1−k/by; q)l

=
(rstu; q)p

(q; q)p
3ϕ2


 q−p, rt, art/b

; q, q
rstu,−artq1−k/by


 .

This product formula is equivalent to Gasper [3, (1.7)] and, as
remarked in [3], (4.7) implies (4.1) in the limit p → ∞. Here we
have shown that the converse is also valid, (4.1) implies (4.7) using the
little q-Jacobi function transform.

5. Intertwining properties. In this section we prove Theorem 2.3,
and as a motivation we start by giving a Darboux factorization of the
second order q-difference operator L(a,b) or L(a,b).
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The backward q-derivative operator is Bq = M1/x(1 − T−1
q ), where

Mg is the operator of multiplication by g; (Mgf)(x) = g(x)f(x), and
Tqf(x) = f(qx) as introduced in Section 1. It is straightforward to
check that

(5.1) (Bqφλ(·; a, b; q))(x) =
b(1 − aσ)(1 − a/σ)

qa(1 − ab)
φλ(x; aq, b; q).

Considering H(a, b; y) as an L2-space with discrete weights (ab)k ×
(−byqk/a; q)∞/(−yqk; q)∞ at the point yqk, k ∈ Z, we look at Bq

as (densely defined unbounded) operator from H(a, b; y) to H(aq, b; y).
Its adjoint, up to a constant depending only on y, is given by

(5.2) A(a, b) = M1+bx/aq − abM1+xTq,

and it’s a straightforward calculation to show that

(5.3) (A(a, b)φλ(·; aq, b; q))(x) = (1 − ab)φλ(x; a, b; q)

and that −bL(a,b) = aqA(a, b)◦Bq, with the notation as in (1.1). Since
Bq and A(a, b) are triangular with respect to the standard orthogonal
basis of Dirac deltas at yqk of H(a, b; y), this means that we have a
Darboux factorization of L(a,b). Also, −b(L(aq,b) + (1 − q)(1 − qa2)) =
aq2Bq ◦ A(a, b), from which we deduce Bq ◦ L(a,b) = L(aq,b) ◦ Bq and
L(a,b) ◦ A(a, b) = A(a, b) ◦ L(aq,b). It is the purpose of this section to
generalize these intertwining properties to arbitrary complex powers of
Bq.

Introduce the operator Wν , ν ∈ C, acting on functions defined on
[0,∞) by

(5.4) (Wνf)(x) = xν
∞∑
l=0

f(xq−l)q−lν (qν ; q)l
(q; q)l

, x ∈ [0,∞),

assuming that the infinite sum is absolutely convergent if ν /∈ −Z≥0.
So we want f sufficiently decreasing on a q-grid tending to infinity, e.g.,
f(xq−l) = O(ql(ν+ε)) for some ε > 0. Note that, for ν ∈ Z≤0, the sum
in (5.4) is finite and W0 = Id and W−1 = Bq.

This operator is a q-analogue of the Weyl fractional integral operator
as used in [12, Section 3], [13, Section 5.3], for the Abel transform.
With the notation ∫ ∞

a

f(t) dqt = a

∞∑
k=0

f(xq−k)q−k
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for the q-integral, cf. (1.6), we see that for n ∈ N the operator Wn is
an iterated q-integral

(5.5) (Wnf)(x) =
∫ ∞

x

∫ ∞

x1

· · ·
∫ ∞

xn−1

f(xn)dqxndqxn−1 . . . dqx1.

In the following lemma we collect some results on Wν , where we use
the function space
(5.6)

Fρ={f : [0,∞) → C||f(xq−l)|=O(qlρ), l → ∞, ∀x ∈ (q, 1]}, ρ > 0.

Recall that L(a,b) is defined in (1.4).

Lemma 5.1. Let ν, µ ∈ C \ Z≤0.

(i) Wν preserves the space of compactly supported functions,

(ii) Wν : Fρ → Fρ−	ν for ρ > �ν > 0,

(iii) Wν ◦Wµ = Wν+µ on Fρ for ρ > �(µ+ ν) > 0,

(iv) Wν ◦ Bq = Bq ◦Wν = Wν−1 on Fρ for ρ > �ν − 1 > 0, and
Bn
q ◦Wn = id for n ∈ N on Fρ for ρ > n,

(v) L(aq−ν ,b) ◦ Wν = Wν ◦ L(a,b), valid for compactly supported
functions.

Remark. It follows from (iii) that W−n = Bn
q , n ∈ N and W0 = id.

Proof. The first statement is immediate from (5.4). For (ii) we use
that, for f ∈ Fρ, and x ∈ (q, 1], we have

|Wνf(xq−k)| ≤M

∞∑
l=0

q(k+l)ρq−(k+l)	ν (q	ν ; q)l
(q; q)l

= Mqk(ρ−	ν) (qρ; q)∞
(qρ−	ν ; q)∞

by the q-binomial theorem for ρ > �ν. The third statement is a
consequence of interchanging summations, valid for f ∈ Fρ, ρ >
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�(µ+ ν), and

∑
k+l=p

(qµ; q)k(qν ; q)l
(q; q)k(q; q)l

q−(l+k)µ−lν = q−p(µ+ν) (qµ+ν ; q)p
(q; q)p

,

which is the q-Chu-Vandermonde summation formula [4, (1.5.2)]. For
(iv), we note that Bq : Fρ → Fρ+1. Then the first statement of (iv)
is a simple calculation involving q-shifted factorials, which reduces the
second statement of (iv) to verifying the easy case n = 1. For (v) recall
(1.4), so that L(aq−ν ,b)(Wνf)(x) and Wν(L(a,b)f)(x) involve the values
f(xq−k), k + 1 ∈ Z≥0. A straightforward calculation using q-shifted
factorials shows that the coefficients of f(xq−k) in L(aq−ν ,b)(Wνf)(x)
and Wν(L(a,b)f)(x) are equal.

The asymptotically free solution Φσ(yqk; a, b; q) ∈ Fρ for qρ > |aσ| as
follows from (1.10). A calculation using the q-binomial formula gives,
cf. (4.4),

(5.7) (WνΦσ(·; a, b; q))(yqk) = yν
(aσ; q)∞

(aq−νσ; q)∞
Φσ(yqk; aq−ν , b; q),

for |aσ| < qν in accordance with Lemma 5.1 (v). Note that (5.7) is a
q-analogue of Bateman’s formula, cf. [3, 12].

Lemma 5.2. Define the operator

S(a, b) = M(−x;q)∞/(−bx/a;q)∞ ◦ Tb/a, Tb/af(x) = f

(
b

a
x

)
.

Then S(a, b)−1 ◦ L(a,b) ◦ S(a, b) = L(b,a). In particular, W̃ (a,b)
ν =

S(a, bq−ν)◦Wν ◦S(a, b)−1 satisfies the intertwining property L(a,bq−ν) ◦
W̃

(a,b)
ν = W̃

(a,b)
ν ◦ L(a,b).

Note that S(a, b)−1 = S(b, a) and that S(a, b) : H(b, a; yb/a) →
H(a, b; y) is an isometric isomorphism. For f ∈ Fρ we see that
(S(a, b)f)(xq−l) = O(|a/b|lqlρ) from (3.2), so that S(a, b)f
∈ Fρ+ln(|a/b|)/ ln q.
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Proof. It follows from (1.4) that

L(a,b)

(
x �→ (−x; q)∞

(−bx/a; q)∞
f(x)

)
(x)

=
(−x; q)∞

(−bx/a; q)∞

(
b

2

(
1 +

a

bx

)
f(qx) +

1
2b

(
1 +

q

x

)
f(xq−1)

− 1
2

(
a

x
+

q

bx

)
f(x)

)
,

and the term in parentheses can be written as Tb/a◦L(b,a)◦Ta/b applied
to f . The second statement then follows from Lemma 5.1 (v).

It follows directly from (1.2), (1.10) and [4, (1.4.6)] that

(5.8)
(S(a, b)φλ(·; b, a; q))(x) = φλ(x; a, b; q),
(S(a, b)Φσ(·; b, a; q))(x) = Φσ(x; a, b; q).

Proof of the first statement of Theorem 2.3. It follows from Lemma 5.1
(v) and Lemma 5.2 that the operator

Wν,µ(a, b) = W̃ (aq−ν ,b)
µ ◦Wν

= S(aq−ν , bq−µ) ◦Wµ ◦ S(b, aq−ν) ◦Wν

satisfies the required intertwining property. For f ∈ Fρ with ρ > �ν we
can interchange summations, which leads to the sum with a terminating
3ϕ2 as kernel. Note that the 3ϕ2-series in the kernel of Wν,µ(a, b)
behaves as

2ϕ1


 q−µ,−q1+µ−νa/bx

; q, qν−µ b
a−q1+µ/x




as p→ ∞.

The statement for the action on Φσ(·; a, b; q) follows immediately from
(5.7) and (5.8).

In order to prove the remaining half of Theorem 2.3, we take appro-
priate adjoints of the previous construction. Consider Wν , ν ∈ C\Z≤0,
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as a densely defined unbounded operator from H(aqν , b; y) to H(a, b; y)
and define R(a,b)

ν as its adjoint, so

(5.9) 〈R(a,b)
ν f, g〉H(aqν ,b;y) = 〈f,Wνg〉H(a,b;y)

for all compactly supported functions g, cf. Lemma 5.1 (i). Here we
use the identification of H(a, b; y) as a weighted L2-space on a discrete
set (see Section 1). A q-integration by parts shows

(5.10)

(R(a,b)
ν f)(yqp) = yν

(−byqp/a; q)∞
(−byqp−ν/a; q)∞

∞∑
l=0

f(yqp+l)(ab)l
(qν ,−yqp; q)l

(q,−byqp/a; q)l
.

Now define, for functions f , the operator

(5.11) (A(a,b)
ν f)(x) =

(−bx/a; q)∞
(−bxq−ν/a; q)∞

∞∑
l=0

f(xql)(ab)l
(qν ,−x; q)l

(q,−bx/a; q)l
,

so that A(a,b)
ν |H(a,b;y) = y−νR

(a,b)
ν . Note that A(a,b)

ν is well-defined for
bounded functions assuming |ab| < 1. Recall that the dense domain of
finite linear combinations of the basis vectors for L(a,b) corresponds to
the functions compactly supported in (0,∞).

Lemma 5.3. L(aqν ,b)◦A(a,b)
ν = A

(a,b)
ν ◦L(a,b) on the space of functions

compactly supported in (0,∞). Moreover,

(A(a,b)
ν φλ(·; a, b; q))(x) =

(abqν ; q)∞
(ab; q)∞

φλ(x; aqν , b; q).

Defining Ã(a,b)
ν = S(a, bqν) ◦A(b,a)

ν ◦ S(b, a), we have L(a,bqν) ◦ Ã(a,b)
ν =

Ã
(a,b)
ν ◦ L(a,b), and

(Ã(a,b)
ν φλ(·; a, b; q))(x) =

(abqν ; q)∞
(ab; q)∞

φλ(x; a, bqν ; q).

Proof. Note that (5.10) and (5.11) show that the operators R(a,b)
ν and

A
(a,b)
ν preserve the space of functions compactly supported in (0,∞).



736 E. KOELINK AND H. ROSENGREN

The intertwining property for R(a,b)
ν follows from (5.9) and Lemma 5.1

and hence for A(a,b)
ν .

To calculate the action of A(a,b)
ν on the little q-Jacobi function, we

use [4, (1.4.6)] to write

(5.12) φλ(x; a, b; q) =
(−x; q)∞

(−bx/a; q)∞
2ϕ1


 bσ, b/σ

; q,−x
ab


 .

Using this in (5.11), interchanging summations, which is easily justified
for |x| < 1, and using the q-binomial theorem gives

(5.13)

(A(a,b)
ν φλ(·; a, b; q))(x) =

(abqν ,−x; q)∞
(ab,−bxq−ν/a; q)∞

2ϕ1


 bσ, b/σ

; q,−x
abqν




and using (5.12) again gives the result for |x| < 1. The general
case follows by analytic continuation in x (see (1.10), (3.1)), since the
convergence in (5.11) for f the little q-Jacobi function is uniform on
compact sets for x.

The statements for Ã(a,b)
ν follow from the corresponding statements

for A(a,b)
ν and Lemma 5.2 and (5.8).

Proof of the second statement of Theorem 2.3. Define

Aν,µ(a, b) = Ã(aqν ,b)
µ ◦A(a,b)

ν

= S(aqν , bqµ) ◦A(b,aqν)
µ ◦ S(b, aqν) ◦A(a,b)

ν .

Then, it follows from Lemma 5.3 that the intertwining property is valid.
The action on a function f can be calculated and, for f compactly
supported in (0,∞), we find the explicit result with the 3ϕ2-series as
kernel. We can extend the result to bounded f if we require ν > 0.

The action of Aν,µ(a, b) on the little q-Jacobi function follows from
Lemma 5.3.

6. Quantum group theoretic interpretation. The quantized
universal enveloping algebra Uq(su(1, 1)) has representations in 72(Z≥0)
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for the discrete series representations and in 72(Z) for the principal uni-
tary series, the complementary series and strange series representations.
For the harmonic analysis, the so-called twisted primitive elements, as
analogues of self-adjoint Lie algebra elements, play an important role,
and in each of these representations they give rise to a three-term re-
currence relation in which there is essentially one degree of freedom. In
the discrete series representations the three-term recurrence relations
can be solved in terms of Al-Salam and Chihara polynomials [10, 15]
and in the other series in terms of little q-Jacobi functions [8, Section
6].

The transition of the generalized basis of eigenvectors of two dif-
ferent twisted primitive elements in a strange series representation of
Uq(su(1, 1)) is given by the dual transmutation kernel of Theorem 2.1.
For the complementary series and principal unitary series we can de-
duce the corresponding dual transmutation kernel from Proposition 3.1
in a similar way using other specializations, cf. [8, Section 6, Appendix
A]. For the discrete series representation we refer to [15] and [11].
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