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STABILITY OF DIFFEOMORPHISMS
ALONG ONE PARAMETER

MING-CHIA LI

ABSTRACT. The structural stability theorem, proved by
Robbin [6] and Robinson [7], says that for an Axiom A
diffeomorphism f with the strong transversality condition,
there exists a sufficiently small neighborhood U of f in the
set of C1 diffeomorphisms such that if g ∈ U then there is
a homeomorphism h near the identity map such that f is
conjugate to g, i.e., hf = gh.

In this paper we further investigate the size of the neigh-
borhood U and the distance of the homeomorphism h with
the identity map. We show that if {fε} is a one-parameter
family of C3 diffeomorphisms, f0 satisfies Axiom A and the
strong transversality condition, and fε is C0 O(ε3)-close and
C1 O(ε2)-close to f0, then for all small |ε|, there is a homeo-
morphism hε with C0 O(ε2) near the identity map, such that
hεf0 = fεhε.

1. Definitions and the main theorem. First of all, we introduce
notations and basic definitions.

Throughout this paper, let M denote a smooth compact manifold
with a distance d induced from the Riemannian metric, dC0 denote a
distance in the set of continuous maps on M with the standard C0-
topology, and dC1 denote a distance in the set of C1 diffeomorphisms
on M with the strong C1-topology. For r = 0 or 1, p ∈ N, we say that
f is Cr O(εp) to g if the ratio |dCr (f, g)/εp| is bounded as ε→ 0.

A compact invariant set Λ for a diffeomorphism f on M has a
hyperbolic structure if TM |Λ, the restriction of the tangent bundle
TM of M to Λ has two subbundles Es and Eu such that TM |Λ =
(Es ⊕ Eu)|Λ where ⊕ is the Whitney sum of two subbundles, and if
there exist C > 0 and 0 < µ < 1 such that, for any x ∈ M and for all
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n ≥ 0,

Dfn
x Eσ(x) = Eσ(fn(x)) for σ = s, u,

|Dfn
x v

s| ≤ Cµn|vs| for vs ∈ Es(x), and
|Df−n

x vu| ≤ Cµn|vu| for vu ∈ Eu(x).

A point x is nonwandering for f if for every neighborhood U of x there
is an integer n > 0 such that U ∩ fn(U) �= ∅. A point x is periodic for
f if fn(x) = x for some n > 0. The stable manifold of x for f is the
set W s(x) = {y ∈ M : d(fn(x), fn(y)) → 0 as n → ∞}. The unstable
manifold of x for f is the set Wu(x) = {y ∈ M : d(fn(x), fn(y)) → 0
as n→ −∞}.

A diffeomorphism f satisfies Axiom A if the nonwandering set has
a hyperbolic structure and the periodic points of f are dense in the
nonwandering set. If f satisfies Axiom A, then W s(x) and Wu(x)
are injectively immersed submanifolds for all points x ∈ M (see [1]).
Such a diffeomorphism satisfies the strong transversality condition if
TxW

s(x) + TxW
u(x) = TxM for all x ∈M .

We are now in a position to state the result.

Main theorem. Let M be a smooth compact manifold, {fε} a
one-parameter family of C3 diffeomorphisms on M , and f0 satisfies
Axiom A and the strong transversality condition. Let fε be C0 O(ε3)-
close and C1 O(ε2)-close to f0. Then for all small |ε|, there is a
homeomorphism hε on M , with C0 O(ε2) near the identity map, such
that hεf0 = fεhε.

In [5], Murdock considered a one-parameter of vector fields {Xε}
on M with a gradient-like Morse-Smale vector field X0 (when ε = 0)
and showed that a constant c > 0 exists such that, for all small ε,
every solution p(t) of X0 is shadowed by a solution qε(t) of Xε in the
sense that d(p(t), qε(t)) ≤ cε for all t ∈ R. Avoiding the difficulty of
establishing a homeomorphism carrying one to the other, he proved the
result by constructing shadowing orbits directly.

In the proof of the main theorem, we shall construct the homeomor-
phism hε. The way of the construction is based on the proof of Robbin
[6] and Robinson [7] for the structural stability theorem. Some crucial
estimates are summarized in the key lemma.
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In order to prove that the function hε is one-to-one, we need the
definitions of df0-Lipschitz vector fields and subbundles, due to Robbin
[6]. For x, y ∈ M , define df0(x, y) = sup{d(fn

0 (x), fn
0 (y)) : n ∈ Z}.

Then df0 is a metric on the manifold M . Let X 0(M) be the set
of continuous vector fields on M with a norm ‖ · ‖0. A vector field
v ∈ X 0(M) is df0-Lipschitz if there is a least positive constant Λ(v)
such that |v(x) − v(y)| ≤ Λ(v)df0(x, y) for all x, y ∈ M . Here, in
order to subtract v(x) and v(y), we think of TM ⊂ M × R2m for
some Euclidean space. Let X f0(M) be the set of df0-Lipschitz vector
fields on M and ‖v‖f0 = max{‖v‖0,Λ(v)}. Then ‖ · ‖f0 is a norm as
shown in [6]. A subbundle E ⊂ TM is df0-Lipschitz if there is a least
positive constant Λ(E) such that |E(x)−E(y)| ≤ Λ(E)df0(x, y), where
|E(x) − E(y)| is an appropriate distance function between Euclidean
spaces.

2. Proof of the main theorem. We briefly sketch the proof as
follows.

First, for v ∈ X 0(M), let

Qε(v) = exp−1 ◦f−1
ε ◦ exp ◦v ◦ f0 − Tf−1

0 ◦ v ◦ f0,
L(v) = v − Tf−1

0 ◦ v ◦ f0.

We shall construct a right inverse J of L, i.e., LJ(v) = v. Second,
define Θε : X 0(M) → X 0(M) by

Θε(v) = JQε(v).

We will prove that Θε is a contraction and apply the contraction
mapping theorem to Θε so that it has a fixed point ṽε. We show
that this fixed point ṽε is a solution of the equation Qε(ṽε) = L(ṽε) as
follows:

L(ṽε) = LΘε(ṽε) = LJQε(ṽε) = Qε(ṽε).

From the definitions of L and Qε, we get that exp−1
x ◦f−1

ε ◦expf0(x) ◦ṽε◦
f0(x) = ṽε(x), and so exp ṽε ◦ f0(x) = fε ◦ exp ṽε(x). Define hε(x) =
exp ṽε(x) for x ∈M . Therefore, hε ◦ f0(x) = fε ◦hε(x). Finally we will
prove that ṽε is df0-Lipschitz small and conclude that hε is one-to-one.

To start with, we recall some classical properties in [8]. Because f0
satisfies Axiom A, there is a spectral decomposition of the nonwandering
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set Ω(f0) = Ω1 ∪ · · · ∪ Ωm where the Ωi are pairwise disjoint and each
Ωi is closed, invariant and topologically transitive. Since f0 satisfies
the strong transversality condition, there is a partial ordering among
these sets Ωi defined by Ωi ≤ Ωj if and only if Wu(Ωi)∩W s(Ωj) �= ∅.
We can extend this partial ordering to a total ordering and reindex
the sets such that if Wu(Ωi) ∩ W s(Ωj) �= ∅, then i ≤ j. Let
TM |Ω(f0) = (Eu ⊕ Es)|Ω(f0) be the hyperbolic invariant splitting for
the diffeomorphism f0 on Ω(f0).

As in [6] and [7], there are neighborhoods Ui of Ωi, i = 1, . . . ,m, and
compatible families of stable and unstable subbundles {Eσ

i (x) ⊂ TxM :
x ∈ O(Ui)}, σ = s, u, where O(Ui) = {fn(x) ∈ M : x ∈ Ui, n ∈ Z}.
That is, for i, j = 1, . . . ,m,

1. Ui ∩ Uj = ∅ for i �= j.

2. Eu
i |Ωi

= Eu|Ωi
and Es

i |Ωi
= Es|Ωi

.

3. TM |O(Ui) = (Eu
i + Es

i )|O(Ui).

4. Eu
i and Es

i are T f0-invariant.

5. Eu
i (x) ⊃ Eu

j (x) and Es
i (x) ⊂ Es

j (x) if 1 ≤ i < j and x ∈
O+(Ui) ∩ O−(Uj). Here O+(Ui) = {fn(x) ∈ M : x ∈ Ui, n ≥ 0}
and O−(Ui) = {fn(x) ∈M : x ∈ Ui, n ≤ 0}.

6. (Hyperbolic estimate) There is a Riemannian metric and a con-
stant 0 < µ < 1 such that ‖Tf−1

0 ◦ vu‖0 ≤ µ‖vu‖0 and ‖Tf0 ◦ vs‖0 ≤
µ‖vs‖0 for vu ∈ Eu

i |Ui
, vs ∈ Es

i |Ui
.

7. Eu
i and Es

i are df0-Lipschitz.

Choose a partition of unity θ1, . . . , θm subordinate to the cover
O(U1), . . . , O(Um) of M , i.e., for every i, θi : M → [0,∞) is a smooth
function such that supp (θi) ⊂ O(Ui) and

∑m
i=1 θi(x) = 1 for all x ∈M .

For v ∈ X 0(M), we write θiv = vu
i + vs

i with vσ
i (x) ∈ Eσ

i (x) for
x ∈ O(Ui) and σ = s, u. Hence supp (vσ

i ) ⊆ supp (θi) ⊂ O(Ui) for
σ = s, u. Define J : X 0(M) → X 0(M) by

J(v) =
m∑

i=1

( ∞∑
n=1

Tfn
0 ◦ vs

i ◦ f−n
0 −

∞∑
n=0

Tf−n
0 ◦ vu

i ◦ fn
0

)
.

Then J is a well-defined continuous linear map on X 0(M), see [6], and
clearly LJ(v) = v.
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The following lemma gives all estimates on J and Qε which we shall
need to show that Θε = JQε is a contraction. Refer to [2] and [3] for
similar estimates.

Key lemma. K1 > 0 exists such that

‖J‖0 ≤ K1(1− µ)−1,(1)
Λ(J(v)) ≤ K1(1− µ)−1(Λ(v) + ‖v‖0),(2)

and, moreover, δ > 0 exists such that, for all ‖v‖0, ‖w‖0 < δ,

‖Qε(0)‖0 ≤ dC0(fε, f0),(3)

‖Qε(v)−Qε(w)‖0 ≤ (K1 max{‖v‖0, ‖w‖0}+dC1(fε, f0))‖v−w‖0,
(4)

‖Qε(v)‖0 ≤ K1‖v‖0‖v‖0 + dC1(fε, f0)‖v‖0 + dC0(fε, f0),(5)
Λ(Qε(v)) ≤ (K1‖v‖0 + dC1(fε, f0))(1 + Λ(v)).(6)

We defer the proof of the key lemma to the end of this section.

From the key lemma, we have the following estimates on Θε.

‖Θε(v)−Θε(w)‖0 ≤ ‖J‖0‖Qε(v) −Qε(w)‖0

≤ K1(1 − µ)−1(K1 max{‖v‖0, ‖w‖0}
+ dC1(fε, f0))‖v − w‖0

‖Θε(v)‖0 ≤ ‖J‖0‖Qε(v)‖0

≤ K1(1 − µ)−1(K1‖v‖0‖v‖0 + dC1(fε, f0)‖v‖0

+ dC0(fε, f0))
Λ(Θε(v)) ≤ K1(1 − µ)−1{(K1‖v‖0 + dC1(fε, f0))(1 + Λ(v))

+K1‖v‖0‖v‖0

+ dC1(fε, f0)‖v‖0 + dC0(fε, f0)}.

Without loss of generality, we assume that the parameter ε > 0. From
the assumptions, dC0(f0, fε) < K2ε

3 and dC1(f0, fε) < K3ε
2 for some

constants K2,K3 > 0.
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In order to find the subspace of X 0(M) in which Θε preserves and is
a contraction, we choose a suitable K > 0, such that for all sufficiently
small ε with 0 < ε < 1 − µ,

Kε2 < δ,

K1(1− µ)−1(K1Kε
2 +K3ε

2) <
1
2
,

K1(1− µ)−1(K1Kε
2Kε2 +K3ε

2Kε2 +K2ε
3) ≤ Kε2,

K1(1− µ)−1{(K1Kε
2 +K3ε

2)(1 +Kε)
+K1Kε

2Kε2 +K3ε
2Kε2 +K2ε

3} ≤ Kε.

Thus, for all v, w ∈ X 0(M) with ‖v‖, ‖w‖ < Kε2 and every Lipschitz
vector field u ∈ X 0(M) with Λ(u) < Kε, we have that

‖Θε(v) −Θε(w)‖0 <
1
2
‖v − w‖0,

‖Θε(v)‖0 ≤ Kε2,

Λ(Θε(u)) ≤ Kε.

Therefore Θε preserves and is a contraction on the space {v ∈ X 0(M) :
‖v‖ ≤ Kε2} and Θε also preserve the subspace {v ∈ X 0(M) : ‖v‖ ≤
Kε2,Λ(v) ≤ Kε}. So Θε has a unique fixed point ṽε with ‖ṽε‖ ≤ Kε2

and Λ(ṽε) ≤ Kε. Define hε(x) = exp(ṽε(x)) for all x ∈ M , then
hε◦f0(x) = fε◦hε(x). Since ṽε is continuous, hε is continuous. Because
hε is homotopic to the identity, hε is of degree one and hence onto (see
[4]). Moreover, dC0(hε, idM ) = dC0(exp(ṽε), idM ) = ‖ṽε‖0 ≤ Kε2.
Finally, we have to prove that hε is one to one.

Suppose hε(x) = hε(y). By the conjugacy, we have hε(fk
0 (x)) =

fk
ε (hε(x)) = fk

ε (hε(y)) = hε(fk
0 (y)) for all k ∈ Z. There exists

n ∈ R such that df0(x, y) ≤ 2d(fn
0 (x), fn

0 (y)). Let p = fn
0 (x)

and q = fn
0 (y), then hε(p) = hε(q) and df0(p, q) = df0(x, y) ≤

2d(fn
0 (x), fn

0 (y)) = 2d(p, q). As in Lemma 2.3 of [6], α > 0 exists such
that αd(p, q)− d(hε(p), hε(q)) ≤ |ṽε(p)− ṽε(q)|. Because hε(p) = hε(q)
and Λ(ṽε) ≤ Kε,

αd(p, q) ≤ |ṽε(p)− ṽε(q)| ≤ Kεdf0(p, q) ≤ 2Kεd(p, q).

Consider ε small enough such that α− 2Kε > 0, then d(p, q) = 0 and
p = q. Thus, x = f−n

0 (p) = f−n
0 (q) = y, and hence hε is one to one.
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We now turn to prove the key lemma and so complete the proof of
the main theorem.

Proof of the key lemma. The six inequalities are proved in (1) (6)’s
order.

(1) By using hyperbolic estimates, it can be shown that C > 1
and 0 < µ < 1 exist such that ‖Tfn

0 ◦ vs
i ◦ f−n

0 ‖0 ≤ Cµn‖vs
i ‖0 and

‖Tf−n
0 ◦ vu

i ◦ fn
0 ‖0 ≤ Cµn‖vu

i ‖0 for all n ≥ 0 and all i. Thus

‖J‖0 ≤
m∑

i=1

2
∞∑

n=0

Cµn =
m∑

i=1

2C(1− µ)−1 ≤ K1(1 − µ)−1

for some K1 > 0.

(2) In [6] (see also [7]) Robbin showed that for σ = u, s,Λ(Tf−n
0 ◦

vσ
i ◦fn

0 ) ≤ CµnΛ(vσ
i )+bCnµn−1‖vσ

i ‖0, here b is a bound on the second
derivatives of f0 in local coordinates. Therefore,

∞∑
n=0

Λ(Tf−n
0 ◦ vσ

i ◦ fn
0 ) ≤

∞∑
n=0

(CµnΛ(vσ
i ) + bCnµn−1‖vσ

i ‖0)

≤ C(1− µ)−1Λ(vσ
i ) + bC(1− µ)−2‖vσ

i ‖0,

and

Λ(J(v)) ≤
m∑

i=0

( ∞∑
n=1

Λ(Tfn
0 ◦ vs

i ◦ f−n
0 ) +

∞∑
n=0

Λ(Tf−n
0 ◦ vu

i ◦ fn
0 )

)

≤ K1(1− µ)−1(Λ(v) + ‖v‖0), for some K1 > 0.

(3) Clearly,

‖Qε(0)‖0 = ‖ exp−1
x ◦f−1

ε ◦ f0(x)‖0 = dC0(fε, f0).

(4) Let Gε(vf0(x)) = Tf−1
0 (vf0(x)) − exp−1

x (f−1
ε (expf0(x)(vf0(x)))).

Since f0 and fε are C3, Gε is C2 and so K1 > 0 and δ > 0 exist
such that ‖D2Gε(v)‖0 ≤ K1 for all ‖v‖0 < δ. By the mean value
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theorem, we have for all ‖v‖0, ‖w‖0 < δ,

‖Qε(v)−Qε(w)‖0 = sup
x∈M

|Gε(vf0(x))−Gε(wf0(x))|

= sup
y∈M

|Gε(vy)−Gε(wy)|

= sup
y∈M

∣∣∣∣
∫ 1

0

DGε(wy+s(vy−wy))(vy−wy) ds
∣∣∣∣

≤ sup
y∈M

|v∗
y |≤‖v‖0,‖w‖0

|DGε(v∗y)| · |vy−wy|

= sup
y∈M

|v∗
y |≤‖v‖0,‖w‖0

{∣∣∣∣
∫ 1

0

D2Gε(sv∗y)v
∗
y ds

∣∣∣∣

+‖DGε(0)‖0

}
‖v−w‖0

≤ (K1 max{‖v‖0, ‖w‖0} + dC1(fε, f0))‖v−w‖0.

(5) Taking w = 0 in the inequality (4), we get

‖Qε(v)‖0 ≤ K1‖v‖0‖v‖0 + dC1(fε, f0)‖v‖0 + dC0(fε, f0)

(6) Using the mean value theorem again, we have

|Qε(vx)−Qε(vy)| ≤ ‖DGε(v∗)‖0d(v ◦ f−1
0 (x), v ◦ f−1

0 (y))
≤ (K1‖v‖0 + dC1(fε, f0))(d(f−1

0 (x), f−1
0 (y))

+ |v ◦ f−1
0 (x)− v ◦ f−1

0 (y)|)
≤ (K1‖v‖0 + dC1(fε, f0))(df0(x, y) + Λ(v)df0(x, y))
= (K1‖v‖0 + dC1(fε, f0))(1 + Λ(v))df0(x, y).

So Λ(Qε(v)) ≤ (K1‖v‖0 + dC1(fε, f0))(1 + Λ(v)).
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