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AN ALTERNATIVE FOR THE SPECTRAL
RADIUS OF POSITIVE INTEGRAL OPERATORS

A FUNCTIONAL ANALYTIC APPROACH

LUDWIG KOHAUPT

ABSTRACT. In a former paper, the author has investigated
the solution of Fredholm integral equations of the second
kind with positive integral operators in weighted function
spaces. These results can be obtained more easily by using
a functional analytic approach. We demonstrate this for an
alternative theorem concerning the spectral radius of positive
integral operators. To this end, first some refinements of
results on positive operators in abstract Banach spaces have
to be derived.

0. Introduction. In [5], among other things, alternative theo-
rems for positive integral operators are derived in a closed subspace
Cσ−1(Ω) ⊂ Cσ−1(ΩN ), respectively in Lσ(Ω), where σ is a continuous
weight function, σ−1 means 1/σ and where the weighted spaces fulfill
the inclusions Cσ−1(Ω) ⊂ C(Ω) and Lσ(Ω) ⊃ L(Ω) with Ω = [a, b].
The cases are handled there separately.

In this paper we show that both cases can be treated in a unified
manner by using a functional analytic approach and the duality relation
[Lσ(Ω)]

∗ = L∞,σ−1(Ω) where Lσ(Ω), respectively L∞,σ−1(Ω), is a
generalization of L(Ω), respectively L∞(Ω).

The first three sections form the functional analytic part and the last
section the application part.

The paper is structured as follows. In Section 1 some preliminaries
and notations are given. Section 2 derives the relation ρ(B) = ‖B‖κ

under weaker conditions than known so far, where κ is a positive
eigenvector of the positive operator B. In Section 3 an abstract
alternative theorem for the spectral radius is proven. Finally, in
Section 4 the alternative theorem is applied to integral operators. The
conditions imposed on the integral kernel are usually fulfilled with
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Green’s-function kernels. The application in the space Cσ−1(ΩN ) ⊂
L∞,σ−1(Ω) is an immediate consequence of the general theorem (cf.
4.1), and that in the space Lσ(Ω) follows when B is replaced by the
operator BT where BT has the kernel which is adjoint to that of B (cf.
4.2).

1. Preliminaries and notations. The definitions concerning
cones and positive operators in a Banach space vary somewhat in the
literature. Here, definitions on this subject are taken from [7], which
is also the most frequently used reference source.

Throughout this paper, V is a real Banach space, K a cone in V , and
B a bounded linear operator in V which is also written as B ∈ B(V ).
The spectral radius of B is denoted by ρ(B). Further, V ∗ is the adjoint
of V , that is, the Banach space of linear functionals on V with the usual
norm. K∗ means the wedge of all nonnegative functionals of V ∗, and
BT is the adjoint of B. K∗ is a cone, if and only if K −K = V . Assume
σ ∈ K, σ �= 0. Then, the set of σ-measurable elements of V endowed
with the σ-norm ‖u‖σ := inf {t ≥ 0 | −tσ ≤ u ≤ tσ} is denoted by Vσ.
When B ∈ B(V ), the spectral radius of B considered as an operator
B : Vσ → Vσ is denoted by ρσ(B). For σ ∈ K,σ �= 0, we define the
operator norm ‖B‖σ := sup0�=u∈Vσ

‖Bu‖σ/‖u‖σ.

Let Ω := [a, b] ⊂ R be a bounded closed interval of the real line. By
L(Ω) we mean the space of real functions on Ω which are measurable
and summable, and by L∞(Ω) the space of real functions on Ω which
are measurable and bounded almost everywhere.

2. The relation ρ(B) = ‖B‖κ. Under appropriate conditions, for
the operator norm ‖·‖σ with σ = κ we show that ρ(B) = ‖B‖κ where κ
is an eigenvector in K corresponding to ρ(B). This is proven in [12] for
κ ∈ int (K). The relation ρ(B) = ‖B‖κ shows that the Jacobi method
(i.e., the method of successive approximations) with iteration operator
B is optimal for the choice σ = κ.

A statement on the existence of a positive eigenvalue can be found,
for example, in [9, Theorem 6.1]. This theorem reads as follows. If K
is quasi-reproducing (i.e., K −K = V ) and B ∈ B(V ) is positive and
completely continuous with ρ(B) > 0, then ρ(B) is an eigenvalue of
both B and BT with corresponding eigenvectors κ ∈ K, respectively
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lχ ∈ K∗.

The following theorem gives a more precise result. Since it is often
difficult to prove that B is σ-bounded from below, it is convenient to
have only to verify that B is σ-bounded from above, which is simple
to verify, as a rule. Therefore, the following theorem is proven for this
case.

First, we need a definition.

According to [7, p. 43], we call two elements x, y of a cone K
equivalent (written x ∼ y), if x ≤ αy and y ≤ αx for some number
α ≥ 0.

Theorem 2.1. Let the following conditions be satisfied:

(i) the cone K ⊂ V is normal and reproducing

(ii) the operator B ∈ B(V ) is positive

(iii) B has an eigenvector κ ∈ K corresponding to the eigenvalue
ρ(B) > 0

or

(iii′) B is completely continuous and ρ(B) > 0

(iv) B is σ-bounded from above where σ ∼ κ.
Then,

ρ(B) = ρσ(B) = ρκ(B) = ‖B‖κ.

Proof. Let the conditions (i) (iv) be fulfilled.

As σ ∼ κ, B is κ-bounded from above. Now, [7, p. 91] shows that
there is a constant γ = γ(B) > 0 such that −γ‖u‖κ ≤ Bu ≤ γ‖u‖κ,
u ∈ V . Further, K is normal so that a constant R > 0 exists such that
‖u‖ ≤ R‖u‖κ, u ∈ Vκ. From Bκ = ρ(B)κ, one then infers

−γR‖u‖κ

ρ(B)
ρ(B)nκ ≤ Bnu ≤ γR‖u‖κ

ρ(B)
ρ(B)nκ, u ∈ Vκ,

so that ρκ(B) ≤ ρ(B). On the other hand, the inequality ρ(B)n ≤
‖Bn‖κ holds. Therefore ρ(B) ≤ ρκ(B). Hence, one has ρκ(B) = ρ(B).
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Finally, ρκ(B) = ‖B‖κ. To see this, we first observe that

ρκ(B) ≤ ‖B‖κ := sup
0�=u∈Vκ

‖Bu‖κ

‖u‖κ
.

The inequality ρκ(B) ≥ ‖B‖κ is proven as follows. One has −‖u‖κκ ≤
u ≤ ‖u‖κκ, u ∈ Vκ, and hence −‖u‖κBκ ≤ Bu ≤ ‖u‖κBκ, u ∈ Vκ.
Now, Bκ = λκκ and therefore −‖u‖κλκκ ≤ Bu ≤ ‖u‖κλκκ, u ∈ Vκ,
which means that ‖Bu‖κ ≤ λκ‖u‖κ, u ∈ Vκ. This entails ‖B‖κ ≤ λκ ≤
ρκ(B). So, the proof is complete.

3. An alternative for the spectral radius. We first mention
that in applications it is important that the wedge K∗ can be replaced
by any total set L∗ ⊂ K∗ (cf. [7, p. 22]). For example, L∗ = {fx ∈
(C[a, b])∗, x ∈ [a, b] | fx(u) = u(x), u ∈ C[a, b]} is evidently total in K∗

with K ⊂ C[a, b] defined by K = {u ∈ C[a, b] |u(x) ≥ 0, x ∈ [a, b]}.
Again, the condition that B has to be σ-bounded can be weakened,

as is shown in the following theorem. For the sake of easy reference,
we first formulate the following conditions:

(a) The operator B is completely continuous, and σ is a quasi-interior
point of K.

(b) The cone K is normal and solid, and σ is an interior point of K.

(c) The cone K is reproducing and normal, and the operator B is
σ-bounded from above.

(d) The cone K is reproducing and normal, the operator B is ϕ-
bounded from above, and σ is a quasi-interior point of K; here,
ϕ may be different from σ.

Next, we need a definition.

According to [7, p. 110], an operator A is called irreducible if Ax ≤ αx
(with x ∈ K and x �= 0) implies that x is a quasi-interior point of the
cone.

Herewith, one has

Theorem 3.1. Assume the following conditions:

(i) B ∈ B(V ) is positive with respect to the cone K ⊂ V
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(ii) B has an eigenvector κ ∈ K corresponding to ρ(B) > 0

or

(ii′)K is quasi-reproducing, B is completely continuous and possesses
a nonzero eigenvalue.

(iii) One of the conditions (a) (d) is fulfilled.

(iv) B is irreducible.

Then, for all ϕ ∈ Pκ = {ϕ ∈ K | ϕ ∼ κ} one has the alternative:

(a) either
f(Bϕ) = ρ(B)f(ϕ), f ∈ K∗

or

inf
f∈K∗

f(ϕ) �=0

f(Bϕ)
f(ϕ)

< ρ(B) < sup
f∈K∗

f(ϕ) �=0

f(Bϕ)
f(ϕ)

.

(b) In addition,

sup
ϕ∈Pκ

inf
f∈K∗

f(ϕ) �=0

f(Bϕ)
f(ϕ)

= ρ(B) = inf
ϕ∈Pκ

sup
f∈K∗

f(ϕ) �=0

f(Bϕ)
f(ϕ)

.

Proof. First we remark that, according to [7, p. 87], condition (ii′)
entails (ii).

Now, let the conditions (i) (iv) be satisfied. Then ρ(B) > 0 because
of (ii). Assume ϕ ∈ Pκ.

First, we prove the alternative:

either

(3.1) Bϕ = ρ(B)ϕ

or

(3.2) ρ(B)ϕ �≤ Bϕ �≤ ρ(B)ϕ.

To this end, let (3.1) be false, i.e., let Bϕ �= ρ(B)ϕ. Assume Bϕ ≤
ρ(B)ϕ. Now, under the conditions (i) (iii), a functional lχ ∈ K∗,
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lχ �= 0, exists such that B∗lχ = ρ(B)lχ (cf. [7, p. 170]). Further, from
ρ(B)ϕ − Bϕ ≥ 0, ρ(B)ϕ − Bϕ �= 0, and because B is irreducible by
assumption, there is an n ∈ N such that lχ(Bn(ρ(B)ϕ−Bϕ)) > 0 (cf.
[7, p. 113]). On the other hand, lχ[Bn(ρ(B)ϕ − Bϕ)] = 0 so that we
get a contradiction.

Hence, the righthand side of (3.2) is proven.

The proof of the lefthand side of (3.2) is obtained by replacing
ρ(B)ϕ−Bϕ by Bϕ− ρ(B)ϕ and using the same arguments as before.
The rest of the proof is as follows. Equation (3.1) is equivalent

to f(Bϕ) = ρ(B)f(ϕ), f ∈ K∗. Relation (3.2) is equivalent to
Bϕ − ρ(B)ϕ �∈ K and Bϕ − ρ(B)ϕ �∈ (−K). From [7, p. 21],
one has: there are functionals f0, g0 ∈ K∗, f0, g0 �= 0, such that
f0(Bϕ − ρ(B)ϕ) = −1 < 0 and g0(Bϕ − ρ(B)ϕ) = 1 > 0. Therefore,
one has f0(Bϕ) < ρ(B)f0(ϕ). As f0(Bϕ) ≥ 0, it follows that f0(ϕ) > 0
and hence

f0(Bϕ)
f0(ϕ)

< ρ(B).

Further, one concludes g0(Bϕ) > ρ(B)g0(ϕ) and therefore g0(Bϕ) > 0.
As ϕ ∈ Pκ, one has ϕ �= 0, and there are numbers α(ϕ) > 0 and
β(ϕ) > 0 such that α(ϕ)κ ≤ ϕ ≤ β(ϕ)κ. Hence,

ϕ ≥ α(ϕ)κ = α(ϕ)
ρ(B)

ρ(B)κ =
α(ϕ)
ρ(B)

Bκ ≥ α(ϕ)
ρ(B)β(ϕ)

Bϕ

so that
g0(ϕ) ≥ α(ϕ)

ρ(B)β(ϕ)
g0(Bϕ) > 0.

Therefore, one has

ρ(B) <
g0(Bϕ)
g0(ϕ)

.

Altogether, it follows that

inf
f∈K∗

f(ϕ) �=0

f(Bϕ)
f(ϕ)

< ρ(B) < sup
f∈K∗

f(ϕ) �=0

f(Bϕ)
f(ϕ)

.

Now, Part (b) is proven. From the last relation, it follows that

sup
ϕ∈Pκ

inf
f∈K∗

f(ϕ) �=0

f(Bϕ)
f(ϕ)

≤ ρ(B) ≤ inf
ϕ∈Pκ

sup
f∈K∗

f(ϕ) �=0

f(Bϕ)
f(ϕ)

.
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Further, the supremum on the lefthand side and the infimum on the
righthand side are attained for ϕ = κ so that the equality sign follows,
respectively.

Theorem 3.1 is an important result in that it allows us to obtain
the corresponding alternative for a wide class of integral operators.
In contrast to this, the stronger condition of σ-boundedness of the
operator B usually can only be verified in special cases, for integral
operators.

4. Applications to integral operators. Let Ω = [a, b] ⊂ R
be a closed interval, let σ ∈ C(Ω) and N = Nσ ⊂ ∂Ω as well as
ΩN = ΩNσ

= Ω \ N = Ω \Nσ. We suppose that σ satisfies σ(x) > 0,
x ∈ ΩN , σ(x) = 0, x ∈ N = Nσ, where N = ∅ is possible.

In this section, the results of Section 3 are applied to integral op-
erators in the spaces Cσ−1(ΩN ) ⊂ L∞,σ−1(Ω) and Lσ(Ω) (cf. subsec-
tions 4.1 and 4.2). The results in the space Lσ(Ω) are simply ob-
tained by just considering the adjoint BT : L∞,σ−1(Ω) → L∞,σ−1(Ω)
of B : Lσ(Ω) → Lσ(Ω). This is because [Lσ(Ω)]∗ = L∞,σ−1(Ω) holds
true.

4.1 Application in Cσ−1(ΩN ) ⊂ L∞,σ−1(Ω). Let V = C(Ω), the
usual norm being defined by ‖u‖∞ = maxx∈Ω |u(x)|, u ∈ V . This is a
complete subspace of L∞(Ω). Assume K∞ = {u ∈ C(Ω) | u(x) ≥ 0,
x ∈ Ω}. Then K∞ is a cone which is normal and reproducing (and also
solid). We remark that the set of nonnegative functions in L∞(Ω) also
forms a normal and reproducing cone (which is, however, not solid).
The σ-norm is defined by ‖u‖σ := inf{t ≥ 0 | −t σ(x) ≤ u(x) ≤
t σ(x), x ∈ Ω}, and we have

(4.1)
‖u‖σ = inf{t ≥ 0 | −t σ(x) ≤ u(x) ≤ t σ(x), x ∈ Ω}

= sup
x∈ΩN

|u(x)|
σ(x)

=: ‖u‖∞,σ−1 , u ∈ Vσ,

where the space Vσ is defined by

(4.2) Vσ :=
{
u ∈ C(Ω) | sup

x∈ΩN

|u(x)|
σ(x)

<∞
}
=: Cσ−1(ΩN ).
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Since K = K∞ is normal, Vσ = Cσ−1(ΩN ) is complete with respect to
the norm ‖ · ‖σ = ‖ · ‖∞,σ−1 . Evidently,

(4.3) u(x) = 0, x ∈ N = Nσ, for u ∈ Cσ−1(ΩN ).

Let B : V → V be the integral operator defined by

(4.4) (Bu)(x) =
∫

Ω

K(x, s)u(s) ds, x ∈ Ω, u ∈ V,

where

K(·, ·) ∈ C(Ω× Ω)(4.5)
K(x, s) ≥ 0, x, s ∈ Ω.(4.6)

Then B ∈ B(V ), B is completely continuous, and B is positive
(with respect to K∞). We remark that the kernel in (4.4) may also
have, e.g., single logarithmic discontinuities, which sometimes occurs
with Green’s functions. Further, for V = L∞(Ω), the space Vσ is
given by Vσ = L∞,σ−1(Ω) = {u ∈ L∞(Ω) | ‖u‖σ := ‖u‖∞,σ−1 =
ess supx∈Ω |u(x)|/σ(x) < ∞}. This is a complete subspace of L∞(Ω)
in the norm ‖ · ‖σ = ‖ · ‖∞,σ−1 .

For the application of Theorem 3.1, a condition stronger than (4.6)
is needed. For this, let N = NK ⊂ ∂Ω and ΩNK

= Ω \ NK . Further,
assume

(4.7)

K(x, s) > 0, x, s ∈ ΩNK

K(x, s) = 0



x ∈ NK s ∈ ΩNK

s ∈ NK x ∈ ΩNK

x ∈ NK s ∈ NK

For example, for Ω = [0, l] and the Green’s functions K(x, s) = G(x, s)
with

(4.8) G(x, s) =
{
(1− x/l)s 0 ≤ s ≤ x ≤ l
(1− s/l)x 0 ≤ x ≤ s ≤ l

and

(4.9) G(x, s) =
{
s 0 ≤ s ≤ x ≤ l
x 0 ≤ x ≤ s ≤ l ,
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condition (4.7) is fulfilled withNK = {0, l}, respectivelyNK = {0}, and
one has κ(x) = sin((π/l)x) for (4.8), respectively κ(x) = sin((π/(2l))x)
for (4.9).

In the following application the advantage of the weak conditions of
Theorem 3.1 becomes evident.

Theorem 4.1. Let the conditions (4.5) and (4.7) be fulfilled. Then
one has the following alternative. For every ϕ ∈ Pκ := {ϕ ∈ K∞ |, ϕ ∼
κ},
(a) either

∫
Ω

K(x, s)ϕ(s) ds = ρ∞(B)ϕ(x), x ∈ Ω

or

inf
x∈ΩN

1
ϕ(x)

∫
Ω

K(x, s)ϕ(s) ds < ρ∞(B)

< sup
x∈ΩN

1
ϕ(x)

∫
Ω

K(x, s)ϕ(s) ds.

(b) In addition,

sup
ϕ∈Pκ

inf
x∈ΩN

1
ϕ(x)

∫
Ω

K(x, s)ϕ(s) ds

= ρ∞(B) = ρ∞,κ−1(B) = ‖B‖∞,κ−1

= inf
ϕ∈Pκ

sup
x∈ΩN

1
ϕ(x)

∫
Ω

K(x, s)ϕ(s) ds.

Proof. The conditions of Theorem 3.1 are satisfied.

(i) is clearly true. Further, (ii′) holds under the conditions (4.5) and
(4.7). Moreover, condition (a) in (iii) is valid. Finally, B is irreducible
in the space V = CN (Ω) = {u ∈ C(Ω) | u(x) = 0, x ∈ N}. So (iv) is
fulfilled.

We remark that condition (4.7) can be made more general; for this,
see, e.g., [2, pp. 527 529].
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4.2 Application in Lσ(Ω). Let

(4.10) ‖u‖1,σ :=
∫

Ω

|u(x)|σ(x) dx, u ∈ L(Ω).

The norms ‖ · ‖1,σ and ‖ · ‖1 are equivalent if and only if N = Nσ = ∅.
In any case, the inequality

(4.11) ‖u‖1,σ ≤ σmax‖u‖1, u ∈ L(Ω),
holds with σmax := maxx∈Ω σ(x). Let
(4.12)

Lσ(Ω) :=
{
u | u is measurable on Ω, and

∫
Ω

|u(x)|σ(x) dx <∞
}
.

Then, L(Ω) ⊂ Lσ(Ω), the embedding being continuous due to (4.11).
In case Nσ = ∅, one has L(Ω) = Lσ(Ω), otherwise L(Ω) �⊆ Lσ(Ω).
Now, let K(·, ·) ∈ C(Ω × Ω) and B be given by (4.4). Further, let
(BTu)(x) =

∫
Ω
K(s, x)u(s) ds, x ∈ Ω, be the operator associated with

the kernel KT (x, s) := K(s, x) for appropriate functions u. In this
setting, we have

Theorem 4.2. Let the conditions (4.5) and (4.7) be fulfilled. Then
one has the alternative: For every ϕ ∈ Pχ := {ϕ ∈ K∞ | ϕ ∼ χ} where
BTχ = ρ∞(BT )χ,

(a) either ∫
Ω

ϕ(s)K(s, x) ds = ρ∞(BT )ϕ(x), x ∈ Ω
or

inf
x∈ΩN

1
ϕ(x)

∫
Ω

ϕ(s)K(s, x) ds < ρ∞(BT ) = ρ1(B)

< sup
x∈ΩN

1
ϕ(x)

∫
Ω

ϕ(s)K(s, x) ds.

(b) In addition,

sup
ϕ∈Pχ

inf
x∈ΩN

1
ϕ(x)

∫
Ω

ϕ(s)K(s, x) ds

= ρ∞(BT ) = ρ1(B) = ρ1,χ(B) = ‖B‖1,χ

= inf
ϕ∈Pχ

sup
x∈ΩN

1
ϕ(x)

∫
Ω

ϕ(s)K(x, s) ds.
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Proof. One applies Theorem 3.1 with B replaced by the adjoint
BT : L∞,σ−1(Ω) → L∞,σ−1(Ω) since [Lσ(Ω)]∗ = L∞,σ−1(Ω). Here,
BT : L∞,σ−1(Ω) → Cσ−1(ΩN ). Further, K∗ may be replaced by
L∗ = {f = fx | fx(u) = u(x), x ∈ ΩN}. Then the assertion follows
with ρ∞(BT ). Finally, one takes into account ρ∞(BT ) = ρ1(B) =
ρ1,χ(B) = ‖B‖1,χ.

The list of following references is, of course, by no means exhaustive.
Only those references are given which were used.
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