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A WEAK EFFECTIVE ROTH’S
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1. Introduction. The correspondence between Diophantine ap-
proximation and Nevanlinna theory, observed by Osgood and Vojta [2],
[7], has motivated many recent works. Furthermore, the Diophantine
approximation over function fields also has recently attracted atten-
tion because of its correspondence to Nevanlinna theory with moving
targets. In [8], Julie Wang obtained an effective version of Roth’s theo-
rem over function fields by adapting the method of Steinmetz in proving
Nevanlinna’s conjecture with slowly moving targets in Nevanlinna the-
ory. We note that the Thue-Siegel-Roth theorem over function fields
was proved by Uchiyama [6] in 1961, with a proof similar to the one
for number fields, hence is ineffective. To state Wang’s result we recall
some definitions. Let C be an irreducible nonsingular algebraic curve
of genus g over an algebraically closed field k of characteristic zero. Let
K be the function field of C. For a nonzero element f ∈ K, we define
the height as h(f) =

∑
P∈C −min{0, vP (f)}, where vP (f) is the order

of f at the point P of C. Let t be a nonconstant function in K; we
denote by, for every y ∈ K, y′ = (dy/dt). Julie Wang’s result is stated
as follows:

Theorem [8]. Let S be a finite set of points in C. Suppose that
t, a1, . . . , aq are S-units and that f is a nonzero element of K. Let L(r)
be the vector space over k spanned by an1

1 . . . an1
q with n1, . . . , nq ≥ 0

and n1 + · · ·+ nq = r. Let β1, . . . , βn be a base of L(r) and b1, . . . , bm
a base of L(r+1). If fβ1, . . . , fβn, β1, . . . , bm are linearly independent
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over k, then
∑
P∈S

q∑
j=1

max{0, vP (f−aj)}

≤ m+n
n

h(f)+
(m+n−1)(m+n)

n
(2g−2+2#S + h(t))+(q−1)2

q∑
i=1

h(ai).

Note that, in the above inequality, although the coefficient ((m +
n)/n) → 2 as r → ∞, the coefficient ((m+ n− 1)(m+ n)/n) actually
tends to ∞ as r → ∞. Furthermore, the term (2g−2+2#S+h(t)); thus
the coefficient ((m+ n− 1)(m+ n)/n) plays an important role for the
general function field K. The purpose of this paper is, among others,
to improve on this term. We shall establish a new version of effective
Roth’s theorem over function fields that the coefficient before the term
(2g − 2 + 2#S + h(t)) is 1, as conjectured. However, unfortunately,
the price paid is where the coefficient before the term h(f) is increased
to [q/2] + 1 rather than 2. Therefore, our theorem can be viewed
as a supplement to Julie Wang’s theorem. Also our theorem may be
called an effective Thue’s theorem over function fields, since it really
corresponds to Thue’s theorem in a number field. The following is the
statement.

Theorem. Let C be an irreducible nonsingular algebraic curve of
genus g over an algebraically closed field k of characteristic zero. Let
K be the function field of C. Let S be a finite set of points in C. Let
a1, . . . , aq be distinct elements in K and f a nonzero element in K.
Suppose that t is an S-integer. Then either

∑
P∈S

q∑
j=1

max{0, vP (f − aj)}

≤ ([q/2] + 1)h(f) + min{2g − 2 + 2#S + h(t), 3g}

+ (q + 1)2
q∑

i=1

(h(ai) + h(a′i)) + (q − 1)2
q∑

i=1

h(ai)

or

h(f) ≤ (q + 1)3
q∑

j=1

(h(aj) + h(a′j)) + min{2g − 2 + #S + h(t), 3g}.
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2. Proof of the theorem. To prove the theorem, we shall construct
a nonzero differential polynomial of the form Q(y, y′) = φ1(y)y′−φ2(y)
over K such that Q(aj , a

′
j) = 0, 1 ≤ j ≤ q, where φ1 and φ2 are

polynomials in y of degree at most [q/2 − 1] and [q/2 + 1]. Since
the number of coefficients which can occur in φ1 and φ2 is at least
(q/2 − 1 + 1/2) + (q/2 + 1 + 1/2) = q + 1, and the conditions of
Q(aj , a

′
j) = 0, 1 ≤ j ≤ q, are only q linear homogeneous conditions,

such nontrivial Q(y, y′) can be constructed. Q(y, y′) has the form
Q(y, y′) = (m0y

d−2 + · · · + md−2)y′ − (n0y
d + · · · + nd), where d ≤

[q/2] + 1. To prove the theorem, we first consider the case that
Q(f, f ′) 
= 0. We have the following lemma.

Lemma 1. Assume that m0 
= 0 and Q(f, f ′) 
= 0. Then

∑
P∈S

q∑
j=1

max{0, vP (f − aj)}

≤ ([q/2] + 1)h(f) + #S +
∑
P∈C

max
{

0, v
(
dt

dtP

)}

+ (q + 1)2
q∑

i=1

(h(ai) + h(a′i)) + (q − 1)2
q∑

i=1

h(ai).

Proof of Lemma 1. For a vector x = (x0, . . . , xm), we define

vP (x) = min{vP (x0), . . . , vP (xm)}.
For the differential polynomial Q(y, y′), we then define vP (Q) = vP (x)
where the components of x are the coefficients of Q and define the
height h(Q) = −∑

P∈C vP (x). That is,

h(Q) = −
∑
P∈C

min{vP (m0), . . . , vP (md−2), vP (n0), . . . , vP (nd)}.

Without loss of generality, we may assume thatm0 = 1; thus, we always
have vP (Q) ≤ 0. Since the coefficients of Q(y, y′) are determined by
solving linear equations (m0a

d−2
j +· · ·+md−2)a′j−(n0a

d
j +· · ·+nd) = 0,

1 ≤ j ≤ q,

(2.1) h(Q) ≤ dq
( q∑

j=1

(h(aj) + h(a′j))
)
.
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Let S be a nonempty set of finitely many points in C. Let T = {P ∈
S | vP (f − aj) > 0 for some j} and αP = maxi �=j max{0, vP (ai − aj)}.
Since ai − aj = (f − ai) − (f − aj), we have

vP (ai − aj) ≥ min{vP (f − ai), vP (f − aj)}.

Thus, for every P ∈ T ,

q∑
j=1

vP (f − aj) ≤ vP (f − aµ(P )) +
∑

j �=µ(P )

max{0, vP (aj − aµ(P ))},

where µ(P ) ∈ {1, 2, . . . , q} such that vP (f−aµ(P )) = max1≤j≤q vP (f−
aj). Hence, for every P ∈ T ,

(2.2)
q∑

j=1

vP (f − aj) ≤ max
1≤j≤q

vP (f − aj) + (q − 1)αP .

For P ∈ T , and for the index j, 1 ≤ j ≤ q, with vP (f − aj) > 0, since
Q(aj , a

′
j) = 0, by Taylor’s expansion formula, we have the following

finite sum

Q(y, y′) = (y−aj)Q1(aj , a
′
j)+(y′−a′j)Q2(aj , q

′
j)+

1
2

(y−aj)2Q11(aj , a
′
j)

+ (y−aj)(y′−a′j)Q12(aj , a
′
j)+

1
3

(y−aj)3Q111(aj , a
′
j) + · · · ,

whereQ1, respectivelyQ2, represents the partial derivative with respect
to the first variable, respectively the second variable. Since f ′ − a′j =
(d(f − aj)/dtP )(dt/dtP )−1, where tP is a local parameter of a point
P ∈ C and vP (d(f − aj)/dtP ) ≥ vP (f − aj) − 1, vP (Q(f, f ′)) ≥
vP (f−aj)−1−max{0, vP (dt/dtP )}+vP (Q)+dmin{0, vP (aj), vP (a′j)}.
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Thus, by (2.2),

q∑
j=1

∑
P∈S

max{0, vP (f − aj)}

=
∑
P∈T

q∑
j=1

vP (f − aj)

≤
∑
P∈T

vP (Q(f, f ′)) + #T +
∑
P∈T

max
{

0, vP

(
dt

dtP

)}
(2.3)

−
∑
P∈T

vP (Q) − d
∑
P∈T

∑
1≤j≤q

min{0, vP (aj), vP (a′j)}

+ (q − 1)
∑
P∈S

αP .

Since −d∑
P∈T

∑
1≤j≤q min{0, vP (aj), vP (a′j)} ≤ d

∑
1≤j≤q(h(aj) +

h(a′j)), (2.3) becomes

q∑
j=1

∑
P∈S

max{0, vP (f − aj)}

≤
∑
P∈T

vP (Q(f, f ′)) + #T

+
∑
P∈T

max
{

0, vP

(
dt

dtP

)}
−

∑
P∈T

vP (Q)(2.4)

+ d
∑

1≤j≤q

(h(aj) + h(a′j)) + (q − 1)
∑
P∈S

αP .

We now consider the case where P /∈ T . Let T∞ = {P /∈ T | vP (f) <
0}. For P ∈ T∞, v(df/dtP ) ≥ vP (f) − 1 ≥ 2vP (f). Since

f ′ =
df

dtP

(
dt

dtP

)−1

and Q(f, f ′) = (m0f
d−2 + · · · +md−2)f ′ − (n0f

d + · · · + nd),

(2.5) vP (Q(f, f ′)) ≥ dvP (f) + vP (Q) − max
{

0, vP

(
dt

dtP

)}
,
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for P ∈ T∞. On the other hand, if P /∈ T∞, then vP (df/dtP ) ≥ 0.
Thus,

(2.6) vP (Q(f, f ′)) ≥ −max
{

0, vP

(
dt

dtP

)}
+ vP (Q),

for P /∈ T∞. Combining (2.4), (2.5) and (2.6),

q∑
j=1

∑
P∈S

max{0, vP (f − aj)} +
∑

P∈T∞

dvP (f)

≤
∑
P∈C

vP (Q(f, f ′))

+
∑
P∈C

max
{

0, vP

(
dt

dtP

)}
−

∑
P∈C

vP (Q) + #T

+ d
∑

1≤j≤q

(h(aj) + h(a′j)) + (q − 1)
∑
P∈S

αP .

Since
−

∑
P∈T∞

dvP (f) ≤ dh(f),

∑
P∈C vP (Q(f, f ′)) = 0 by the sum formula and h(Q)=−∑

P∈C vP (Q),
we have

q∑
j=1

∑
P∈S

max{0, vP (f − aj)}

≤ dh(f) + #S +
∑
P∈C

max
{

0, v
(
dt

dtP

)}
+ h(Q)

+ d
∑

1≤j≤q

(h(aj) + h(a′j)) + (q − 1)
∑
P∈S

αP .

Using d ≤ [q/2] + 1, as well as (2.1) and
∑
P∈S

αP =
∑
P∈S

max
i �=j

{0, vP (ai − aj)}

≤
∑
i �=j

h(ai − aj) ≤ (q − 1)
q∑

i=1

h(ai),
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we have

q∑
j=1

∑
P∈S

max{0, vP (f − aj)}

≤ ([q/2] + 1)h(f) + #S +
∑
P∈C

max
{

0, v
(
dt

dtP

)}

+ (q + 1)2
q∑

j=1

(h(aj) + h(a′j)) + (q − 1)2
q∑

i=1

h(ai).

This finishes the proof of Lemma 1.

Lemma 2. If t is an S-integer, then

∑
P∈C

max
{

0, vP

(
dt

dtP

)}
≤ 2g − 2 + #S + h(t).

Proof of Lemma 2. By Riemann-Roch’s theorem, noticing that t is
an S-integer,

2g − 2 =
∑
P∈C

vP

(
dt

dtP

)

=
∑

vP (t)<0

vP

(
dt

dtP

)
+

∑
P∈C

max
{

0, vP

(
dt

dtP

)}

≥
∑

vP (t)<0

(vP (t) − 1) +
∑
P∈C

max
{

0, vP

(
dt

dtP

)}

≥ −h(t) − #S +
∑
P∈C

max
{

0, vP

(
dt

dtP

)}
.

Hence

∑
P∈C

max
{

0, vP

(
dt

dtP

)}
≤ 2g − 2 + #S + h(t).
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Lemma 3. An element t ∈ K exists such that t /∈ k and

∑
P∈C

max
{

0, vP

(
dt

dtP

)}
≤ 3g.

Proof of Lemma 3. By Riemann’s theorem, fix a point P0 ∈ C, the
elements t ∈ K having vP0(t) ≥ −g − 1, vP (t) ≥ 0 if P 
= P0 form a
vector space of dimension greater than or equal to 2. Choosing such an
element t /∈ k, let tP be a local parameter of P ∈ C by Riemann-Roch,

2g − 2 =
∑
P∈C

vP

(
dt

dtP

)
= vP0

(
dt

dtP

)
+

∑
P∈C

max
{

0, vP

(
dt

dtP

)}

≥ −g − 2 +
∑
P∈C

max
{

0, vP

(
dt

dtP

)}
.

So ∑
P∈C

max
{

0, vP

(
dt

dtP

)}
≤ 3g.

Combining Lemmas 1, 2 and 3, we have obtained the following
statement: If m0 
= 0 and Q(f, f ′) 
= 0, then

q∑
j=1

∑
P∈S

max{0, vP (f − aj)}

≤ ([q/2] + 1)h(f) + min{2g − 2 + 2#S + h(t), 3g}(2.7)

+ (q + 1)2
q∑

j=1

(h(aj) + h(a′j)) + (q − 1)2
q∑

i=1

h(ai).

Our next step is to deal with the case Q(f, f ′) = 0. In this case we
have

(m0f
d−2 + · · · +md−2)f ′ − (n0f

d + · · · + nd) = 0.

We write M(X) = m0X
d−2 + · · · +md−2, N(X) = n0X

d + · · · + nd.
Fix a point P ∈ C at the moment. We first consider the case where

(2.8) vP (M(f)) ≥ vP (Q).
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Since f satisfies the equation

m0f
d−2 + · · · +md−3f + (md−2 −M(f)) = 0,

whose coefficients have valuation ≥ vP (Q), it follows from the Gauss
lemma that

(2.9) vP (f) ≥ vP (Q) − vP (m0).

Since f ′ = (df/dtP )(dt/dtP )−1, observing that vP (Q) − vP (m0) ≤ 0,

vP (f ′) ≥ 2(vP (Q) − vP (m0)) − max
{

0, vP

(
dt

dtP

)}
.

The differential equation Q(f, f ′) = 0 implies that
(2.10)

vP (N(f)) ≥ vP (M(f)) + 2(vP (Q) − vP (m0))) − max
{

0, vP

(
dt

dtP

)}
.

The resultant R of M(X), N(X) may be written as

(2.11) R = M(X)V (X) +N(X)W (X),

where V (X),W (X) are certain polynomials defined in terms of deter-
minants. In particular, V,W are of respective degrees ≤ d − 1, d − 3,
and

vP (V ), vP (W ) ≥ (2d− 3)vP (Q).

Now since vP (m0f) ≥ vP (Q) by (2.9), it follows, using the Gauss lemma
again, that

vP (md−1
0 V (f)) ≥ (2d− 3 + d− 1)vP (Q),

and also,
vP (md−3

0 W (f)) ≥ (2d− 3 + d− 3)vP (Q).

Thus, (2.10) and (2.11) yield

vP (md−1
0 R) ≥ vP (M(f)) + (3d− 4)vP (Q) − max

{
0, vP

(
dt

dtP

)}
,
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whence

(2.12)
vP (M(f)) ≤ −(2d− 3)vP (Q) + (d− 1)(vP (m0) − vP (Q))

+ vP (R) + max
{

0, vP

(
dt

dtP

)}
.

Now if (2.8) does not hold, then since vP (m0) ≥ vP (Q) and since
vP (R) ≥ (2d− 2)vP (Q), (2.12) is still true.

Now we want to estimate the height h(f) by using (2.12). If
vP (m0f

d−2) < min{vP (m1f
d−3), . . . , vP (md−2)}. Then vP (m0f

d−2)=
vP (M(f)) and (d− 2)vP (f) = vP (M(f)) − vP (m0). If vP (m0f

d−2) ≥
min{vP (m1f

d−3), . . . , vP (md−2)}, then vP (m0f
d−2) ≥ vP (mif

d−2−i)
for some i, 1 ≤ i ≤ d − 2. Then vP (f i) ≥ vP (mi) − vP (m0) ≥
vP (Q)− vP (m0), whence vP (f) ≥ vP (Q)− vP (m0) and (d− 2)vP (f) ≥
(d− 2)(vP (Q) − vP (m0)). So in any case, we have

(d− 2) min{0, vP (f)} ≥ min{(d− 2)(vP (Q) − vP (m0)),
vP (M(f)) − vP (m0)}.

Using the sum formula for md−2
0 M(f)−1, we obtain

(d− 2)h(f) = −(d− 2)
∑
P∈C

min{0, vP (f)}

≤ −
∑
P∈C

max{(d− 2)vP (Q) − vP (M(f)), (d− 3)vP (m0)}.

Applying (2.12) and once again the sum formula, we get

(d− 2)h(f) ≤
∑
P∈C

max
{
− (3d− 5)vP (Q) + (d− 1)

· (vP (m0) − vP (Q)) + v(R)

+ max
{

0, vP

(
dt

dtP

)}
, (3 − d)vP (m0)

}

=
∑
P∈C

max
{
− (4d− 6)vP (Q) + max

{
0, vP

(
dt

dtP

)}
,

− vP (R) + (4 − 2d)vP (m0)
}
.
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Recall that, by Lemmas 2 and 3,
∑

P∈C max{0, vP (dt/dtP )} ≤
min{2g − 2 + #S + h(t), 3g} and note that

−vP (R) + (4 − 2d)vP (m0) ≤ −(2d− 2)vP (Q) + (4 − 2d)vP (Q)
= (6 − 4d)vP (Q).

It then follows that

(d− 2)h(f) ≤
∑
P∈C

(
(6 − 4d)vP (Q) + max

{
0, vP

(
dt

dtP

)})

≤ (4d− 6)h(Q) + min{2g − 2 + #S + h(t), 3g},

and, if d− 2 > 0, then also, using (2.1),

h(f) ≤ (d− 2)−1((4d− 6)h(Q) + min{2g − 2 + #S + h(t), 3g})

≤ (q + 1)3
q∑

j=1

(h(aj) + h(a′j)) + min{2g − 2 + #S + h(t), 3g}.

If d − 2 ≤ 0, then either M(X) = m0 
= 0 or M(X) = 0. If
M(X) = m0 
= 0, then the differential equation Q(y, y′) = 0 is either
linear or Ricatti. In the case that Q(y, y′) = 0 is linear, then any three
solutions z, z1, z2 have

z − z1
z2 − z1 = c

with c ∈ k, whence vP (z − z1) = vP (z2 − z1). In particular, since
Q(f, f ′) = 0, Q(aj , a

′
j) = 0, we have, for 2 ≤ j ≤ q,

vP (f − aj) = vP (a1 − aj).

In this case (2.7) trivially holds. If the differential equation is Ricatti,
then as is well known, any four solutions of the Ricatti differential
equation have a constant cross ratio. Again, since f, aj , 1 ≤ j ≤ q are
all the solutions,

f − aj

f − a1
/a2 − aj

a2 − a1 = c,

with c ∈ k so, for 3 ≤ j ≤ q,

vP (f − aj) + vP (a2 − a1) = vP (f − a1) + vP (a2 − aj).
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Thus, in this case (2.7) also holds trivially. If M(X) = 0, then
Q(f, f ′) = 0 implies that ndf

d + · · · + n0 = 0, so by the Gauss lemma,
h(f) ≤ h(Q). This finishes the proof of our theorem.
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