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ZARISKI-FINITE MODULES

R.L. MCCASLAND, M.E. MOORE AND P.F. SMITH

ABSTRACT. Let R be a commutative ring with identity,
and let M be an R-module. We examine the situation where
the Zariski space of M is finitely generated. In case R is a
Noetherian UFD and M is finitely generated and nontorsion,
we prove that this condition is equivalent to M being isomor-
phic to a direct sum of R and a finite R-module. We further
describe in this case the structure of all but finitely many
prime submodules of M .

Zariski spaces of modules were introduced in [8], and they provide
a demonstration that the study of prime submodules is significantly
more rich and complex than is the study of prime ideals. A Zariski
space is determined by the following. Let R be a commutative ring
with identity, and let M be a unital R-module. Note that the Zariski
topology on specR, denoted ζ(R), is a semiring, where “addition” is
given by intersection and “multiplication” is given by union. In a like
manner, we let ζ(M) be the collection of all varieties of submodules of
M , and we observe that although ζ(M) is not in general a topology
itself, it is a semimodule over ζ(R), where “addition” and “scalar
multiplication” are given by

V (L) + V (N) = V (L) ∩ V (N) = V (L+N)

and

V (a)V (N) = V (aN)

for all submodules L and N of M and for all ideals a of R.

This note concerns the generating of the semimodule ζ(M) as “linear
combinations” of its elements, particularly finitely many of them. For
a basic study of semimodules, see, for example, [3].

Now in the case that M is a finitely generated, noncyclic, faithful
multiplication module over R, note that although the structure of M is
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in some ways a bit more complicated than is the structure of the ring
itself, the collection of prime submodules of M is essentially identical
to the collection of prime ideals of R. This indeed is borne out in
the fact that ζ(M) is (semimodule) isomorphic to ζ(R). However, one
should dismiss forever any notion one might have that so long as R is
Noetherian, say, and M is finitely generated, then ζ(M) must itself be
finitely generated. Indeed, this notion fails rather spectacularly, even
in the very simple case R = Z and M = R ⊕ R. It turns out that if S
is any generating set of ζ(M), then |S| ≥ |R| [10, Theorem 1.3].

The question remains as to which modules M have the property that
ζ(M) is finitely generated as a ζ(R)-semimodule. Such a module is
said to be Zariski-finite. Our main result in this paper is that if R is
an infinite Noetherian UFD and M is a finitely generated R-module,
then M is Zariski-finite if and only if M ∼= R ⊕ T , where T is a finite
R-module. One particular advantage of this characterization is that
it tells us in this case exactly what all but finitely many of the prime
submodules look like. And for the remaining primes, we still know quite
a lot. The same cannot be said, for example, merely in knowing that
there is a one-to-one correspondence between the p-prime submodules
of M and the proper subspaces of the k(p)-vector space k(p) ⊗R M
where k(p) denotes the residue field of p.

Before moving on to our study, we remark that although rarely is a
Zariski space of a module finitely generated in an algebraic sense, things
are not quite so pathological as they might seem. In a subsequent paper,
“Subtractive bases of Zariski spaces,” we demonstrate a topological
means of generating these spaces, in such a way that if M is a free
R-module generated by n elements (n is a positive integer), then ζ(M)
can likewise be generated by n elements.

1. Special cases. Throughout this paper R will denote a commu-
tative ring with identity and M a unital R-module. A submodule P of
M is called prime if P �=M and whenever rm ∈ P , r ∈ R and m ∈M ,
then m ∈ P or rM ⊆ P . For the basic properties of prime submodules,
see [1], [4], [6] or [12], for example. The (possibly empty) collection
of prime submodules of M will be denoted by specM . For any prime
ideal p of R, we define spec pM = {P ∈ specM : (P :M) = p}.

Let N be any submodule of M . The variety of N is given by
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V (N) = {P ∈ specM : N ⊆ P}, and the collection of all such
varieties is denoted by ζ(M). For a study of the ζ(R)-semimodule
structure on ζ(M), see [8]. Now let N1, . . . , Nk be submodules of
M . Then 〈V (N1), . . . , V (Nk)〉 will denote the ζ(R)-subsemimodule
of ζ(M) generated by V (N1), . . . , V (Nk), i.e., 〈V (N1), . . . , V (Nk)〉
consists of all varieties of the form V (a1N1 + · · · + akNk), where
a1, . . . , ak are ideals of R. The module M is called Zariski-finite if
ζ(M) = 〈V (N1), . . . , V (Nk)〉 for some positive integer k and submod-
ules N1, . . . , Nk of M , and in case k = 1, M is called Zariski-cyclic.
On the other hand, if a positive integer k and submodules N1, . . . , Nk

of M exist such that for every prime submodule P of M , we have
V (P ) ∈ 〈V (N1), . . . , V (Nk)〉, then we say that M is weakly Zariski-
finite. Finally we call the module M Zariski-bounded if there exists a
positive integer n such that |spec pM | ≤ n for every prime ideal p of R.

Lemma 1.1. For any R-module M , M is Zariski-finite implies that
M is weakly Zariski-finite, which implies that M is Zariski-bounded.

Proof. The first implication is obvious. The second appears in [9,
Lemma 2.5].

The next result is easily proven.

Lemma 1.2. If M is Zariski-finite (respectively, weakly Zariski-
finite, Zariski-bounded), then any homomorphic image of M is likewise
Zariski-finite (respectively, weakly Zariski-finite, Zariski-bounded).

Recall that M is a multiplication module if for every submodule N
of M , N = (N :M)M .

Theorem 1.3. If M is finitely generated, then the following are
equivalent.

1) M is a multiplication module.

2) M is Zariski-cyclic.

3) |spec pM | ≤ 1 for every prime ideal p of R.
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4) |spec mM | ≤ 1 for every maximal ideal m of R.

Proof. 1) ⇒ 2). By [9, Theorem 2.1].

2) ⇒ 3). By [7, Theorem 3.5].

3) ⇒ 4). Clear.

4) ⇒ 1). Since for each maximal ideal m of R, there is at most one
m-prime submodule of M , then M/mM is a cyclic R/m-module. By
[2, Corollary 1.5], M is a multiplication module.

Theorem 1.3 fails for modules which are not finitely generated, as the
following examples show.

Example 1.1. (i) There exists a Z-moduleM such that |spec pM | =
1 for every maximal ideal p of Z but spec 0M is infinite.

(ii) There exists a Z-module M such that |spec pM | = 1 for every
prime ideal p of Z but M is not a multiplication module.

Proof. (i) Let the Z-module N be a direct sum of an infinite number
of copies of Q and let M = Z ⊕ N . For any maximal ideal p of
Z, pM = p ⊕ N and M/pM ∼= Z/p, so that spec pM = {p ⊕ N}.
However, for any direct summand K of N , M/K is torsion-free so that
K ∈ spec 0M .

(ii) Let L be any nonzero torsion divisible Z-module, and let M =
Z ⊕ L. If p is any maximal ideal of Z, then spec pM = {p ⊕ L} by the
proof of (i). Clearly spec 0M = {0 ⊕ L}. If H is the submodule Z ⊕ 0
of M , then (H : M) = 0, and hence H �= (H : M)M , i.e., M is not a
multiplication module.

In [9, Theorem 4.7] we proved that for a Dedekind domain R and
a finitely generated R-module M , then Zariski-finite, weakly Zariski-
finite and Zariski-bounded are all equivalent. We are now able to
show that the same can be said if R is any Noetherian one-dimensional
domain and M is any finitely generated R-module. But first we record
the following result [11, Theorem 1.8].
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Lemma 1.4. Let R be a Noetherian ring, and let M be a finitely
generated R-module. If M is Zariski-bounded, then there are at most
finitely many prime ideals p of R such that |spec pM | > 1.

If R is any ring and M is any R-module, then for each maximal
ideal p of R such that |spec pM | = 1, we have spec pM = {pM}. Now
if, in addition, R is a one-dimensional Noetherian domain and M is
finitely generated, then it follows that there are only finitely many
prime submodules P of M which are not of the form P = (P : M)M .

Theorem 1.5. Let R be a Noetherian one-dimensional domain, and
let M be a finitely generated R-module. Then the following statements
are equivalent.

1) M is Zariski-finite.

2) M is weakly Zariski-finite.

3) M is Zariski-bounded.

4) M has only finitely many prime submodules P not of the form
P = (P : M)M .

Proof. 1) ⇒ 2) ⇒ 3). By Lemma 1.1.

3) ⇒ 4). By the above remarks.

4) ⇒ 1). By [9, Lemma 4.5].

We shall see that, at least in some cases, those primes P not of the
form P = (P : M)M are not the only kinds of prime submodules
useful in determining whether a module is Zariski-finite. We now turn
our attention to the case where M is torsion-free.

2. Torsion-free modules. Let R be an integral domain, and let
M be a torsion-free R-module. A prime submodule P of M is said
to be directional if V (P ) �= V ((P : M)M). We remark that if P is
a directional prime, then some nonzero submodule A of M must exist
such that V (P ) = V ((P :M)M +A), for example, A = P .

Lemma 2.1. Let R be an infinite domain, and let M be a finitely
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generated, torsion-free Zariski-bounded R-module. Let p be a height 1
prime ideal of R, and let P ∈ spec pM . If P is a directional prime and
A is any submodule of M such that V (P ) = V (pM + A), then P is a
minimal prime to A.

Proof. Note that A �= 0 and that spec 0M = {0} [11, Lemma 1.1].
Now P ⊇ A; hence P contains some minimal prime to A, say Q. Since
p ⊇ (Q :M) �= 0 and since p is height one, we must have p = (Q :M).
It follows that Q ∈ V (pM +A) = V (P ), and thus P = Q.

Let R be any ring and M any R-module. For a prime submodule
P of M , we define the R-height of P to be the height of (P : M).
Now consider the case where N1, . . . , Nk are submodules of M and P
is a p-prime submodule of M such that V (P ) ∈ 〈V (N1), . . . , V (Nk)〉.
Then there exist ideals a1, . . . , ak of R such that V (P ) = V (a1N1 +
· · ·+akNk). Since, for each i, 1 ≤ i ≤ k, we have P ⊇ aiNi, then either
ai ⊆ p or Ni ⊆ P . Let I = {i : 1 ≤ i ≤ k and ai ⊆ p}, and let J = {i :
1 ≤ i ≤ k and ai �⊆ p}. Then a1N1 + · · ·+akNk ⊆ pM+

∑
j∈J Nj ⊆ P ,

and thus V (P ) ⊆ V (pM +
∑

j∈J Nj) ⊆ V (a1N1 + · · ·+ akNk) = V (P ).
In particular, note that V (P ) = V (pM +

∑
j∈J Nj).

Lemma 2.2. Let R be a Noetherian domain, and let M be a finitely
generated R-module. IfM is torsion-free and weakly Zariski-finite, then
M has only finitely many directional primes of R-height 1.

Proof. There exist nonzero submodules N1, . . . , Nk of M such that
for every P ∈ specM , V (P ) ∈ 〈V (N1), . . . , V (Nk)〉. From the
above remarks, for every P ∈ specM such that P is directional,
then V (P ) = V ((P : M)M +

∑
i∈J Ni) for some nonempty subset

J ⊆ {1, . . . , k}. If ht (P : M) = 1, then by Lemma 2.1, P must be a
minimal prime to

∑
i∈J Ni. However, there are only finitely many such

sums, and each such sum has only finitely many minimal primes [12,
Theorem 4.2].

Lemma 2.3. Let R be a Noetherian domain, and let M be a
finitely generated torsion-free R module. If M has only finitely many
directional primes, then M is Zariski-finite.
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Proof. Let Q1, . . . , Qk be the directional primes of M . We will show
that ζ(M) is generated by varieties of the form V (∩i∈JQi), where
J ⊆ {1, . . . , k}. To simplify matters, assume that if J = ∅, then
∩i∈JQi =M .

Let N be a submodule of M . There are only finitely many minimal
primes to N , say P1, . . . , Pr, which are not directional, and {Qi}i∈J ,
where J ⊆ {1, . . . , k}. Let pi = (Pi :M), 1 ≤ i ≤ r. We claim that

V (N) =
{
V (∩i∈JQi) r = 0,
V ((

∏r
i=1 pi)(∩i∈JQi)) r > 0.

The case r = 0 is obvious. Now if P ∈ V (N), then P must con-
tain some minimal prime to N , but note that (

∏r
i=1 pi)(∩i∈JQi) is

contained in every minimal prime to N . On the other hand, if
P ∈ V ((

∏r
i=1 pi)(∩i∈JQi)), then either P ⊇ ∩i∈JQi ⊇ N or P ⊇

(
∏r

i=1 pi)M . The latter implies that P ⊇ piM for some i, 1 ≤ i ≤ r,
thus P ∈ V (piM) = V (Pi). In either case, P ∈ V (N). The result now
follows.

Theorem 2.4. Let R be a Noetherian two-dimensional domain, and
let M be a finitely generated torsion-free R-module. Then the following
statements are equivalent.

1) M is Zariski-finite.

2) M is weakly Zariski-finite.

3) M has only finitely many directional primes.

Proof. 1) ⇒ 2). By Lemma 1.1.

2) ⇒ 3). By Lemma 2.2, M has only finitely many directional primes
of R-height 1. Now, since M is Zariski-bounded, there are only finitely
many directional primes of R-height 2, by [11, Theorem 1.8]. Finally,
0 is the only 0-prime submodule of M [11, Lemma 1.1].

3) ⇒ 1). By Lemma 2.3.

Conspicuous by its absence in the preceding theorem is any mention
of Zariski-bounded. But the next example shows that Zariski-bounded
cannot be included in the above list. Before proceeding with the
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example, however, we need some more notation. For any prime ideal
p of R, let M(p) = {m ∈ M : cm ∈ pM for some c ∈ R\p}. In [12]
it was shown that either M(p) = M or M(p) ∈ spec pM and that, in
particular, if M is finitely generated, then M(p) ∈ spec pM provided
p ⊇ annM .

Example 2.1. There exists a finitely generated, torsion-free module
M over a two-dimensional Noetherian domain R such thatM is Zariski-
bounded, but M is not Zariski-finite.

Proof. Let R = Z[x], let F = R ⊕ R, and let y = (x, x + 2) ∈ F .
Note that M = F/Ry is torsion-free and indeed M is Zariski-bounded
by [11, Proposition 2.2]. Note also that m = Rx+R2 is the only prime
ideal p of R such that Ry ⊆ pF .

Now, for every positive integer n, let pn = R(x + 2n). Then
pn ∈ specR and pn = ((pnF + Ry) : F ) [6, Corollary 3.4]. However,
x(n, n − 1) = −(0, x + 2n) + n(x, x + 2) ∈ pnF + Ry, but x /∈ pn and
(n, n − 1) /∈ pnF + Ry. To see this, let ϕ : F → M be the natural
epimorphism, and note that ϕ((n, n−1)) ∈M(pn). In addition, we see
that ϕ((n, n−1)) /∈ mM , since (n, n−1) /∈ mF = mF +Ry. Therefore,
V (M(pn)) �= V (pnM), and thus M has infinitely many directional
primes. Now apply Theorem 2.4.

The authors do not know at present whether Theorem 2.4 can be
generalized to arbitrary dimensions. It would be helpful to know, in
the context of Lemma 2.2, if M actually has no directional primes of
R-height 1. This would imply, at least if R has Krull dimension, that
the only directional primes P ofM would have to be such that (P :M)
is maximal, and there could only be finitely many of these. However,
the authors have not as yet resolved this matter, except in the case
that R is a Noetherian UFD (Corollary 3.3.)

We can say a bit more about directional primes, however, if R is any
Noetherian domain and M is a finitely generated torsion-free Zariski-
bounded module. Given any directional prime P ∈ spec pM , then there
exists some maximal ideal m of R such that p ⊆ m but P �⊆ mM . This
is obvious, of course, if p is maximal. If p is not maximal, then there
must exist some prime ideal q of R and some q-prime submodule Q of
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M such that pM ⊆ Q but P �⊆ Q. Now since p ⊆ q, then P must be
contained in some q-prime submodule of M [6, Theorem 3.3]. But if q
is not maximal, then spec qM = {Q}, since M is Zariski-bounded [11,
Corollary 1.2]. Indeed, it now follows that for every prime ideal q′ of
R such that p � q′ � m, then M(q′) is likewise a directional prime.

Before moving on, we remark that every torsion-free Zariski-bounded
module over an infinite domain is uniform [11], where a nonzero module
M is uniform if every pair of nontrivial submodules of M intersect
nontrivially. Compare the next result with [9, Corollary 4.2] which says
that M is isomorphic to an ideal of R, provided that R is a Dedekind
domain and M is a finitely generated, torsion-free R-module such that
spec 0M is finite.

Lemma 2.5. Let R be a domain, and let M be a finitely generated
torsion-free R-module. If M is uniform, then M is isomorphic to some
ideal of R.

Proof. We have spec 0M = {0} by [11, Lemma 1.1]. Now let F
be a finitely generated free R-module such that M ∼= F/P for some
submodule P of F . It follows that P is a maximal element of spec 0F .
By [6, Lemma 3.5], P is the kernel of some ϕ ∈ F ∗. Then we have
M ∼= F/P ∼= ϕ(F ) � R.

The question as to exactly which ideals of a domain R are Zariski-
bounded is an intriguing one, and one to which the authors do not
at present know the answer. However, the next result says quite a lot
about which ideals in a Noetherian domain can be weakly Zariski-finite.

Lemma 2.6. Let R be an infinite Noetherian domain, and let a be
an ideal of R such that a is not contained in any height 1 prime ideal
of R. If a (as an R-module) is weakly Zariski-finite, then a = R.

Proof. Suppose that a is proper, and let m be a maximal ideal of
R containing a. Now ma �= a, so choose x1 ∈ a\ma. Since x1 ∈ m
there exists p1 ⊆ m such that p1 is a minimal prime to Rx1, and thus
p1 is height 1 by the principal ideal theorem. Since a �⊆ p1, then
p1∩a ∈ spec p1a, and since x1 ∈ (p1∩a)\ma, then p1∩a is a directional
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prime of a. Now ma �⊆ p1 ∩ a, else m ⊆ p1. So choose x2 ∈ ma\(p1 ∩ a).
Then x1 +x2 ∈ a\(ma∪ (p1 ∩ a)). As before, there exists p2 ⊆ m which
is a height 1 prime minimal to R(x1 +x2). Note that p1 �= p2, and that
p2 ∩ a is likewise directional.

Let k ≥ 2 be given. Our induction hypothesis is that, for each i,
2 ≤ i ≤ k, there exist xi ∈ ma\(p1 ∩ a) and pi ⊆ m with pi a minimal
prime to x1 + xi such that for each j, 1 < j < i,

if x1 /∈ pj , then xi ∈ pj , and
if x1 ∈ pj , then xi /∈ pj .

Note that for each pair j, i such that 1 ≤ j < i ≤ k, we have pj �= pi

since x1 + xi ∈ pi\pj . Now let S = {i ≤ k : x1 ∈ pi}, and let
T = {i ≤ k : x1 /∈ pi}. It is apparent that ma∩(∩i∈T (pi∩a)) �⊆ ∪i∈Spi.
Hence we may choose xk+1 ∈ ma ∩ (∩i∈T (pi ∩ a))\ ∪i∈S pi, and thus
there exists pk+1 ⊆ m which is a height 1 prime minimal to x1 + xk+1

and is distinct from pi for all i, 1 ≤ i ≤ k. Note that pk+1 ∩ a is
directional. It follows that there are infinitely many directional primes
of R-height 1 in a, which contradicts Lemma 2.2.

3. Nontorsion modules. Since directional primes are defined in
terms of their varieties, there is conceivably a considerable number of
possible variations for the structure of a nondirectional prime. It would
be useful to know what (at least all but finitely many of) the prime
submodules of a module actually look like. Our main result indeed tells
us precisely that, in the given setting.

Let R be a domain, and let M be a nontorsion R-module with
T = torM . For a p-prime submodule P of M , we say that P is tame
if P = pM , P is semi-tame if P is not tame and P = pM + T and
p is wild if P is neither tame nor semi-tame. Recall from [12] that a
p-prime submodule is virtually maximal if p is a maximal ideal of R.

Lemma 3.1. Let R be a Noetherian domain, and let M be a finitely
generated nontorsion R-module. If M has only finitely many wild
primes, each of which is virtually maximal, then M is Zariski-finite.

Proof. Let T = torM . In a similar fashion to Lemma 2.3 we claim
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that ζ(M) is generated by varieties of the form V (∩Q) and V (T∩(∩Q)),
where the Q’s are the wild primes of M .

LetN be a submodule ofM , and let P1, . . . , Pr be the minimal primes
to N which are tame, Pr+1, . . . , Ps the minimal primes to N which are
semi-tame, and Q1, . . . , Qt the minimal primes to N which are wild.
For each i, 1 ≤ i ≤ s, let pi = (Pi : M) and for each i, 1 ≤ i ≤ t, let
qi = (Qi :M). We claim that

V (N) =
{
V ((

∏s
i=1 pi)(∩t

i=1Qi)) s = r,
V ((

∏s
i=1 pi)(∩t

i=1Qi) + (
∏r

i=1 pi)(T ∩ (∩t
i=1Qi))) s > r,

with the understanding that if t = 0, then ∩t
i=1Qi = M and, if r = 0,

then
∏r

i=1 pi = R. We demonstrate the case where s > r > 0 and
t > 0.

Let L = (
∏s

i=1 pi)(∩t
i=1Qi) + (

∏r
i=1 pi)(T ∩ (∩t

i=1Qi)). Now if
P ∈ V (N), then P must contain some minimal prime to N , and it
is an easy check that L is contained in every minimal prime to N ,
noting that for every i, r + 1 ≤ i ≤ s, we have T ⊆ Pi. Conversely,
suppose that P ∈ V (L). Note first that P ⊇ ∩t

i=1Qi implies P ⊇ N , so
suppose that P �⊇ ∩t

i=1Qi. Then (P : M) ⊇ ∏s
i=1 pi. If pi ⊆ (P : M)

for some i, 1 ≤ i ≤ r, we again have P ⊇ N , so suppose further
that (P : M) �⊇ pi for all i, 1 ≤ i ≤ r. Then there exists some j,
r + 1 ≤ j ≤ s, such that pj ⊆ (P : M). Now turning our attention to
the second summand of L, we see that P must contain T ∩ (∩t

i=1Qi). If
P ⊇ T , then P ⊇ pjM+T = Pj ⊇ N , and we are done. If, on the other
hand, P �⊇ T , then (P : M) ⊇ qn for some 1 ≤ n ≤ t [5, Lemma 2].
But qn is a maximal ideal, so that pj ⊆ (P : M) = qn. It follows that
pjM + (T ∩Qn) = (pjM + T ) ∩Qn = Pj ∩Qn ⊇ N . Finally, observe
that for k �= n, 1 ≤ k ≤ t, we have qk �= qn. This is so because for each
prime ideal p of R, there can be at most one p-prime submodule of R
which is minimal to N . Hence (P : M) �⊇ ∩i �=nqi, and so P ⊇ T ∩Qn.
It now follows that P ⊇ N , and we are done.

Theorem 3.2. Let R be a Noetherian UFD, and let M be a
nontorsion, finitely generated R-module. Then the following statements
are equivalent.

1) M is Zariski-finite.

2) M is weakly Zariski-finite.
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3) M ∼= R ⊕ T for some finite R-module T .

4) M has only finitely many wild primes, each of which is virtually
maximal.

Proof. Clearly the result holds if R is finite, so suppose that R is
infinite.

1) ⇒ 2). By Lemma 1.1.

2) ⇒ 3). Let T = torM . Note that, by Lemma 1.2, M/T is torsion-
free and weakly Zariski-finite, and thus by Lemma 1.1 and Lemma 2.5
(and the paragraph preceding it) we have M/T ∼= a for some ideal a
of R. With g the gcd of the (finitely many) generators of a, we let
a′ = {r ∈ R : gr ∈ a}. Note that a′ ∼= a ∼= M/T . As R is a UFD, it is
apparent that a′ is not contained in any height 1 prime ideal of R. By
Lemma 2.6, M/T ∼= a′ = R. It now follows that M ∼= R ⊕ T .

3) ⇒ 4). See the closing remarks of [11].

4) ⇒ 1). By Lemma 3.1.

Corollary 3.3. Let R be a Noetherian UFD, and let M be a torsion-
free finitely generated R-module. Then M is Zariski-finite if and only
if M ∼= R.

Proof. ⇐. This is obvious.

⇒. By Theorem 3.2, M ∼= R ⊕ T for some finite R-module T . But
clearly T = torM = 0.

The UFD condition is critical in the above theorem and corollary. For
example, if R is a Dedekind domain, then every ideal of R is Zariski-
finite [9, Lemma 4.6].

An interesting question still remains as to whether Zariski-finite is
equivalent to weakly Zariski-finite, at least in the Noetherian setting.
The authors at present know of no examples which suggest that they
are not equivalent.
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