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NUMERICAL OPERATIONAL CALCULUS FOR
MATRICES WITH APPLICATIONS TO

MECHANICAL AND MATHEMATICAL PROBLEMS

L. KOHAUPT

ABSTRACT. The calculation of the matrix exponential
eA is important in many problems of mechanics and applied
mathematics. In this paper its calculation is based on the
Dunford-Taylor integral representation. As a contour line,
a polygonal is chosen where the eigenvalues of A lie in its
interior, the contour integral is evaluated numerically by a
summed Gaussian quadrature formula, and estimates of the
discretization error for a mechanical problem are given which
are optimal in a certain sense, and which prove the conver-
gence of the described method. It is shown theoretically that
the method called Numerical Operational Calculus is su-
perior to the methods known so far for sparse matrices of large
order, a situation which often occurs in applications. The the-
oretical considerations are confirmed by numerical tests for
the free-vibration problem of a multi-mass vibration chain.
We stress that the damping matrix need not be proportional
to the mass and/or stiffness matrix. Also, the method is ap-
plied to a series of problems from mathematics showing its
wide range of applicability.

0. Introduction. The calculation of matrix functions by contour
integrals has been widely used in recent years for problems from physics
(cf., e.g., [1], [5] and [13]).

In this paper, we want to carry over this method to the computation
of the fundamental matrix, which has not yet been done, as far as
we know. As opposed to [1], [5] and [13], we give estimates for the
discretization error.

The paper contains two chapters, namely Chapter I: Theory and
Chapter II: Applications. Chapter I consists of Sections 1 and 2, and
Chapter II of Sections 3 and 4.

In Section 1, we start with Cauchy’s integral theorem and the numer-
ical evaluation of the integral over an interval, followed by a summed
quadrature formula and the evaluation of the contour integral over a
closed polygonal. These results serve as a preparation to the next sec-
tion.
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In Section 2, a matrix function is defined as the Dunford-Taylor inte-
gral. The associated numerical evaluation is done by simply rewriting
the results of Section 1. The numerical process is called here Numerical
Operational Calculus.

Section 3 contains the main example for the theory developed in
Sections 1 and 2. From the many tasks involving the computation
of the matrix exponential we choose the free-vibration problem of
a multi-mass vibration chain. First, the model is set up. Then,
the method the Numerical Operational Calculus is described,
the discretization error is estimated and the theoretical advantages
over the other methods for sparse matrices with large dimensions are
exhibited. Finally, the theoretical considerations are confirmed by test
computations.

In Section 4 we demonstrate the applicability of the method to some
mathematical problems such as an example of eA of Stickel, the spectral
decomposition of a matrix with well-separated eigenvalues and the
square root of a positive definite matrix. In these examples, we do
not claim that the described method is superior to other ones, but we
want to illustrate that it can be used in a whole series of mathematical
problems in a straightforward manner.

We remark that the submatrices M , B and K of the system matrix
A are assumed to be sparse only in the numerical computations.

1. Gaussian quadrature formula for analytic functions.
In Kato [8, pp. 34 47], statements on operator functions in finite
dimensional spaces are obtained by just rewriting corresponding results
from the theory of analytic functions (cf. Knopp [9]). Since this makes
the presentation quite clear, we follow the same line here. So, in this
section, quadrature formulae for the evaluation of contour integrals
with complex integrands are derived, which we rewrite for matrix
functions in the next section.

1.1 Simple quadrature formula on interval. The starting point
of our investigation is

Cauchy’s integral formula. If f(z) is analytic inside and on a simple
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curve Γ, then

(1) f(z) =
1
2πi

∫
Γ

f(λ)
λ− z

dλ

where Γ is traversed in the positive (counterclockwise) sense (cf. Knopp
[9, p. 64]).

In Subsection 1.2, for Γ we choose a polygonal. As a preparatory
step, in this subsection we select an interval [a, b] in the complex plane
as integration path.

In order to compute the integral over [a, b], we first introduce the
parameter s so that

(2) λ(s) = a+ s(b− a), 0 ≤ s ≤ 1.

Then

(3) I(f(z))[a,b] :=
1
2πi

∫ b

a

f(λ)
λ− z

dλ =
∫ 1

0

g(s) ds

with

(4) g(s) =
b− a

2πi
f(λ(s))
λ(s)− z

, 0 ≤ s ≤ 1.

In order to evaluate the integral in (3) numerically, we apply a
quadrature formula. The three-knot Gaussian quadrature formula, e.g.,
follows from Stummel and Hainer [16, pp. 84 88].

We obtain

Gauss3:

Q(g) =
1
18

[
5g

(
sc − sh

√
15
5

)
+ 8g(sc) + 5g

(
sc + sh

√
15
5

)]

with sc = (sa + sb)/2 = 1/2, sh = (sb − sa)/2 = 1/2 or

Q(f(z))[a,b]

=
b− a

2πi
1
18

[
5

f(c− h(
√
15/5))

(c− h(
√
15/5))−z

+ 8
f(c)
c−z

+ 5
f(c+ h(

√
15/5))

(c+ h(
√
15/5))−z

]
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FIGURE 1. N subintervals.

with h = (b− a)/2, c = (a+ b)/2, and

|E(g)| ≤ 1
2016000

max
sa≤s≤sb

|g(6)(s)|.

For the error estimates, one needs the sixth derivative of g which now
follows:

d6g(s)
ds6

=
(b− a)7

2πi

[
d6f(λ(s))

dλ6

1
λ(s)−z

− 6 d
5f(λ(s))
dλ5

1
(λ(s)−z)2

+ 30
d4f(λ(s))

dλ4

1
(λ(s)−z)3

− 120 d
3f(λ(s))
dλ3

1
(λ(s)−z)4

+ 360
d2f(λ(s))

dλ2

1
(λ(s)− z)5

− 720 d f(λ(s))
dλ

1
(λ(s)−z)6

+ 720f(λ(s))
1

(λ(s)−z)7

]
.

1.2 Summed quadrature formula on interval. In order to
increase the accuracy, we subdivide the interval [a, b] into N parts
of equal length (cf. Figure 1), thus obtaining a summed Gaussian
quadrature formula on the interval [a, b].

Let

(5) cj = a+ (2j − 1)h, j = 1, 2, . . . , N ; h =
b−a

2N
.
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Then,

(6)

QG3(g) = QG3(f(z))[a,b]

=
(b− a)/N
2πi

1
18

N∑
j=1

[
5
f(cj − h(

√
15/5))

(cj − (
√
15/5))−z

+ 8
f(cj)
cj−z

+ 5
f(cj + h(

√
15/5))

(cj + h(
√
15/5))−z

]

or

(7)

QG3(g) = QG3(f(z))[a,b]

=
h

2πi
1
9

N∑
j=1

[
5

f(cj − h(
√
15/5))

(cj − h(
√
15/5))−z

+ 8
f(cj)
cj−z

+ 5
f(cj + h(

√
15/5))

(cj + h(
√
15/5))−z

]

and

(8)

|EG3(f(z))[a,b]| = |EG3(g)| ≤
N∑

k=1

1
2016000

max
(k−1)/N≤s≤(k/N)

∣∣∣∣d6g(s)
ds6

∣∣∣∣.
For (k − 1)/N ≤ s ≤ (k/N), one has
(9)

d6g(s)
ds6

=
((b−a)/N)7

2πi

[
d6f(λ(s))

dλ6

1
λ(s)−z

− 6 d
5f(λ(s))
dλ5

1
(λ(s)−z)2

+ 30
d4f(λ(s))

dλ4

1
(λ(s)−z)3

− 120 d
3f(λ(s))
dλ3

1
(λ(s)−z)4

+ 360
d2f(λ(s))

dλ2

1
(λ(s)−z)5

− 720 d f(λ(s))
dλ

1
(λ(s)−z)6

+ 720f(λ(s))
1

(λ(s)−z)7

]
.
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FIGURE 2. Closed polygonal.

Hence,

|EG3(f(z))[a,b]| = |EG3(g)| ≤
|b− a|7
2πN6

1
2016000

·
(10)

max
sa≤s≤sb

{∣∣∣∣d6f(λ(s))
dλ6

∣∣∣∣|(λ(s)−z)−1|+ 6
∣∣∣∣d5f(λ(s))

dλ5

∣∣∣∣|(λ(s)−z)−2|

+ 30
∣∣∣∣d4f(λ(s))

dλ4

∣∣∣∣|(λ(s)−z)−3|+ 120
∣∣∣∣d3f(λ(s))

dλ3

∣∣∣∣|(λ(s)−z)−4|

+ 360
∣∣∣∣d2f(λ(s))

dλ2

∣∣∣∣|(λ(s)−z)−5|+ 720
∣∣∣∣d f(λ(s))dλ

∣∣∣∣|(λ(s)−z)−6|

+ 720|f(λ(s))||(λ(s)−z)−7|
}
.

1.3 Summed quadrature formula on closed polygonal. If the
closed polygonal consists of K intervals [ak, bk], k = 1, . . . ,K as in
Figure 2, one has

Q(f(z)) =
K∑

k=1

Q(f(z))[ak,bk](11)

and

|E(f(z))| ≤
K∑

k=1

|E(f(z))[ak,bk]|.(12)



NUMERICAL OPERATIONAL CALCULUS FOR MATRICES 233

2. Gaussian quadrature formula for matrix functions. In
this section we rewrite the results of Sections 1, which are needed here
for matrix functions. The quadrature formula and error estimate thus
obtained form the basis for the evaluation of the contour integrals,
that is, of the numerical operational calculus used in the applications
to follow.

2.1 Simple quadrature formula on interval. Let A be an m×m
matrix with elements fromC. Suppose that f(z) is analytic in a domain
∆ of the complex plane, and let Γ ⊂ ∆ be a simple closed smooth curve
with positive direction enclosing all eigenvalues of A in its interior.
Then f(A) is defined by the Dunford-Taylor integral (cf. Kato [8, p.
44] or Taylor [17, pp. 287 ff.]) as follows:

f(A) =
1
2πi

∫
Γ

f(λ)(λ−A)−1 dλ(13)

or

f(A) =
1
2πi

∫
Γ

f(λ)Rλ dλ(14)

with

(15) Rλ = (λ−A)−1.

Analogously to Subsection 1.1, we define

(16) I(f(A))[a,b] :=
1
2πi

∫ b

a

f(λ)Rλ dλ.

Then, one gets the Gaussian quadrature formula

(17)

QG3(f(A))[a,b] =
b−a

2πi
1
18

[
5f

(
c− h

√
15
5

)
Rc−h(

√
15/5)

+ 8f(c)Rc + 5f
(
c+ h

√
15
5

)
Rc+h(

√
15/5)

]
.
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Let ‖ · ‖ be a matrix norm. Then
(18)

‖EG3f(A)[a,b]‖ ≤ |b−a|7
2π

1
2016000

· max
sa≤s≤sb

{∣∣∣∣d6f(λ(s))
dλ6

∣∣∣∣‖Rλ(s)‖+6
∣∣∣∣d5f(λ(s))

dλ5

∣∣∣∣‖Rλ(s)‖2

+ 30
∣∣∣∣d4f(λ(s))

dλ4

∣∣∣∣‖Rλ(s)‖3+120
∣∣∣∣d3f(λ(s))

dλ3

∣∣∣∣‖Rλ(s)‖4

+ 360
∣∣∣∣d2f(λ(s))

dλ2

∣∣∣∣‖Rλ(s)‖5+720
∣∣∣∣d f(λ(s))dλ

∣∣∣∣‖Rλ(s)‖6

+ 720|f(λ(s))|‖Rλ(s)‖7

}
.

2.2 Summed quadrature formula on interval. For N subinter-
vals, one gets

(19)

QG3(f(A))[a,b] =
1
2πi

h

9

N∑
j=1

[
5f

(
cj−h

√
15
5

)
Rcj−h(

√
15/5) + 8f(cj)Rcj

+ 5f
(
cj+h

√
15
5

)
Rcj+h(

√
15/5)

]
with

‖EG3f(A)[a,b]‖ ≤ |b−a|7
2πN6

1
2016000

· max
sa≤s≤sb

{∣∣∣∣d6f(λ(s))
dλ6

∣∣∣∣‖Rλ(s)‖+6
∣∣∣∣d5f(λ(s))

dλ5

∣∣∣∣‖Rλ(s)‖2

+ 30
∣∣∣∣d4f(λ(s))

dλ4

∣∣∣∣‖Rλ(s)‖3+120
∣∣∣∣d3f(λ(s))

dλ3

∣∣∣∣‖Rλ(s)‖4

+ 360
∣∣∣∣d2f(λ(s))

dλ2

∣∣∣∣‖Rλ(s)‖5+720
∣∣∣∣d f(λ(s))dλ

∣∣∣∣‖Rλ(s)‖6

+ 720|f(λ(s))|‖Rλ(s)‖7

}
.
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2.3 Summed quadrature formula on closed polygonal. If the
closed polygonal consists of K intervals [ak, bk], k = 1, . . . ,K, one has

Q(f(A)) =
K∑

k=1

Q(f(A))[ak,bk](21)

and

‖E(f(A))‖ ≤
K∑

k=1

‖E(f(A))[ak,bk]‖.(22)

3. A mechanical problem. There are many applications of the
matrix exponential in mechanics. For example, the problem

ẋ(t) = Ax(t), x(0) = x0

with anm×m matrix A has the solution x(t) = Φ(t)x0 with Φ(t) = eAt

(cf. Müller and Schiehlen [11, p. 73] or Bremer [2, p. 149]). Further,

ẋ = Ax(t) + b(t), x(0) = x0

is solved by

x(t) = Φ(t)x0 +
∫ t

0

Φ(t− τ )b(τ ) dτ,

(cf. [11, p. 75] or [2, p. 158]). Remarks on the calculation of the
fundamental matrix are made in [11, pp. 350 352].

Moreover, special cases of excitations are discussed in 11. For
example, the impulse, step and harmonic excitations are described
there on pages 189, 191 195, and 195 202, respectively.

In Pestel and Leckie [14, p. 141], a problem of elasticity involving the
differential equation (d z/ds) = Az + a(s) is treated.

See also the use of the fundamental matrix in Waller and Krings [18,
e.g., p. 59], and of the matrix functions cosAt and sinAt [18, p. 53].

3.1 Free mechanical vibrations. We have seen that there is a
whole range of applications involving the matrix exponential. For the
sake of brevity, we restrict ourselves to the first example.



236 L. KOHAUPT

(i) The example model. We investigate the initial value problem

Mÿ +Bẏ +Ky = 0(23)
y(0) = y0, ẏ(0) = ẏ0,(24)

(cf. Müller and Schiehlen [11, pp. 46 ff.]) where (1) is the equation of
motion of a mechanical system with the mass matrix M , the damping
matrix B and the stiffness matrix K of dimension n× n as well as the
displacement vector y of dimension n and where (24) are the initial
conditions.

Introducing the state vector of dimension m,

(25) x(t) =
[
y(t)
ẏ(t)

]
=

[
y(t)
z(t)

]
with z(t) = ẏ(t),

and the m×m system matrix

(26) A =
[

0 E
−M−1K −M−1B

]

with the identity matrix E, one obtains the state equation

(27) ẋ(t) = Ax(t), x(0) = x0,

where we have assumed that M−1 exists and where m = 2n. More
specifically, we consider the multi-mass vibration chain according to
Figure 3.

Here, one has

(28) M =



m1

m2

m3

. . .
mn


 ,

(29) B =




b1 + b2 −b2
−b2 b2 + b3 −b3

−b3 b3 + b4 −b4
. . . . . . . . .

−bn−1 bn−1 + bn −bn

−bn bn + bn+1



,
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. . .

. . .
k1 k2

b1 b2
y1 y2

kn

bn bn 1

kn 1

yn

m1 m2 mn

FIGURE 3. Multi-mass vibration chain.

(30) K =




k1 + k2 −k2

−k2 k2 + k3 −k3

−k3 k3 + k4 −k4

. . . . . . . . .
−kn−1 kn−1 + kn −kn

−kn kn + kn+1



.

(ii) The test data. To generate test data, we set

mj = m = 1, j = 1, . . . , n
kj = k = 1, j = 1, . . . , n(31)

and

bj =

{
1/2 if j even

1/4 if j odd.

Then,

M = E,

B =




3/4 −1/2
−1/2 3/4 −1/4

−1/4 3/4 −1/2
. . . . . . . . .

−1/4 3/4 −1/2
−1/2 3/4



,(32)
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(if n is even), and

K =




2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .
−1 2 −1

−1 2




(33)

Apparently, we have B 	= αM + βK and BM−1 K 	= KM−1 B (cf.
[11, p. 160, (6.69)]). We remark that the set of test data could be
made more general by introducing the equation b2 = km as in Falk [4,
p. 454].

As initial values, we choose

y0 = [1 1 . . . 1]T(34)
and

ẏ0 = [0 0 . . . 0]T .(35)

3.2 Numerical operational calculus.

(i) Explanation of the numerical solution idea. Since the function
f(z) = ezt is analytic for fixed t ≥ 0, there holds
(36) eAt =

1
2πi

∫
Γ

eλtRλ dλ

where Γ is, for example, a closed polygonal and where the eigenvalues
of A lie in the interior of Γ.

At first glance, this formula seems to be inadequate for the numerical
evaluation because one has to calculate a contour integral in the
complex plane, which takes a lot of operations.

But, a closer look at (36) tells us that one can take into account the
special structure of A in the solution x(t) = eAtx0. Indeed, one obtains

(37)

x(t) =
1
2πi

∫
Γ

eλt(λ−A)−1x0 dλ

=
1
2πi

∫
Γ

eλtRλx0 dλ

=
1
2πi

∫
Γ

eλtu(λ) dλ
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where u(λ) is the solution of

(38) (λ−A)u(λ) = x0.

In (38), the structure of A can be exploited. Setting

(39) u(λ) =: u =
[
v
w

]
and x0 =

[
y0

z0

]
,

equation (38) is equivalent to

(40)
[

λE −E
M−1K λE +M−1B

] [
v
w

]
=

[
y0

z0

]

or

(41)
Cv = d0

w = λv − y0

with

(42)
C = C(λ) = λ2M + λB +K = λ(λM +B) +K

d0 = d0(λ) = (λM +B)y0 +Mz0.

For example, if M , B and K have small bandwidth, so has C = C(λ);
especially, ifM , B and K are tridiagonal, so is C = C(λ). The solution
x(t) = [y(t)T , z(t)T ]T = [y(t)T , ẏ(t)T ]T is then given by

(43)
y(t) =

1
2πi

∫
Γ

eλtv(λ) dλ,

ẏ(t) =
1
2πi

∫
Γ

eλtw(λ) dλ.

The idea described for the calculation of (λ − A)−1x0 (especially
so as not to invert the matrix) also forms the basis of the numerical
evaluation of the contour line, which we call numerical operational
calculus. The equation (38), respectively (41), is solved here by the
Gaussian elimination method. In the case of tridiagonal matrices, the
number of multiplicative operations is essentially proportional to n,
respectively m.
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(ii) The summed quadrature formula. The summed Gaussian quad-
rature formula for expression (37) is obtained from (19) for f(z) = ezt:

(44)

xG3(t) : =

QG3(f(A))[a,b]x0 =
1
2πi

h

9

N∑
j=1

[
5f

(
cj − h

√
15
5

)
Rcj−h(

√
15/5) x0

+ 8f(cj)Rcj
x0 + 5f

(
cj + h

√
15
5

)
·Rcj+h(

√
15/5) x0

]
.

where the quantities Rcj−h(
√

15/5) x0, Rcj
x0, and Rcj+h(

√
15/5) x0 are

evaluated as described above.

3.3. Upper bounds on norm of resolvent. In this subsection,
let ‖ · ‖ be a norm for vectors in Cn and ‖x‖ := max{‖y‖, ‖z‖},
x = (yT , zT )T ∈ Cm = C2n a norm in Cm.

For the estimates of the quadrature-formula error (i.e., the discretiza-
tion error) in the next section, upper bounds of the resolvent, Rλ, in
the norm ‖Rλ‖ := sup0�=x∈Rm ‖Rλx‖/‖x‖ are needed, where λ ranges
over the integration intervals.

In this subsection, we derive such bounds by taking into account the
special structure and properties of A as well as the special properties
of λ on the eigenvalue-adapted integration path.

Finally, it is assumed that the matrix M is invertible.

(i) Using the special structure and special properties of matrix A.
Starting from (41), we get

‖d0‖ = ‖Cv‖ = ‖(λ2M + λB +K)v‖
≥ (|λ|2‖M−1‖−1 − |λ| ‖B‖ − ‖K‖)‖v‖,

taking into account d0 = (λM +B)y0 +Mz0; this leads to

(45) ‖v‖ ≤ |λ| ‖M‖+ ‖B‖+ ‖M‖
|λ|2‖M−1‖−1 − |λ|‖B‖ − ‖K‖‖x0‖
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provided that the denominator is greater than zero.

Further, from the equation Cw = −Ky0 + λMz0 one infers similarly

(46) ‖w‖ ≤ |λ| ‖M‖+ ‖K‖
|λ|2‖M−1‖−1 − |λ|‖B‖ − ‖K‖‖x0‖

Consequently, one has

(47)
‖v(λ)‖ ≤ q̂‖x0‖
‖w(λ)‖ ≤ q̃‖x0‖

as well as

(48) ‖u‖ ≤ q‖x0‖, resp. ‖Rλx0‖ ≤ q‖x0‖, resp.‖Rλ‖ ≤ q

with

(49) q = max{q̂, q̃},




q̂ :=
|λ| ‖M‖+ ‖B‖+ ‖M‖

|λ|2‖M−1‖−1 − |λ| ‖B‖ − ‖K‖

q̃ :=
|λ| ‖M‖+ ‖K‖

|λ|2‖M−1‖−1 − |λ| ‖B‖ − ‖K‖ .

For the test data, in the maximum norm we obtain ‖M‖∞ = 1,
‖M−1‖−1

∞ = 1, ‖B‖ = ‖B‖∞ = 1.5 and ‖K‖ = ‖K‖∞ = 4 as well as
‖x‖ = max{‖y‖∞, ‖z‖∞} = ‖x‖∞.
(ii) Using the eigenvalue-adapted path. Now, the quantity q = q(d) =

q(d, λ) must be estimated further from the above. Using the eigenvalue-
adapted path 1 in Figure 4, the estimates on the four intervals can be
derived and represented in a unified way. We obtain q ≤ qk where

(50)

qk = max{q̂k, q̃k},




q̂k :=
δk(d)‖M‖+ ‖B‖+ ‖M‖

δ2
k(d)‖M−1‖−1 − δk(d)‖B‖ − ‖K‖

q̃k :=
δk(d)‖M‖+ ‖K‖

δ2
k(d)‖M−1‖−1 − δk(d)‖B‖ − ‖K‖ .

δk(d) =




d, k = 1
ρ̃y

2
+ d, k = 2

ρ̃x + d, k = 3
ρ̃y

2
+ d, k = 4
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provided that the denominators are greater than zero.

We derive (50) only for k = 1. In this case, λ = d + iλi, |λ| =√
d2 + λ2

i , −[(ρ̃y/2) + d] ≤ λi ≤ (ρ̃y/2) + d. Therefore, from (49)

q̂1 =

√
d2 + λ2

i ‖M‖+ ‖B‖+ ‖M‖
(d2 + λ2

i )‖M−1‖−1 − √
d2 + λ2

i ‖B‖ − ‖K‖

=
‖M‖+ (‖B‖+ ‖M‖)/√d2 + λ2

i√
d2 + λ2

i ‖M−1‖−1 − ‖B‖ − (‖K‖/√d2 + λ2
i )

≤ d‖M‖+ ‖B‖+ ‖M‖
d2‖M−1‖−1 − d‖B‖ − ‖K‖ ;

similarly,

q̃1 ≤ d‖M‖+ ‖K‖
d2‖M−1‖−1 − d‖B‖ − ‖K‖ .

So (50) is proven.

Remark. The denominator in (45) is positive for λ ∈ [ak, bk] if the
denominator in (50) is positive and δk(d) > (||B|| ||M−1||/2).

3.4. Estimates of the discretization error. In this subsection
we first state the error estimates on the four intervals making up the
eigenvalue-adapted path. Then we show how these estimates can be
used to calculate the quantities d = dmin and N(k), k = 1, . . . , 4 (cf.
Figure 4).

We obtain on Interval 1:
(51)

‖EG3(e
At)[a1,b1]x0‖ ≤ 1

N(1)6
1
2π

1
2016000

(ρ̃y+2d)7edtχ(q1(d), t) ‖x0‖

with

(52) χ(q, t) := qt6+6q2t5+30q3t4+120q4t3+360q5t2+720q6t+720q7,

on Interval 3:

(53)
‖EG3(e

At)[a3,b3]x0‖ ≤ 1
N(3)6

1
2π

1
2016000

(ρ̃y+2d)7e−(ρ̃x+d)t

· χ(q3(d), t) ‖x0‖,
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and on Intervals k, k = 2, 4 (starting with the estimates of Section 2.1,
not 2.2):

(54)
‖EG3(e

At)[ak,bk]x0‖ ≤ e(ρ̃x+2d)t/N(k)

N(k)6
1
2π

1
2016000

(ρ̃x+2d)6

· (e
dt − e−(ρ̃x+d)t)

t
χ(qk(d), t) ‖x0‖.

We remark that limt→0(edt − e−(ρ̃x+d)t)/t = ρ̃x + 2d.

With these error estimates, d = dmin as well as the numbers N(k),
k = 1, . . . , 4, of subdivisions can be determined.

As a consequence, the described method is of order O(N(k)−6) on
Interval k, k = 1, . . . , 4.

Determination of dmin and N(1). Let t > 0 be fixed (for example,
t = 1) and let

(55) h1(d) :=
1
2π

1
2016000

(ρ̃y + 2d)7edt χ(q1(d), t) ‖x0‖.

Then, dmin is determined as

(56) h1(dmin) = min
d̃min≤d≤d̃max

h1(d),

where d̃min > 0, respectively d̃max > 0 is sufficiently small, respectively
large. For given ε > 0 (here, ε = 0.5 10−4), N(1) is determined from

(57)
h1(dmin)
N(1)6

=
ε

4
=: ε4

so that

(58) N(1) = 6

√
h1(dmin)

ε4
.

We remark that the relative error is minimized on Interval 1 since it
is much larger there than on the other intervals. Further, we mention
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that, near d = dmin, the function h1(d) is flat, which means that the
discretization error is insensitive to small deviations from d = dmin.

Determination of N(3). Let

(59) h3(d) :=
1
2π

1
2016000

(ρ̃y + 2d)7e−(ρ̃x+d)t χ(q3(d), t) ‖x0‖

for fixed t > 0. Then, N(3) is computed as

(60) N(3) = 6

√
h3(dmin)

ε4
.

Determination of N(k), k = 2, 4. For fixed t > 0 and d = dmin,
let h(N(k)), k = 2, 4, be the righthand side in (54). Then, N(k) is
computed numerically in such a way that

(61) hk(N(k)) = ε4, k = 2, 4

which is done in the example of the next section by the Newton method.

After having been determined, the numbers N(k), k = 1, . . . , 4 are
rounded up, as a rule.

3.5 Computational results. In this subsection we take the test
data from Subsection 3.1, i.e., M = E and (32) (35). Then, indepen-
dently of the dimension number n resp m = 2n, the eigenvalues of A lie
in the inner of the dashed rectangle in Figure 4 (cf. Falk [4, Figure 8]).
Path 1 consists of four axis-parallel intervals as indicated in Figure 4.
The horizontal and vertical distance of these intervals to the sides of
the inner rectangle is denoted as d.

Only in this section, we use the condition that the matrices M , B
and K are sparse.

For some matrix orders m ranging between m = 10 and m = 1000,
the associated computation times are determined.

First, two algorithms which are assessed to be among the better ones
for the computation of the matrix exponential in [6, p. 560] were com-
pared. These are algorithm 11.3.1 (Ward’s implementation of scaling
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FIGURE 4. Path 1 and numbers N(k) of subdivisions on intervals [ak, bk],
k = 1, . . . , 4.

and squaring with Padé approximants) and algorithm 11.1.1 (imple-
mentation of Parlett’s Schur decomposition). In MATLAB, the asso-
ciated functions are expm1 and funm(·,’exp’). Ward’s implementation
was faster.

So, in Table 1 only the results for the described method and Ward’s
method (called SCALING AND SQUARING in [10]) are compiled.

Since the number of multiplicative operations in the numerical op-
erational calculus is essentially proportional to n and those in Ward’s
method are roughly proportional to n3 (cf. [10]), one can expect the
new method to be much faster for sufficiently large n. This is confirmed
by the results in Table 1.

For n = 5, that is m = 10, both methods give

x(t = 1) = [+0.6516, +0.9230, +0.9849, +0.9470, +0.6583,
− 0.5384, −0.2125, −0.0617, −0.1579, −0.5141].

In Ward’s method, the special structure of the matrix A could be
taken into account, and it could thus be made somewhat faster. But
nevertheless its band width would be much greater than that of NOC.
However, Ward’s method would compare more favorably with NOC if
in MATLAB eA b was programmed and not only eA.
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TABLE 1. Numerical Operational Calculus (left),

respectively Ward’s method (right)

Norm : ‖x‖ = ‖x‖∞, x = [yT , zT ]T

Path : Path 1 in Figure 4 with ρ̃y/2 = 2,

ρ̃x = 0.75, d = dmin = 5.7562,

t = 1, and ε = 0.5 10−4

N(k), k = 1, . . . , 4 : N(1) = 50, N(2) = 19, N(3) = 6, N(4) = 19

Hardware : CPU-Time 66 MHz, High-Speed Memory 20 MBytes

Software : 368-Matlab, 4.2c

Plot of Results : Curve NOC, respectively, Curve W in Figure 5

n m = 2n t[s] = tNOC t[s] = tW

5 10 4.89 0.05

10 20 8.46 0.17

15 30 12.19 0.39

20 40 15.33 0.71

25 50 18.67 1.21

30 60 22.02 1.82

35 70 25.60 2.86

40 80 29.00 4.94

45 90 32.63 5.82

50 100 36.14 7.80

75 150 54.76 26.37

100 200 74.37 97.39

150 300 114.30 423.42

200 400 159.61 1 006.9

250 500 190.21 2 134.7

300 600 238.59 4 103.6

350 700 285.45 6 784.0

400 800 340.64 12 374.0

450 900 405.02 ∗

500 1000 469.01

∗ Run was manually interrupted after more than 21 600 s (=6 h) had elapsed.

4. Mathematical problems. In this section, we demonstrate the
Numerical Operational Calculus for some mathematical problems. We
do not claim, for these examples, its superiority to other methods, but
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we just want to show that the discussed problems can be solved in a
straightforward manner, by the method described.

In Subsection 4.1, we compute an example of Stickel on a matrix eA.
In Subsection 4.2, the spectral decomposition of the same matrix A as
in 4.1 is computed. Finally, in Subsection 4.3, we calculate the square
root of a matrix A in [16].

For the sake of brevity and simplicity, we do not estimate the error,
but make numerical experiments instead of determining the numbers
N(k) on intervals [ak, bk], k = 1, . . . , 4.

4.1 The matrix exponential example of Stickel. In [15], Stickel
calculates the matrix exponential of

A =




10 −19 17 −12 4 1
9 −18 17 −12 4 1
8 −16 15 −11 4 1
6 −12 12 −10 4 1
4 −8 8 −6 1 2
2 −4 4 −3 1 0




which was taken from Gregory and Karney [7, p. 91]. With the path
and data in Figure 6, we obtain

eA =




16.9741 −24.0070 12.2979 −6.0007 0.9197 1.4715
14.2558 −21.2887 12.2979 −6.0007 0.9197 1.4715
12.0778 −18.8096 11.1552 −5.1592 0.9197 1.4715
9.0584 −14.1072 8.0905 −3.7774 0.9197 1.4715
6.0389 −9.4048 5.3937 −2.7635 0.7358 1.4715
3.0195 −4.7024 2.6968 −1.3818 0.1839 1.1036


 .

The result of Stickel is

eA =




16.974 −24.007 12.298 −6.001 0.920 1.472
14.256 −21.289 12.298 −6.001 0.920 1.472
12.256 −18.810 11.155 −5.159 0.920 1.472
9.078 −14.107 8.091 −3.777 0.920 1.472
6.039 −9.405 5.394 −2.764 0.736 1.472
3.019 −4.702 2.697 −1.382 0.184 1.104


 .

The entries (3,1) and (4,1) in bold face are misprinted, as has been
confirmed by Stickel in a private letter. We remark that, since the
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FIGURE 5. Curves NOC and W.

eigenvalue λ4 is threefold, it is appropriate to choose N(1) = N(2) =
N(3) = N(4).

4.2 Spectral decomposition of a matrix. According to Kato [8,
p. 41], the spectral decomposition of the matrix A in Subsection 4.1 is

y

x

N 2 15

N 1 15N 3 15

N 4 15

2 i

4 1 1 1

3 i
4 5 6

FIGURE 6. Path 2 and numbers N(k) of subdivisions on intervals [ak, bk],
k = 1, . . . , 4.
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FIGURE 7. Path 3: Number of subdivisions on each interval is N = 15.

given by

A =
4∑

k=1

λkPλk
+D

with

D =
4∑

k=1

Dλk
; Dλk

=
1
2πi

∫
Γk

(λ− λk)Rλ dλ, k = 1, . . . , 4

where Dλk
are nilpotent and where

Pλk
=

1
2πi

∫
Γk

Rλ dλ, k = 1, . . . , 4;

are projections with Γk taken from Figure 7.

The result (correct up to four decimal digits) is

Pλ1 =




6 −6 0 0 0 0
5 −5 0 0 0 0
4 −4 0 0 0 0
3 −3 0 0 0 0
2 −2 0 0 0 0
1 −1 0 0 0 0


 ,

Pλ2 =




−2.5− 2.0i 3.0 + 6.5i 1.5− 7.0i −2.0 + 2.5i 0.0 0.0

−2.5− 2.0i 3.0 + 6.5i 1.5− 7.0i −2.0 + 2.5i 0.0 0.0

−2.0− 2.0i 2.0 + 6.0i 2.0− 6.0i −2.0 + 2.0i 0.0 0.0

−1.5− 1.5i 1.5 + 4.5i 1.5− 4.5i −1.5 + 1.5i 0.0 0.0

−1.0− 1.0i 1.0 + 3.0i 1.0− 3.0i −1.0 + 1.0i 0.0 0.0

−0.5− 0.5i 0.5 + 1.5i 0.5− 1.5i −0.5 + 0.5i 0.0 0.0cr


,
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Pλ3 =




−2.5 + 2.0i 3.0− 6.5i 1.5 + 7.0i −2.0− 2.5i 0.0 0.0

−2.5 + 2.0i 3.0− 6.5i 1.5 + 7.0i −2.0− 2.5i 0.0 0.0

−2.0 + 2.0i 2.0− 6.0i 2.0 + 6.0i −2.0− 2.0i 0.0 0.0

−1.5 + 1.5i 1.5− 4.5i 1.5 + 4.5i −1.5− 1.5i 0.0 0.0

−1.0 + 1.0i 1.0− 3.0i 1.0 + 3.0i −1.0− 1.0i 0.0 0.0

−0.5 + 0.5i 0.5− 1.5i 0.5 + 1.5i −0.5− 0.5i 0.0 0.0


 = Pλ2 ,

Pλ4 =




0.0 0.0 −3.0 4.0 0.0 0.0
0.0 0.0 −3.0 4.0 0.0 0.0
0.0 0.0 −3.0 4.0 0.0 0.0
0.0 0.0 −3.0 4.0 0.0 0.0
0.0 0.0 −2.0 2.0 1.0 0.0
0.0 0.0 −1.0 1.0 0.0 1.0


 ,

D =




0.0 0.0 0.0 −3.0 4.0 1.0
0.0 0.0 0.0 −3.0 4.0 1.0
0.0 0.0 0.0 −3.0 4.0 1.0
0.0 0.0 0.0 −3.0 4.0 1.0
0.0 0.0 0.0 −2.0 2.0 2.0
0.0 0.0 0.0 −1.0 1.0 1.0


 .

It was checked that A =
∑4

k=1 λkPλk
+D is exact up to four digits.

We remark that the spectral decomposition of a matrix is also
discussed in Niemeyer and Wermuth [12, pp. 235 237] for simple
eigenvalues.

4.3 Square root of a positive definite matrix. In [16, p. 197],
the square root of the matrix

A =



20 −4 −4 −1
−4 20 −1 −4
−4 −1 20 −4
−1 −4 −4 20




is calculated by the method of successive approximations. Here, we
calculate it based on the representation A1/2 = (1/2πi)

∫
Γ
λ1/2Rλ dλ.

The eigenvalues of A are λ1 = 11, λ2 = λ3 = 21, λ4 = 27. Taking the
path in Figure 8,
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FIGURE 8. Path 4 and numbers N(k) of subdivisions on intervals [ak, bk],
k = 1, . . . , 4.

we obtain

√
A =



4.41948 −0.46988 −0.46988 −0.16309

−0.46988 4.41948 −0.16309 −0.46988
−0.46988 −0.16309 4.41948 −0.46988
−0.16309 −0.46988 −0.46988 4.41948


 ,

which is the same result as in [16].

5. Concluding remarks. Numerical Operational Calculus com-
pares favorably to the other methods in case of positive definite matri-
ces M , B and K where the eigenvalues of (M,B,K) can be enclosed,
for example, by the results of Falk and where the bandwidth of the
three matrices is small and the dimension n is large.

In the general case where the matrix A has no special structure the
eigenvalues λ of A can be bounded by |λ| ≤ ||A||, where in the test
example ||A||∞ = 5.5. Bounds on the resolvent are then given by
||Rλ|| ≤ (|λ| − ||A||)−1, |λ| > ||A||.
Most important, however, is that for Numerical Operational Calculus

a backward error analysis can be given. This is due to the fact that we
have essentially reduced the problem to the solution of linear equations.

For large values of time, say, T = 25, the interval [0, T ] is subdivided
into small intervals of length ∆t, say, ∆t = 0.2, and the described
method is used to transform x(t0) → x(t0 + ∆t) = x(t1), x(t1) →
x(t1 +∆t) = x(t2), and so on.

Also, the method can be used for excited vibrations.
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3. S. Falk, Klassifikation gedämpfter Schwingungssysteme und Eingrenzung ihrer
Elemente, Ing.-Arch. 29, (1960), 436 444.

4. , Expansion von Polynomen und Polynommatrizen, ZAMM 64 (1984),
445 456.

5. S. Goedecker, Low complexity algorithms for electronic structure calculations,
J. Comp. Physics 118 (1995), 261 268.

6. G.H. Golub and C.F. van Loan, Matrix computations, The Johns Hopkins
University Press, Baltimore, 1983.

7. R.T. Gregory and D.L. Karney, A collection of matrices for testing computa-
tional algorithms, Wiley-Interscience, New York, 1969.

8. T. Kato, Perturbation theory for linear operators, Springer, New York, 1986.

9. K. Knopp, Funktionentheorie I (Grundlagen der allgemeinen Theorie der
analytischen Funktionen), Walter de Gruyter, Berlin, 1965.

10. C.B. Mohler and C.F. van Loan, Nineteen dubious ways to compute the
exponential of a matrix, SIAM Review 20 (1978), 801 836.

11. P.C. Müller and W.O. Schiehlen, Lineare Schwingungen, Akademische Ver-
lagsgesellschaft, Wiesbaden, 1976.

12. H. Niemeyer and E. Wermuth, Lineare Algebra Analytische und numerische
Behandlung, Vieweg, Braunschweig Wiesbaden, 1987.

13. D.M.C. Nocholson, G.M. Stocks, Y. Wang, W.A. Shelton, Z. Szotek andW.M.
Temmerman, Stationary nature of density-functional free energy: Application of
accelerated multiple-scattering calculations, Phys. Rev. B 50 (1994), 14686 14689.

14. E.C. Pestel and F.A. Leckie, Matrix methods in elastomechanics, McGraw-
Hill, New York, 1963.

15. E.U. Stickel, A splitting method for the calculation of the matrix exponential,
Analysis 14 (1994), 103 112.

16. F. Stummel and K. Hainer, Praktische Mathematik, B.G. Teubner, Stuttgart,
1982.

17. A.E. Taylor, Introduction to functional analysis, John Wiley & Sons Inc.,
New York, 1958.

18. H. Waller and W. Krings, Matrizendynamik in der Maschinen- und Bau-
werksdynamik, Bibliographisches Institut, Mannheim, Wien, Zürich, 1975.
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