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THE HAUSDORFF DIMENSION OF
THE NONDIFFERENTIABILITY SET OF

A NONSYMMETRIC CANTOR FUNCTION

JERRY MORRIS

ABSTRACT. Each choice of numbers a and c in the seg-
ment (0, (1/2)) produces a Cantor set Cac by recursively re-
moving segments from the interior of the interval [0, 1] so that
intervals of relative length a and c remain on the left and right
sides of the removed segment, respectively. A Cantor function
Φac is obtained from Cac in much the same way that the stan-
dard Cantor function, Φ, is obtained from the Cantor ternary
set. When a = c = (1/3), Cac is the Cantor ternary set,
C, and Φac is the standard Cantor function, Φ. The deriva-
tive of Φ is zero off C, and the upper derivative is infinite on
C; the set N = {x ∈ C | the lower derivative of Φ is finite}
has Hausdorff dimension [ln 2/ ln 3]2. In this paper simi-
lar results are established for Nac, the nondifferentiability
set of Φac. The Hausdorff dimension of Nac is the maxi-
mum of the real numbers satisfying the following equations:
x(ln(1/c))2 = ln((a + c)/c) ln((a/c)x + 1), and x(ln(1/a))2 =
ln((a + c)/a) ln((c/a)x + 1).

1. Introduction. For any numbers a and c satisfying 0 < a, c < 1,
we generate a Cantor set in [0, 1] by recursively removing open intervals
of relative length b = 1−a−c so that closed intervals of relative length a
and c remain to the left and right, respectively, of the removed interval:

C0
ac = [0, 1],

C1
ac = [0, a] ∪ [1 − c, 1],

C2
ac = [0, a2] ∪ [a − ac, a] ∪ [1 − c, 1 − c + ac] ∪ [1 − c2, 1],

etc., and Cac = ∩n≥1Cn
ac. We will refer to the set Cn

ac as the nth
stage in the construction of Cac and the 2n closed intervals comprising
Cn

ac will be called stage n black intervals or nth stage black intervals.
The closures of the open intervals removed at various stages in the
construction of Cac will be called complementary intervals of the
appropriate stage.
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For the set Cac, we describe a corresponding Cantor function Φ = Φac

as a pointwise limit of the functions Φn
ac, where Φn

ac is the distribution
function of the uniform probability measure on Cn

ac. This Cantor
function is continuous and non-decreasing and therefore differentiable
almost everywhere on the interval [0, 1]. We will denote upper left and
right derivatives by Φ− and Φ+, respectively, and lower left and right
derivatives by Φ− and Φ+. Another important property of Φ is the
following: If x and y are both endpoints of complementary intervals at
stage n or less with x < y, then the difference Φ(y) − Φ(x) is equal to
the sum of the lengths of all stage n black intervals between x and y
divided by (a + c)n. (An interval I is between x and y if no point of I
is strictly less than x or strictly greater than y.)

Since the Lebesgue measure of the set Cn
ac is (a+c)n, we see that Cac

has Lebesgue measure zero. Chapter 1 in [4] introduces the topic of
Hausdorff measure and dimension, while a more detailed account can
be found in [3], [4], [5] and [7]. It can be shown that the Hausdorff
dimension of the underlying Cantor set Cac is the unique real number
d such that ad + cd = 1.

In [2], Darst treats the case where a = c, generating a Cantor
function, Φ, based on a symmetric Cantor set, C. Darst showed that the
upper derivatives of Φ are infinite on C, so that the set of points, N at
which Φ is not differentiable, is the set of points in C at which the lower
derivative of Φ is finite. Membership in the set N was characterized
in terms of lengths of constant strings of zeroes or twos in the locator
sequences of points in C, and this characterization was used to show
that the Hausdorff dimension of N is [ln(2)/ ln(1/a)]2. An analogue of
this characterization is given below as Theorem 1.3 and is then used to
compute the Hausdorff dimension of Nac, the nondifferentiability set of
Φac.

Ternary locator sequences for points and intervals. Recall the stan-
dard ternary representation for a point in the standard Cantor set us-
ing zeroes and twos. For any point t in Cac, we will associate a similar
ternary representation {t} = (t(1), t(2), t(3), . . . ), where t(i) equals 0
or 2, which locates the position of t in Cac. (0 means ‘left side’ and 2
means ‘right side.’) We will refer to the above expansion as the locator
sequence for t.
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We will also assign a finite locator sequence of length n to each stage
n black interval as follows: The expansion for an interval I will be the
first n digits in the locator sequence of any point x contained in the
intersection of Cac and I.

The composition of Nac. Our first claim is that for non-endpoints in
Cac, the upper derivatives are infinite. The specific result is summa-
rized in the following theorem.

Theorem 1.1. At any point x in Cac that is a non-right endpoint
of Cac, the upper right derivative of Φac is infinite.

Proof. Consider any non-right endpoint x in Cac with locator se-
quence

x = (x(1), x(2), x(3), . . . ).

For each positive integer n, let z(n) denote the position of the nth zero
in the locator sequence of x, and define {xn} = (x(1), . . . , x(z(n) −
1), 0, 2, 2, . . . ), so that the locator sequences of x and xn agree up to the
[z(n+1)−1]st position. Since there is one stage z(n+1) black interval
of length ancz(n+1)−n between xn+1 and xn, we have Φ(xn) − Φ(x) ≥
Φ(xn) − Φ(xn+1) = ancrz(n+1)−n, where r = ln((a + c)/c)/ ln(1/c).
Also, since x and xn share the same stage z(n + 1) − 1 black interval,
xn − x ≤ ancz(n+1)−(n+1). Thus,

(Φ(xn) − Φ(x))/(xn − x) ≥ c1−(1−r)z(n+1),

Since r < 1 and c < 1, this proves the theorem.

The upper left derivatives are handled using the “complementary”
Cantor set Cca (in which the intervals of relative length c are on the
left and those of length a are on the right). If Φca denotes the Cantor
function associated with Cca, then Φac(x) = 1−Φca(1− x). Thus, the
upper left derivative of Φac at a non-left endpoint x of Cac is equal to
the upper right derivative at the non-right endpoint 1−x of Cca, which
by the above theorem is infinite.

Fix a and c in the segment (0, (1/2)). Let N+(N−) denote the set of
non-endpoints of Cac at which Φac is not differentiable from the right
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(left). Using a nearly identical argument to that found in [2], we arrive
at the decomposition

(1.2) Nac = N+ ∪ N− ∪ {endpoints of Cac}.

The set of endpoints of Cac is countable and therefore has Hausdorff
dimension zero, so we may focus our attention on N+ and then use the
complementary Cantor function Φca to treat N−.

Characterization of the nondifferentiability set Nac.

Theorem 1.3. Let Φ denote the Cantor function associated with the
Cantor set Cac, and let t be a non-endpoint of Cac. Let N+ denote the
set of non-endpoints in Cac at which Φ is not differentiable from the
right, and set r = ln((a + c)/c)/ ln(1/c).

1. If t ∈ N+, then lim supn→∞[z(n + 1)/z(n)] ≥ r−1.

2. If lim supn→∞[z(n + 1)/z(n)] > r−1, then t ∈ N+,

where z(n) denotes the position of the nth zero in the locator sequence
of t.

Proof. 1. Let t be any non-endpoint in Cac with lim sup{z(n +
1)/z(n)} < r−1. Then we can choose a positive real number q and a
positive integer m0 such that

(1.4) r−1 − z(n + 1)
z(n)

≥ q > 0 for all n ≥ m0.

Consider any positive integer n ≥ m0, let un be a positive number
satisfying

un < distance (t, [0, 1] − Cz(n)
ac ),

and choose any point x in the interval (t, t + un). Then t and x share
the same stage z(n) black interval, and there exists a positive integer
n0 > n such that z(n0) is the first stage in the construction of Cac

at which t and x are not contained in the same black interval. Thus,
x− t ≤ an0−1cz(n0)−n0 because x and t share the same stage z(n0) − 1
black interval.
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Now, let t′ and x′ be the left and right endpoints, respectively, of
the stage z(n0 + 1) black interval of length an0cz(n0+1)−n0 which lies
immediately to the right of the stage z(n0 +1) black interval containing
t. Clearly, t < t′ < x′ < x, so we have

Φ(x) − Φ(t) ≥ Φ(x′) − Φ(t′) = an0crz(n0+1)−n0 .

Combining the above observations and using (1.4), we obtain

(Φ(x) − Φ(t))/(x − t) ≥ acrz(n0+1)−z(n0)

≥ ac−rqz(n)

for all x satisfying t < x < t + un. But the above holds for all n ≥ m0,
so we see that Φ+(t) = ∞, which completes the proof of part one.

2. Take any non-endpoint t ∈ Cac with lim sup{z(n+1)/z(n)} > r−1.
Then there exist a subsequence {nk} of positive integers, a real number
q > 0 and a positive integer m0 such that

(1.5) r−1 − z(nk + 1)
z(nk)

≤ −q < 0 for all k ≥ m0.

We define two sequences of points, u(n) and w(n), such that u(n)
decreases to t and w(n) increases to t. The points u(n) and w(n)
are defined below in terms of locator sequences, where (t(1), t(2), . . . )
is the locator sequence of t.

{u(n)} = {(t(1), t(2), . . . , t(z(n) − 1), 2, 0, 0, . . . )}
{w(n)} = {(t(1), t(2), . . . , . . . , t(z(n + 1) − 1), 0, 0, 0, . . . )}.

Now, w(n) < u(n), and there is one stage z(n) complementary inter-
val of length ban−1cz(n)−n between t and u(n), so that u(n) − t ≥
ban−1cz(n)−n. Similarly, there is one stage z(n + 1) − 1 black interval
of length ancz(n+1)−n−1 between w(n) and u(n), so we have

Φ(u(n)) − Φ(t) ≤ Φ(u(n)) − Φ(w(n)) = ancrz(n+1)−r−n.

Thus, for all k ≥ m0, we have

(Φ(u(nk)) − Φ(t))/(u(nk) − t) ≤ ab−1c−rcrz(nk+1)−z(nk)

≤ ab−1c−rcqrz(nk),
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the last inequality following from equation (1.5). It follows that
Φ+(t) < ∞, so t is contained in N+.

2. The Hausdorff dimension of Nac. Let Ht denote t-dimensional
Hausdorff outer measure. We will show that the Hausdorff dimension
of Nac is the maximum of the unique real numbers d and d̃ defined
below:

d(ln(1/c))2 = ln((a + c)/c) ln((a/c)d + 1)

d̃(ln(1/a))2 = ln((a + c)/a) ln((c/a)d̃ + 1).

To accomplish this, we will first show that the Hausdorff dimension of
N+ is d by verifying the following two facts:

(A) If d < t < t′, then Ht(N+) = 0, where t′ will be specified later.

(B) If 0 < t < d, then Ht(N+) > 0.

As in [2], we will verify (A) by constructing a set E (dependent on
t) that contains N+ and satisfies Ht(E) = 0. To verify (B), we
will construct a subset E of N+ satisfying Ht(E) > 0; it will then
follow that Ht′(N+) ≥ Ht′(E) = ∞ for 0 < t′ < t. Combining these
observations shows that the Hausdorff dimension of N+ is d.

Next we will treat N− by applying the above argument to the
complementary Cantor function Φca. With this function, we obtain
a decomposition

Nca = Ñ+ ∪ Ñ− ∪ {t : t is an endpoint of Cca}

analogous to that of (1.2), and we note that

dim H(N−) = dim H(1 − Ñ+) = dim H(Ñ+).

Since applying Theorems 1.3, 2.2 and 2.5 to Φca simply reverses the
roles of a and c, we see that the Hausdorff dimension of N− is d̃. It
then follows that the Hausdorff dimension of Nac is the maximum of d
and d̃.

Lemma 2.1. Let 0 < a, c < (1/2), let r = ln((a + c)/c)/ ln(1/c), let
d be defined as it was above, and define

f(x) =
ln(ax + cx)
x ln(1/c)

+ 1.
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1. The function f is strictly decreasing on the segment (0, dim H(Cac)).

2. The number x = d is the unique solution of the equation f(x) =
r−1 on the segment (0, dim H(Cac)).

Proof. 1. Let x be any number in the segment (0, dim H(Cac)). Then

f ′(x) = x2[ln(1/c)]−1[ax + cx]−1

· [x(ax ln a + cx ln c) − (ax + cx) ln(ax + cx)].

Since dim H(Cac) is the unique real number t satisfying at + ct = 1, we
see that the expression ax + cx is strictly greater than one. Therefore,
since ln a and ln c are both negative numbers, we obtain f ′(x) < 0.

2. We note that f(x) approaches positive infinity as x approaches zero
through positive values and that f(dim H(Cac)) = 1. Therefore, since
r−1 > 1, it follows from the intermediate value theorem that f(x) = r−1

has a solution on the desired interval, and uniqueness follows from part
one above. Finally, rearranging and using properties of logs reveals
that the defining relation of d is equivalent to the equation f(d) = r−1.

The Hausdorff dimension of N+ is bounded above by d.

Theorem 2.2. Fix a and c in (0, (1/2)), and set r = ln((a +
c)/c)/ ln(1/c). Then the Hausdorff dimension of N+ is less than or
equal to d.

Proof. By Lemma 2.1 there exists a real number t′ > d such that
f(t′) > 1. Choose any real number t satisfying d < t < t′. Then it also
follows from Lemma 2.1 that

(2.3) 1 < f(t) < r−1,

and we note that the theorem will follow if it can be shown that
Ht(N+) = 0.

Now, letting a point x in Cac be represented once again by its locator
sequence (x(1), x(2), . . . ), we define a sequence of sets

Ek = {x ∈ Cac | x(k) = 0 and x(j) = 2 for k < j ≤ uk}, k = 1, 2, . . . ,
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where uk is the integer defined by uk = kf(t) + σ ln k� and σ is a
positive real number (independent of k) to be specified later. Also
define

E∞ =
∞⋂

m=1

⋃

k≥m

Ek = lim sup
k→∞

Ek.

Since for each value of k, we have

uk

k
≤ kf(t) + σ ln k + 1

k
= f(t) +

σ ln k + 1
k

,

it follows from (2.3) that there exists a positive real number ε such that
uk/k ≤ r−1 − ε holds for k sufficiently large. Therefore, by the first
part of Theorem 1.3, N+ ⊂ E∞.

Next, note that the (k−1)st stage in the construction of Cac consists
of 2k−1 black intervals, with C(k−1, i) black intervals of length ak−1−ici

for i = 0, 1, . . . , k − 1. (C(k − 1, i) denotes the binomial coefficient
k − 1 choose i). Thus, Ek can be covered by the following collection of
intervals: one interval of length akcuk−k, C(k − 1, 1) distinct intervals
of length ak−1cuk−(k−1), . . . , and C(k − 1, k − 1) = 1 interval of length
acuk−1. We therefore see that Ht(E∞) = 0 will hold if
(2.4)

c(uk−k)t(at + ct)k = a−t(at + ct)
k−1∑

i=0

C(k − 1, i)[ak−ici+(uk−k)]t ≤ k−p

is true for some fixed p ≥ 2. Define p = tσ ln(1/c), where σ is a positive
real number large enough to make p ≥ 2. Taking logs and rearranging,
we see that equation (2.4) is equivalent to

uk ≥ kf(t) + σ ln k,

which is clearly true by our definition of uk. This concludes the proof.

The Hausdorff dimension of N+ is bounded below by d.

Theorem 2.5. Fix a and c in (0, (1/2)), and set r = ln((a +
c)/c)/ ln(1/c). Then the Hausdorff dimension of N+ is greater than
or equal to d.
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Proof. Choose any positive real number t satisfying t < d. For
convenience of notation, we set q = ln(a/c)/ln(1/c), α = f(t) and
β = α−1, where f is the function defined in Lemma 2.1. We note that
this same lemma guarantees that α and β are both positive.

The set E to be used will correspond to a sequence 0 < k1 < u1 <
k2 < u2 < · · · of positive integers as follows:

E = {x = (x(1),x(2), x(3), . . . ) | x(ki) = 0 and
x(j) = 2 for ki < j ≤ ui, i ≥ 1},

where x = (x(1), x(2), x(3), . . . ) is the locator sequence of x ∈ Cac.
It is easy to show that Cac is closed and contains no endpoints of
complementary intervals in the construction of Cac. When ki ≤ j ≤ ui,
we call j a fixed choice for E; otherwise, j is a free choice. Let F (p, q)
denote the number of free choices j with p < j ≤ q.

To verify (B) and prove the theorem, we will make use of an outer
measure µt identical to Hausdorff outer measure, except that covers
are restricted to only black intervals in the construction of Cac (see
Lemma 2.18 following the proof). It is enough to show that Ht(E) ≥
RPQ, where P and Q are positive constants to be chosen later, and
R > 0 is chosen so that Ht ≥ Rµt (see Lemma 2.18). We can therefore
verify (B) by showing that the following two equations hold:

E ⊂ N+(2.6)
µt(E) ≥ PQ.(2.7)

Our goal will be to choose ki and ui so that the strings of fixed choices
are long enough to guarantee that (2.6) holds and the strings of free
choices are long enough to guarantee that (2.7) holds.

We are now ready to specify our definitions of ui and ki, which will
depend on t. We begin by choosing k1 = 1 and u1 = 2. For each i ≥ 2,
we will choose integers ki and ui and a real number νi such that (2.8),
(2.9) and (2.10) hold, where our choices will be made so that 0 ≤ ri,
si < 1 is always satisfied, and ε is a positive real number independent
of i.

α > νi ≥ max{α − 1, r−1 + ε}, i ≥ 2(2.8)
αF (0, ki) − νiki + qi = si, i ≥ 2(2.9)

ui = νiki + ri, i ≥ 2.(2.10)
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We note that, by Lemma 2.1, there exists ε > 0 such that α > r−1+ε so
we can immediately choose a sequence of real numbers {νi}i≥2, which
satisfies equation (2.8). To see that such choices for ki and ui are
always possible, fix i ≥ 2 and suppose that k1 < u1 < k2 < u2 < · · · <
ki−1 < ui−1 have been chosen using the method described above. Once
ki has been chosen, we can set ui = νiki�, which satisfies (2.10) and
the condition 0 ≤ ri < 1, so it remains to show that ki can be chosen
so that equation (2.9) is satisfied.

To see this, first rewrite (2.9) in the equivalent form

(2.11) α(F (0, ki) − ki) + qi + (α − νi)ki = si,

and temporarily set ki = ui−1 + 1. Clearly F (0, ki) − ki is bounded
above by −2(i − 1), so since α > 1, q < 1 and i ≥ 2, the sum of the
first two terms on the left-hand side of (2.11) is negative. Thus, there
exists a choice for νi (possibly larger than our initial choice) which still
satisfies (2.8) and makes the entire left-hand side of (2.11) negative.
Finally, since F (0, ki)− ki remains fixed as the value of ki is increased,
there exists a choice for ki, greater than ui−1, which yields si ≥ 0; in
fact, since α− νi ≤ 1, this choice for ki can be made so that 0 ≤ si < 1
also holds.

Now since (2.8) holds for all integers i ≥ 2, it follows from the second
part of Theorem (1.3) that (2.6) holds, so the proof will be complete
if we can verify (2.7). Let {[aj , bj ]}j≥1 be any countable cover of E
using only black intervals in the construction of Cac. Since E contains
no endpoints of Cac, {(aj , bj)}j≥1 is an open cover of E, and since
E is closed and bounded (and thus compact), we can extract (by re-
indexing if necessary) a finite subcover {(aj , bj)}n

j=1 of E such that
[aj , bj ] ∩ E �= ∅ for 1 ≤ j ≤ n. Let the term m-interval describe
any black interval among the 2m black intervals at the mth stage in
the construction of Cac, and let w be the largest value of m for which
one of the covering intervals {(aj , bj)}n

j=1 is an m-interval. We wish
to bound from below the Hausdorff sum associated with our covering
intervals; we will accomplish this by estimating the Hausdorff sum using
smaller ui-intervals.

Choose any positive integer i ≥ 2 large enough so that ui, ki > w.
Let Ai denote the collection of all ui-intervals that intersect E, and
let Aij denote the collection of all ui-intervals contained in [aj , bj ] that
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intersect E. Then the proof will be complete if we can show that

(2.12)
n∑

j=1

(bj − aj)t ≥ P
n∑

j=1

∑

I∈Aij

|I|t ≥ P
∑

I∈Ai

|I|t ≥ PQ,

where P and Q are positive constants, depending on t, to be specified
later, and where |I| denotes the diameter of the set I. The second
inequality in (2.12) is trivial, so it remains to verify the first and the
third, which we will do by rewriting the involved sums in terms of ui

and ki.

Note first that any ui-interval is determined by choosing a se-
quence of zeros and twos of length ui. To narrow our collection to
only those ui-intervals that intersect E, note that there are F (0, ki)
free choices to be made and i fixed zero choices, meaning that
the combined length of all such intervals in Ai is given by (a +
c)F (0,ki)aicui−i−F (0,ki). Similarly, the combined length of the intervals
in the collection Aij is given by the product of the length (bj −aj) and
(a + c)F (s,ki)ai−p(s)c[(ui−s)−(i−p(s))−F (s,ki)], where s is chosen so that
[aj , bj ] is an s-interval, and p(s) is defined to be the largest positive
integer such that kp(s) ≤ s. Using the expressions for combined length
indicated above, it is easy to write down associated Hausdorff sums for
the collections Ai and Aij . We conclude that the third inequality in
(2.12) is equivalent to (2.14) below, while the first inequality in (2.12)
will follow from (2.13) if P can be chosen independent of s.

(at + ct)F (s,ki)at[i−p(s)]ct[(ui−s)−(i−p(s))−F (s,ki)] ≤ P−1

(2.13)

(at + ct)F (0,ki)atict[ui−i−F (0,ki)] ≥ Q.(2.14)

Rewriting in terms of a common base, we find that the left-hand side
of (2.14) becomes

(at + ct)β−1(αF (0,ki)−νiki+qi−ri).

Using (2.9) and performing a similar computation for (2.13), we find
that equations (2.13) and (2.14) are equivalent to equations (2.15) and
(2.16) below, where γ(s, i) := αF (s, ki) + q(i − p(s)) − (ui − s).

(at + ct)β−1γ(s,i) ≤ P−1(2.15)

(at + ct)β−1(si−ri) ≥ Q.(2.16)
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It immediately follows that we can choose Q = (at + ct)−β−1
, and the

proof will be complete if we can bound the quantity γ(s, i) from above.
Our claim is that γ(s, i) ≤ γ(up, i) where p = p(s). To see that this is
the case, it is enough to show that the expression γ(up, i) − γ(s, i) is
nonnegative. First note that

(2.17) γ(up, i) − γ(s, i) = (up − s) + α[F (up, ki) − F (s, ki)].

If kp ≤ s ≤ up, then F (up, ki) = F (s, ki), so the right-hand side of
(2.17) simplifies to up − s, which is clearly nonnegative. On the other
hand, if up < s < kp+1, then F (up, ki) − F (s, ki) = (s − up), and since
α > 1, the desired expression is still nonnegative, which verifies our
claim. It therefore suffices to show that γ(um, i) is bounded for all m
such that um < ki.

Choose any positive integer m such that um < ki. Then

γ(um, i) = αF (um, ki) + q(i − m) − (ui − um)
= (αF (0, ki)+ qi− νiki− ri) − (αF (0, km)+ qm −νmkm− rm)
= (si − ri) − (sm − rm) ≤ 2,

so we can choose P = (at + ct)−2β−1
. This completes the verification

of (2.7), and the proof is complete.

Lemma 2.18. Let Cac denote the relevant Cantor set, and let T be
the collection of all black intervals in the construction of Cac. Define,
for each subset A of Cac and each z > 0,

µz
δ(A) = inf

∑

i≥1

|Ui|z,

where the infimum is taken over all at most countable δ-covers {Ui}i≥1

of A, where Ui ∈ T for all i. Similarly, define

µz(A) = lim
δ→0+

µz
δ(A).

Then µz is an outer measure on the collection of subsets of Cac.
Furthermore, there exists a constant R > 0, depending on z, such that

(2.19) Hz ≥ Rµz.
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Proof. Routine checks show that µz is an outer measure on the
collection of subsets of Cac. Now, choose a positive integer N large
enough so that

L := max{aN , cN} < b,

where b = 1 − (a + c), and set R = 2−N . Next, take any A ⊂ Cac,
choose δ > 0, and consider any δ-cover {Ui} of A. Since A is contained
in Cac, we may assume that the sets Ui in our δ-cover are subsets of
Cac. We may also assume that Ui contains at least two points for each
i, since otherwise we would have |Ui| = 0, so the set would have no
effect on the associated sums.

As a result of our assumptions, we see that for each i, there exists
a largest nonnegative integer k(i) such that Ui is a subset of one of
the 2k(i) black intervals at the k(i)th stage in the construction of Cac;
suppose that this particular black interval has length Li. Since k(i) is
maximal, Ui cannot be contained in either of the two stage k(i)+1 black
intervals which are subsets of the interval of length Li, so it follows that
|Ui| ≥ bLi, and we have

LLi < bLi ≤ |Ui|.

Now, consider the collection of stage k(i) + N black intervals which
are subsets of the original interval of length Li. Clearly, there are 2N

intervals in this collection, each having length less than or equal to LLi.
Let {Sij}2N

j=1 denote this covering collection, and note that for each i
the associated collection forms a δ-cover of Ui. It follows that {Sij}i,j

is a δ-cover of A, and we have

µz
δ(A) ≤

∑

i,j

|Sij |z =
∑

i≥1

2N∑

j=1

|Sij |z ≤ 2N
∑

i≥1

|Ui|z.

Finally, if we take the infimum over all δ-covers {Ui}, and let δ → 0+

in the above equation, we obtain (2.19).
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