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DIRICHLET SPLINES AS FRACTIONAL
INTEGRALS OF B-SPLINES

WOLFGANG ZU CASTELL

ABSTRACT. Using Dirichlet averages we generalize the
notion of a classical divided difference of a function by intro-

ducing a parameter r in Rk+1
+ . The case r in Nk+1 is related

to divided differences with multiple knots. We give an inter-
pretation of these generalized differences in terms of fractional
operators applied to classical divided differences considered as
functions of their knots. The result is then applied to show
that Dirichlet splines can be seen as fractional derivatives of
B-splines.

1. Introduction. Splines are a well-established class of functions
in many fields of applied analysis. Their properties, for example,
allow good approximations and efficient algorithms for computation.
In statistics, splines have an even older history. They occur as density
functions of multivariate probability measures. Both fields seemed to
have been unaware of their common interest in spline functions up into
the 1980s. In 1986 papers by Dahmen and Micchelli [7] and Karlin,
Micchelli and Rinott [10] appeared which began to point out these
connections.

One of the key concepts in approximation with spline functions is
a convenient basis for the underlying function space, the so-called
B-splines. B-splines are nonnegative, compactly supported and are
solutions to certain minimalization problems, just to mention a few
of their central properties. From the statistical point of view, spline
functions occur in connection with the uniform distribution over the
standard simplex. To investigate more general classes of distributions
over the simplex, density functions have been introduced in the defining
equation for spline densities, e.g., the Dirichlet distribution and the
Gamma distribution, respectively. This has led to so-called Dirichlet
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splines, which are probability densities with respect to the Dirichlet
distribution.

In this paper, we give a new approach to Dirichlet splines. To be
more precise, we will prove that Dirichlet splines can be interpreted as
fractional derivatives of classical B-splines. What is surprising in this
context is the fact that B-splines have to be treated as a multivariate
function of their knots, while the one-dimensional variable serves as
parameter.

Our method to define and investigate Dirichlet splines is based on
the concept of Dirichlet averages introduced by Carlson [4]. Dirichlet
averages are integral averages of functions with respect to the Dirichlet
measure. In Section 2, we give the definition and summarize some of
their properties. We further use the representation of divided differ-
ences as Dirichlet averages to introduce generalized divided differences
which allow us to connect the averages to B-splines. In Section 3,
we introduce operators of fractional integration and differentiation and
formulate our main result in terms of divided differences. Section 4
finally states some known results concerning Dirichlet splines and gives
a reformulation of our theorem in terms of spline functions.

2. Dirichlet averages. For b ∈ Rk+1
+ we denote by

B(b) =
Γ(b0) · · ·Γ(bk)
Γ(b0 + · · ·+ bk)

, b = (b0, . . . , bk) ∈ Rk+1
+ ,

the (k + 1)-dimensional beta function. Let ∆k = {u = (u0, . . . , uk) ∈
Rk+1 | uj ≥ 0, u0 + · · · + uk = 1} be the standard simplex in Rk+1.
The generalized Dirichlet measure on the standard simplex ∆k is then
defined as1

dµb(u) =
1

B(b)
ub1−1

1 · · ·ubk−1
k (1− u1 − · · · − uk)b0−1 du1 · · · duk.

Setting b = e = (1, . . . , 1) the measure reduces to the classical
Lebesgue measure k! du. Let Ω denote a convex set in C and let

1 The measure formally is taken over the set {u ∈ Rk | 0 ≤ uj , j =

1, . . . , k,
∑k

j=1
, uj ≤ 1} which in this paper will be identified with ∆k.
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z = (z0, . . . , zk) ∈ Ωk+1, k ≥ 1. The Dirichlet average of a function f ,
measurable on Ω, is then defined as the integral

(2.1) F (b; z) =
∫

∆k

f(z · u) dµb(u).

Dirichlet averages have been introduced by Carlson [4] in 1969 to give
a new approach to some classical special functions. They can be seen
as a weighted average of a function f over a set of points z0, . . . , zk in
the complex plane. The special choice of the Dirichlet distribution as
a weight function explains the name given to these averages. We will
go on using a capital letter to denote the average of the function under
consideration. The following useful properties can immediately be seen
from the definition, (cf [4, Chapter 5]):

• Dirichlet averages are symmetric in the arguments z0, . . . , zk if
the same permutation is applied to both, the components of z and of
the parameter b.

• If two of the components of z coalesce, they can be replaced by one
of them and adding up the corresponding components of the parameter
b.

We will see below that there is a representation of Dirichlet averages
which will allow us to extend the value of the parameter to arbitrary
complex vectors with b0 + · · ·+ bk /∈ −N0. But let us first look at two
examples which give rise to a wide class of special functions. Following
Carlson’s notation we denote the average of the power function by

Rγ(b; z) =
∫

∆k

(z · u)γ dµb(u), z ∈ Ωk+1,

where Ω = C, if γ ∈ C \ N, and Ω is some half plane in the domain
C \ {0} otherwise. Note that the average Rγ(b; z) is equivalent to
Lauricella’s function FD(−γ, b0, . . . , bk; b0+ · · ·+bk; 1−z0, . . . , 1−zk),
cf. [8, Chapters 2 and 3] for details.

For k = 1, we get Gauss’s hypergeometric 2F1-function:

R−γ(b; z) = z−γ
0 2F1

[
γ, b1

b0 + b1

∣∣∣∣ 1− z1

z0

]
, z = (z0, z1) ∈ R2,

z0 
= 0, �(b0 + b1) > �b1 > 0.
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The Dirichlet average of the exponential function is defined as

S(b; z) =
∫

∆k

ez·u dµb(u), z ∈ Ck+1.

Again setting k = 1, we get Kummer’s confluent hypergeometric 1F1-
function:

S(b; z) = ez0
1F1

[
b1

b1 + b0

∣∣∣∣ z1 − z0

]
, z = (z0, z1) ∈ C2.

Using the symmetry property one immediately obtains Gauss’s and
Kummer’s transformation formulae, respectively.

Carlson states two further representations of Dirichlet averages, (cf [4,
Chapter 6]) which lead to a generalized definition for arbitrary complex
parameters with nonnegative real part using analytic continuation.

If the Taylor expansion of f converges in an open disk Br(λ) of radius
r with center λ ∈ C, we have,

(2.2) F (b; z) =
∞∑

n=0

1
n!

f (n)(λ)Rn(b; z − λe), z ∈ Bk+1
r (λ).

Using Cauchy’s integral formula and assuming b0+ · · ·+bk /∈ −N0, the
following representation of Dirichlet averages is valid for a holomorphic
function f under a suitable choice of the Jordan curve Γ:

(2.3) F (n)(b; z) =
n!
2πi

∫
Γ

f(t)R−n−1(b; z − te) dt, n ∈ N0,

where F (n)(b; z) here and in the following denotes the Dirichlet average
of the nth derivative f (n) of f . The righthand side of (2.2) is an analytic
function in b ∈ Ck+1 with �bj > 0, j = 0, . . . , k. Representation (2.3)
finally allows to further relax the conditions on b. We can therefore
assume b ∈ Ck+1 with b0 + · · ·+ bk /∈ −N0.

In this sense, it can be shown that a vanishing parameter bj , j =
0, . . . , k, can be omitted together with the corresponding component
zj of z. Nevertheless, for the rest of the paper we want to assume the
parameter vector b to be in Rk+1

+ , just for convenience.
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Divided differences can be expressed in terms of Dirichlet averages
with b = e. To see this, we have to calculate the average of a differen-
tiable function f at two points x, y in its domain of differentiability

F (1)(1, 1;x, y) =
1

y − x

∫ y

x

f ′(t) dt =
f(y)− f(x)

y − x
= [x, y]f.

This simple observation can be inductively carried on to higher order
differences to get a representation for k + 1 pairwise different knots
x0, . . . , xk and a k-times differentiable function f . Indeed,

(2.4) [x0, . . . , xk]f =
1
k!
F (k)(1, . . . , 1;x0, . . . , xk) =

1
k!
F (k)(e;x).

Recall that the kth divided difference of a function f at the pairwise
different knots x0, . . . , xk are recursively defined as

[x0]f = f(x0), k = 0,

and

[x0, . . . , xk]f =
[x0, . . . , xk−1]f − [x1, . . . , xk]f

x0 − xk
, k ≥ 1.

Allowing knots to coalesce, we have to interpret the lefthand side of
(2.4) in terms of derivatives, cf. [9, Chapter 6], i.e.,

(2.5) [x0, . . . , x0︸ ︷︷ ︸
n0+1

, . . . , xk, . . . , xk︸ ︷︷ ︸
nk+1

]f =
1
n!

Dn[x0, . . . , xk]f,

where n! = n0! · · ·nk! andDn = Dn0
0 · · ·Dnk

k . The notationDn
j [x0, . . . , xk]f

is thereby and in the following understood to be an abbreviation for
the exact term

(Dn
j [x0, . . . , xj−1, (·)j , xj+1, . . . , xk]f)(xj).

Expressing the same fact in terms of Dirichlet averages, we get the
following result, stated by Carlson, cf. [5].
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Theorem (Carlson). Let m be a multi-index in Nk+1, and let f ∈
C |m|1(R). Then the function [x �→ F (b;x)] belongs to C |m|1(Rk+1)
and its derivative is given by

(2.6) DmF (b;x) =
B(b + m)

B(b)
F (|m|1)(b + m;x).

We use the representation (2.4) as our motivation to generalize the
notion of a divided difference. For r ∈ Rk+1

+ , we define

(2.7)
[r;x0, . . . , xk]f =

1
k!
F (k)(r;x0, . . . , xk) =

1
k!
F (k)(r;x),

x = (x0, . . . , xk) ∈ Rk+1.

We keep the constant 1/k! in the definition to include the classical
divided differences by setting r = e. In the latter case we skip
the parameter e to get the traditional notation. Setting r = n for
some n ∈ Nk+1, we just have the special case of classical divided
differences with every knot xj , j = 0, . . . , k, repeated exactly nj-times,
n = (n0, . . . , nk). Using Carlson’s theorem we can therefore write

(2.8) [n;x0, . . . , xk]f =
B(e)
B(n)

Dn−e[x0, . . . , xk](I |n−e|1f),

where |n|1 = n0 + · · ·+nk and where the operator In, n ∈ N0, denotes
ordinary n-fold integration.

To give the generalized divided differences a similar interpretation in
the case of an arbitrary real parameter r, we have to find an analogous
formula for (2.8). To do so, we need to introduce fractional integrals
and derivatives.

3. Fractional integrals and derivatives of Dirichlet averages.
The following notations and basic facts on fractional operators can be
found in the book of Samko et al. [15, Chapter 2]. For a suitable
function f on R and some β > 0, we define the Riemann-Liouville type
fractional integral as

(3.9) (Iβ
+f)(x) =

1
Γ(β)

∫ x

−∞

f(t)
(x− t)1−β

dt, x ∈ R,
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and the Weyl type fractional integral as

(3.10) (Iβ
−f)(x) =

1
Γ(β)

∫ ∞

x

f(t)
(t− x)1−β

dt, x ∈ R.

These operators can be seen as generalizations of the ordinary n-fold
integration (Inf)(x) = 1/(n − 1)!

∫ x

−∞(x − t)n−1f(t) dt. Their inverse
operators are defined as the fractional derivatives of Liouville type. For
0 < β < 1, we get the two operators

(Dβ
+f)(x) =

1
Γ(1− β)

d

dx

∫ x

−∞
(x− t)−βf(t) dt, x ∈ R,

(3.11)

and

(Dβ
−f)(x) =

−1
Γ(1− β)

d

dx

∫ ∞

x

(t− x)−βf(t) dt, x ∈ R.

(3.12)

For β ≥ 1 we set n = �β�+ 1 and define

(3.13)
(Dβ

±f)(x) =
(±1)n

Γ(n− β)
dn

dxn

∫ ∞

0

tn−β−1f(x∓ t) dt

= (DnIn−β
± f)(x), x ∈ R.

Next we state some useful properties. Let f, g be functions for which
the following integrals are defined, and let β1, β2 ∈ R+.

Iβ1
± Iβ2

± f = Iβ1+β2
± f semi-group property,(3.14)

∫ ∞

−∞
f(x)(Iβ

+g)(x) dx =
∫ ∞

−∞
(Iβ

−f)(x)g(x) dx partial integration,

(3.15)

∫ ∞

−∞
f(x)(Dβ

+g)(x) dx =
∫ ∞

−∞
(Dβ

−f)(x)g(x) dx.

(3.16)

For the proof of the theorem below, we need fractional operators to
be understood in the weak sense. This can be done due to formula
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(3.15) which allows us to define the operators of fractional integration
by their action on an appropriate space of test-functions. To explain
the related theory, we follow the approach given by Lizorkin [11].

By Ψ we denote the subspace in Schwartz’s space of rapidly decreasing
functions S = S(R), whose elements together with all their derivatives
vanish at the origin:

Ψ = {ψ ∈ S | ψ(k)(0) = 0, ∀k = 0, 1, 2, . . . }.
The space of functions φ ∈ S, the Fourier transform of which is an
element of Ψ, is called the Lizorkin space Φ.

A prominent example is the function

kλ(x) =
1
2π

∫
R

e−λ2[v2+(1/v2)] cos(vx) dv, x ∈ R, λ > 0.

Its Fourier transform k̂λ(v) = e−λ2[v2+(1/v2)], v ∈ R, λ > 0, is called
the completely balanced kernel.

In contrast to the space S, the Lizorkin space Φ has the property
that it is closed under the action of the operators Iβ

±. Furthermore, we
have

Lemma (Lizorkin). For all φ ∈ Φ

(3.17) ̂(Iβ
±φ)(v) = (∓iv)−βφ̂(v), v ∈ R, �β ≥ 0.

Lizorkin then defines the completely balanced averages

(Kλf)(x) =
1
2π

∫
R

kλ(x− y)f(y) dy, x ∈ R,

which converge to f ∈ Lp(R), 1 ≤ p < ∞, in norm. Formula (3.17) is
stated here for test-functions only. For arbitrary functions, the relation
is valid just for the values 0 < β ≤ 1, as long as the integrals exist.
To obtain a result in the weak sense for �β ≥ 0, we use the partial
fractional integration (3.15).

We are now ready to state our main result in terms of Dirichlet
averages. In analogy to derivatives denoted by superscripts, we will
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use subscripts for fractional integrals, i.e., f(β) = Iβ
+f . Following the

convention of the preceding section, we will denote the corresponding
Dirichlet averages by F (β)(b; ·) and F(β)(b; ·), respectively.

Theorem 1. Let f ∈ C(R) and r = (r0, . . . , rk) ∈ Rk+1
+ , 0 ≤

rj < 1, j = 0, . . . , k, and b = (b0, . . . , bk) ∈ Rk+1
+ , satisfying bj > rj,

j = 0, . . . , k. Let us further assume that the fractional integral

f(|r|1)(x) = (Ir0+···+rk
+ f)(x), x ∈ R,

exists. The fractional integral of F (b; ·) is then given by

(3.18) (Ir
+F (b; ·))(x) = B(b − r)

B(b)
F(|r|1)(b − r;x).

Formula (3.18) is the exact analogue of formula (2.6). Combining
both formulae and incorporating the definition (3.13) of fractional
derivatives, we immediately get the following result for an arbitrary
nonnegative parameter.

Corollary. Let b, r ∈ Rk+1
+ with bj > rj, j = 0, . . . , k, and

f ∈ C(R). Further assume that the fractional derivative

f (|r|1)(x) = (D(|r|1)
+ f)(x), x ∈ R,

exists. The fractional derivative of F (b; ·) is then given by

(3.19) (Dr
+F (b; ·))(x) = B(b + r)

B(b)
F (|r|1)(b + r;x).

Set n = (n0, . . . , nk) = (�r0�+ 1, . . . , �rk�+ 1). We then have

(Dr
+F (b; ·))(x) = (Dn0

0 In0−r0
+,0 · · ·Dnk

k Ink−rk

+,k F (b; ·))(x)

=
B(b − n + r)

B(b)
Dn0

0 · · ·Dnk

k F(|n−r|1)(b− n + r;x)

=
B(b − n + r)

B(b)
B(b − n + r + n)
B(b − n + r)

× F
(|n|1)
(|n−r|1)(b − n + r+ n;x),
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giving the righthand side of (3.19).

Proof of the Theorem. To simplify notation, we set x = (x′, x) ∈
Rk+1, u = (u′, u) ∈ ∆k and v = (v′, v) ∈ Rk+1. Let further
u′b′−1 denote the vector (ub0−1

0 , . . . , u
bk−1−1
k−1 ), where as usual u0 =

(1− u1 − · · · − uk).

Let’s first look at the integer case r = n = (n0, . . . , nk) ∈ Nk+1.

(I1
+F (b;x′, (·)))(x) =

∫ x

−∞

1
B(b)

∫
∆k

f(ut+ u′ · x′)ubk−1u′b′−1 du dt

σ=ut+u′·x′
=

1
B(b)

∫
∆k

ubk−1u′b′−1

∫ ux+u′·x′

−∞
f(σ)

dσ

u
du

=
Γ(bk − 1)Γ(b0 + · · ·+ bk)
Γ(b0 + · · ·+ bk − 1)Γ(bk)

F(1)(b′, bk − 1;x′, x).

By symmetry we can do so for the other variables as well to obtain

(3.20) (In0
+,0 · · · Ink

+,kF (b; (·)))(x) = B(b − n)
B(b)

F|n|(b− n;x),

where |n| = n0 + · · ·+ nk.

To prove the general case, we will show that the Fourier transforms
of both sides of equation (3.18) coincide.

As a first step, observe that for g(x) = f(u′ · x′ + ux), x ∈ R, and
0 < u < 1,

(3.21) ĝ(v) = u−1eiu′·x′(v/u)f̂

(
v

u

)
,

which can easily be seen by a change of variables. Since

(3.22)
(Iβ

+F (b;x′, (·)))(x) = 1
Γ(β)

∫ ∞

−∞
(x− t)β−1

+ F (b;x′, t) dt

=
2π
Γ(β)

[(·)β−1
+ ∗ F (b;x′, (·))](x)

is a convolution of the functions F (b; (x′, ·)) and 2π(·)β−1
+ , its Fourier

transform is therefore just the product of the Fourier transforms of
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its factors. The truncated power function (·)+ thereby is defined as
(t)+ = t, if t > 0, and 0 otherwise. Note that the constant 2π follows
from the definition of the convolution according to the definition of the
Fourier transform, cf., formula (3.24) below.

To evaluate the Fourier transform of the truncated power function,
observe that it can be rewritten as a Laplace integral. From the tables,
cf. [14, (1.3.3)], we get

∫ ∞
0

tβ−1e−zt dt = Γ(β)z−β, z ∈ C with �z > 0.
Setting z = σ + iv, σ > 0, and letting σ tend to zero, we obtain
(3.23)
[2π(·)β−1

+ ]∧(v) = lim
σ→0+

Γ(β)(σ + iv)−β = Γ(β)(iv)−β, 0 < β < 1,

which is valid as an Abel mean.

Using (3.21) we get the Fourier transform of the Dirichlet average:
(3.24)

F̂ (b;x′, (·))(v)
=

1
B(b)

∫
∆k

(
1
2π

∫ ∞

−∞
f(ux+ u′ · x′)e−ivx dx

)
ubk−1u′b′−1 du

(3.21)
=

1
B(b)

∫
∆k

eu
′·x′(v/u)f̂

(
v

u

)
ubk−2u′b′−1 du.

For the righthand side of (3.18), we have
(3.25)

F̂(β)(b;x′, (·))(v)
=

1
B(b)

∫
∆k

1
2π

∫ ∞

−∞
f(β)(ux+ u′ · x′)e−ivx dxubk−1u′b′−1 du

(3.21)
=

1
B(b)

∫
∆k

eiu′·x′(v/u)f(β)

(
v

u

)
ubk−2u′b′−1 du

(3.17)
=

(iv)−β

B(b)

∫
∆k

eiu′·x′(v/u)f̂

(
v

u

)
ubk+β−2u′b′−1 du.

Putting the pieces together, (3.22), (3.23) and (3.24) add up to the
Fourier transform of the lefthand side of (3.18), while (3.25) gives the
righthand side. Therefore, for 0 < β < 1:

(Iβ
+F (b;x′, (·)))∧(v) = B(bk − β,b′)

B(b)
F̂(β)(b′, bk − β;x′, (·))(v).
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Because of the symmetry of Dirichlet averages, we can deduce the
equivalent relation for the other variables, which completes the proof
of the theorem.

4. Dirichlet splines. A motivation to define generalized splines
is given by the Peano representation of the classical B-splines. Before
doing so, let us first recall the definition of B-splines.

The B-spline of order k at the pairwise different knots x0, . . . , xk is
given by the function

Mk(u | x0, . . . , xk) = [x0, . . . , xk]{k(· − u)k−1
+ }, u ∈ R.

Multiplicities are allowed, as long as not all of the knots coalesce. In the
latter case, the spline has to be interpreted in the distributional sense,
i.e., as point evaluation at x0 = · · · = xk. B-splines are piecewise
polynomial functions over the partition spanned by their knots and
have their support in the convex hull of the knots; on this interval they
are nonnegative.

An alternative way to define B-splines is to assume the following
Peano representation to hold true for all f ∈ Ck(R):

(4.26) [x0, . . . , xk]f =
1
k!

∫
R

f (k)(u)Mk(u | x0, . . . , xk) du.

In terms of Dirichlet averages, the representation reads

∫
R

f(u)Mk(u | x0, . . . , xk) du =
∫

∆k

f(x · u) dµe(u) = F (e;x),

x = (x0, . . . , xk) ∈ Rk+1.

Note that the Peano representation is used in the multi-dimensional
setting to define the so-called simplex splines, cf. [12]. In the same
manner, we define Dirichlet splines as the function Mb(u | x), u ∈ R,
x ∈ Rk+1 and b ∈ Rk+1

+ to be the density function for which the
following relation holds true for all f ∈ C(R):
(4.27)∫

R

f(u)Mb(u | x) du =
∫

∆k

f(x · u) dµb(u) = F (b;x), x ∈ Rk+1.
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As in the classical case, we have to interpret the definition in the
distributional sense, if all of the components of x coincide.

Dirichlet splines have been known in the literature for a long time,
although they have not been denoted as spline. They occur as density
functions in multivariate statistics, cf. [10] and the references therein.
Dahmen and Micchelli gave a representation via a contour integral, cf.
[7], i.e.,
(4.28)

Mb(u | x) = c− 1
2πi

∫
Γl+1

(z − u)c−2
k∏

j=0

(z − xj)−bj dz, xl < u < xl+1,

where c = b0 + · · ·+ bk and Γl+1 denotes a path, surrounding the knots
xl+1, . . . , xk but not x0, . . . , xl.

From the representation (4.28) it is easily seen that, for c ≥ bj + 1,
j = 0, . . . , k, the Dirichlet spline has its support in the convex hull of
its knots. Furthermore, as a density function, the spline is nonnegative
on its support.

Carlson [6] used the connection between Dirichlet averages and
Dirichlet splines to reprove basic properties of B-splines and to de-
duce the system of Euler-Poisson equations, to which Dirichlet splines
are solutions:

(4.29)
[(xµ − xν)DµDν + bµDν − bνDµ]u(x) = 0,

x ∈ Rk+1, µ, ν ∈ {0, . . . , k}.

Neuman [13] investigated Dirichlet splines of higher dimensions which
are defined the same way as simplex splines. He derived recurrence
relations for their moments and an algorithm to compute them.

Looking at the system of differential equations (4.29), the spline is
treated as a multivariate function of its knots. B-splines as functions of
their knots play an important role in the investigation of Fourier trans-
forms of functions which are radial with respect to the +1-norm. Cam-
banis, Keener and Simons [2] gave a characterization of these functions
using divided differences. Another proof was given independently by
Berens and Xu [1]. They used the Peano representation to introduce
the B-spline and calculated its multi-dimensional Fourier transform
with respect to the knots. In a forthcoming paper, we will investigate
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an integral transform where Dirichlet splines take over the role of the
B-splines.

The connection of the generalized divided differences to splines is the
analogue of the Peano representation for B-splines; indeed,

(4.30) [r;x0, . . . , xk]f =
1
k!

∫
R

f (k)(u)Mr(u | x) du, x ∈ Rk+1.

Finally, we state the representation of Dirichlet splines as fractional
derivatives of B-splines considered as a function of the knots:

Theorem 2. Let b be a parameter in Rk+1
+ , and let f be a

test-function in C(R). Then the kth B-spline at the knots x =
(x0, . . . , xk) ∈ Rk+1, and the Dirichlet spline Mb(· | x) satisfy
(4.31)

B(b)
∫
R

f(u)Mb(u | x) du = B(e)
∫
R

f(|b−e|1)(u)Db−e
+ Me(u | x) du.

Equation (4.31) follows directly by applying the Corollary to the
definition of the Dirichlet spline.
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