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POLYNOMIALS ON SCHREIER’S SPACE

MANUEL GONZÁLEZ AND JOAQUÍN M. GUTIÉRREZ

ABSTRACT. We introduce a weakened version of the
Dunford-Pettis property and give examples of Banach spaces
with this property. In particular, we show that every closed
subspace of Schreier’s space S enjoys it. As an application we
characterize the weak polynomial convergence of sequences,
show that every closed subspace of S has the polynomial
Dunford-Pettis property of Biström et al. and give other
polynomial properties of S.

A subset A = {n1 < · · · < nk} of the natural numbers N is said to
be admissible if k ≤ n1. Schreier’s space S [22], [4] is the completion
of the space c00 of all scalar sequences of finite support with respect to
the norm:

‖x‖S := sup
{ ∑

j∈A

|xj | : A ⊂ N is admissible
}
, for x = (xj)∞j=1.

Some basic properties of S may be seen in [6]. Schreier’s space has
been used to provide counterexamples in Banach space theory [2], [6],
[7], [20], [21].

In this paper we introduce a weakened version of the Dunford-Pettis
property and give examples of Banach spaces with this property. In
particular, we show that every closed subspace of S enjoys it. It is well
known that a reflexive Banach space with the Dunford-Pettis property
must be finite dimensional. The same is true for a Banach space with
the Banach-Saks property and the weak Dunford-Pettis property. As
an application we investigate polynomial properties of S, characterizing
the sequences which converge in the weak polynomial topology that we
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572 M. GONZÁLEZ AND J.M. GUTIÉRREZ

shall call the P-topology. As far as we know, this is the first time
that P-convergent sequences are characterized for a space where P-
convergence does not coincide with either norm of weak convergence
of sequences. From this we obtain that every closed subspace of S has
the polynomial Dunford-Pettis property [3].

We also show that the relatively compact sets for the P-topology
coincide with the Banach-Saks sets, that the absolutely convex closed
hull of a Banach-Saks set in S is a Banach-Saks set, and that the tensor
product of two Banach-Saks sets is a Banach-Saks set in the projective
tensor product S ⊗π S. It is unknown if the Banach-Saks sets in an
arbitrary Banach space are stable under convex hulls. An example
of a Banach space so that the relatively P-compact sets are not stable
under convex hulls was given in [5]. Moreover, given two P-null (i.e., P-
convergent to zero) sequences (xn), (yn) ⊂ S, we prove that {xn⊗yn} is
a Banach-Saks set in S⊗π S. The polynomial Dunford-Pettis property
of S implies that the sequence (xn ⊗ yn) is P-null in S ⊗π S, and that
(xn+yn) is P-null in S. These properties have interesting consequences
in infinite dimensional holomorphy, as shown in [15, Remark 4.7].

We shall use the facts that the unit vector basis of S is unconditional,
and that every closed subspace of S contains an isomorphic copy of c0
(so S contains no copy of l1).

Throughout the paper, E will denote a Banach space and E∗ its dual.
The space of all scalar valued k-homogeneous (continuous) polynomials
on E is represented by P(kE). General references for polynomials on
Banach spaces are [11], [19]. Given a subset A ⊂ N, cardA stands for
the cardinality of A.

A sequence (xn) ⊂ E is P-convergent to x if P (xn) → P (x) for every
P ∈ P(kE) and all k ∈ N. A set A ⊂ E is relatively P-compact if every
sequence in A has a P-convergent subsequence.
A subset A ⊂ E is a Banach-Saks set if every sequence in A has a

subsequence whose arithmetic means converge in norm. A sequence
(xn) ⊂ E converges uniformly weakly to x in E [18, Definition 2.1]
if, for each ε > 0, there exists N(ε) ∈ N such that card {n ∈ N :
|φ(xn − x)| ≥ ε} ≤ N(ε) for every φ ∈ E∗ with ‖φ‖ ≤ 1. A subset
A ⊂ E is a Banach-Saks set if and only if every sequence in A has a
subsequence which is uniformly weakly convergent in E [18, Theorem
2.9].
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Recall that a Banach space E has the Dunford-Pettis property (DPP
for short) if, for all weakly null sequences (xn) ⊂ E and (φn) ⊂ E∗, we
have φn(xn) → 0. We say that E has the polynomial Dunford-Pettis
property if, for every P-null sequence (xn) ⊂ E and every weakly null
sequence (φn) ⊂ E∗, we have φn(xn) → 0. The DPP implies the
polynomial DPP. E is said to be a Λ-space if P-null sequences and
norm null sequences coincide in E. Spaces with the Schur property are
trivially Λ-spaces. All super-reflexive spaces are Λ-spaces [16]. It is
proved in [13, Corollary 3.6] that every Banach space with nontrivial
type is a Λ-space.

1. The weak Dunford-Pettis property. We say that a Banach
space E has the weak Dunford-Pettis property (wDPP for short) if,
given a uniformly weakly null sequence (xn) ⊂ E and a weakly null
sequence (φn) ⊂ E∗, we have limφn(xn) = 0.

The space l2 fails the wDPP since its unit vector basis is uniformly
weakly null. Clearly, if E has the DPP, then E has the wDPP.

Denote by T the dual of the original Tsirelson space T ∗ [4]. Then
the uniformly weakly convergent sequences in T are norm convergent.
Indeed, suppose (xn) is uniformly weakly convergent to x ∈ T and
‖xn − x‖ ≥ δ > 0. Passing to a subsequence, we may assume that the
sequence (xn − x) is basic and equivalent to a subsequence of the unit
vector basis (tn) of T [4]. If A ⊂ N is admissible, by the definition of
the norm of T , we have ∥∥∥∥

∑
i∈A

ti

∥∥∥∥ ≥ 1
2
cardA

and so, (tn) has no uniformly weakly null subsequence, which yields a
contradiction.

Therefore, T enjoys the wDPP, but T ∗ does not since the unit vector
basis of T ∗ is a Banach-Saks set. We conclude that the wDPP of a
Banach space neither implies nor is implied by the wDPP of its dual.

The following simple remark will be useful.

Proposition 1.1. A Banach space E has the wDPP if and only if
whenever (xn) ⊂ E is uniformly weakly null and (φn) ⊂ E∗ is weak
Cauchy, we have limφn(xn) = 0.
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Proof. For the nontrivial part, if φn(xn) ≥ δ > 0, we can find
k1 < · · · < kn < · · · such that |φn(xkn

)| < δ/2. Then,
δ ≤ φkn

(xkn
) ≤ |(φkn

− φn)(xkn
)|+ |φn(xkn

)|
and the righthand side is less than δ for n large enough, since the
sequence (φkn

− φn) is weakly null.

Denoting by WCo(E,F ) the space of all weakly compact (linear)
operators from E into the Banach space F , and by Cw(E,F ) the space
of all operators taking uniformly weakly null sequences in E into norm
null sequences in F , we have

Proposition 1.2. The Banach space E satisfies the wDPP if and
only if, for all Banach spaces F , we have WCo(E,F ) ⊆ Cw(E,F ).

Proof. Suppose E has the wDPP and (xn) ⊂ E is uniformly
weakly null. Take L ∈ WCo(E,F ) with adjoint L∗. Choose (φn)
in the unit ball of F ∗ such that φn(Lxn) = ‖Lxn‖. There is a
subsequence (φnk

) such that (L∗φnk
) is weakly convergent. Hence,

φn(Lxn) = (L∗φn)xn → 0. Conversely, if E fails the wDPP, we can find
(xn) uniformly weakly null in E and (φn) weakly null in E∗ such that
φn(xn) ≥ δ > 0. We define an operator L : E → c0 by Lx := (φn(x)).
Then L is weakly compact but ‖Lxn‖ ≥ |φn(xn)| ≥ δ > 0 for all n.

The following easy fact characterizes the reflexive Banach spaces with
the wDPP.

Proposition 1.3. Let E be a reflexive Banach space. Then E has
the wDPP if and only if every uniformly weakly null sequence in E is
norm null.

Proof. Suppose that there is a uniformly weakly null sequence
(xn) ⊂ E with ‖xn‖ = 1. We can assume that (xn) is basic and
the sequence of coefficient functionals (φn) is weakly null in E∗. Since
φn(xn) = 1, we conclude that E does not have the wDPP. The converse
is clear.
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Recall that a Banach space E has the Banach-Saks property if every
bounded subset in E is a Banach-Saks set. We then have

Corollary 1.1. If E has the Banach-Saks property and the wDPP,
then E is finite dimensional.

A space E has the weak Banach-Saks property if every weakly null se-
quence in E contains a subsequence whose arithmetic means converge.
Equivalently [18], every weakly null sequence has a subsequence which
converges to zero uniformly weakly in E. The space L1[0, 1] has the
weak Banach-Saks property. The following result is clear.

Proposition 1.4. Assume E has the weak Banach-Saks property.
Then E has the DPP if and only if E has the wDPP.

We say that E has the hereditary weak Dunford-Pettis property if
every closed subspace of E has the wDPP.

Proposition 1.5. A Banach space E has the hereditary wDPP if and
only if every normalized uniformly weakly null sequence in E contains
a subsequence equivalent to the c0-basis.

Proof. Suppose that the uniformly weakly null sequence (xn) ⊂ E,
‖xn‖ = 1, has no subsequence equivalent to the c0-basis. We can
assume that (xn) is basic. Let (φn) ⊂ [xn]∗ be the sequence of
coefficient functionals where [xn] denotes the closed linear span of the
set {xn} in E. After taking a subsequence, we can assume that either
(φn) is equivalent to the l1-basis or (φn) is weak Cauchy [10]. In the
first case we define an operator L : [xn] → c0 by L(x) := (φn(x)).
Clearly L is injective and has dense range. The adjoint L∗ : l1 → [xn]∗

takes the unit vector basis of l1 into the sequence (φn) and therefore has
closed range. Hence, L is a surjective isomorphism, which contradicts
our assumption. So (φn) must be weak Cauchy. Since φn(xn) = 1, the
subspace [xn] fails to have the wDPP.

For the converse, it is enough to show that E has the wDPP. Suppose
it does not. Then we can find a uniformly weakly null sequence



576 M. GONZÁLEZ AND J.M. GUTIÉRREZ

(xn) ⊂ E and a weakly null sequence (φn) ⊂ E∗ such that φn(xn) ≥ 1
for all n. Passing to a subsequence, we can assume that (xn) is
equivalent to the c0-basis. Since the dual of c0 has the Schur property,
the restriction of (φn) to the subspace [xk] is norm null, and we get a
contradiction.

Remark 1.1. This simple proof also shows that a Banach space E has
the hereditary DPP if and only if every normalized weakly null sequence
in E has a subsequence equivalent to the c0-basis [8, Proposition 2].
From this we get that every infinite-dimensional Banach space without
a copy of either c0 or l1 contains a subspace without the DPP [10,
p. 254]. The original proofs of these two results were based on a
characterization of c0’s unit vector basis that Elton [12] obtained by
using Ramsey’s theorem.

Our aim now is to show that Schreier’s space enjoys the hereditary
wDPP.

Proposition 1.6. If (xn) is a uniformly weakly null sequence in S,
then ‖xn‖∞ → 0.

Proof. Let xn = (xi
n)∞i=1. Since a set of ±1’s on an admissible set is

a norm-one functional on S, given ε > 0, there is N(ε) ∈ N such that

card
{
n ∈ N :

∑
i∈A

|xi
n| ≥ ε

}
≤ N(ε)

for each admissible A. Suppose our statement fails; then we can find
δ > 0 and two increasing sequences of indices (nk), (lk) such that

|xlk
nk
| ≥ δ for all k.

The set Am := {lm+1, . . . , l2m} is admissible for each m ∈ N and

card
{
n ∈ N :

∑
i∈Am

|xi
n| ≥ δ

}
≥ m,

a contradiction which finishes the proof.
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The converse is not true. Indeed, take xn := (e1 + · · · + en)/n. The
set Ak := {2k−1, . . . , 2k − 1} is admissible for each k ∈ N. Denoting
by (e∗i ) the unit vector basis of S

∗, the functional

φk :=
2k−1∑

i=2k−1

e∗i ∈ S∗

has norm one. Choosing n so that 2k−2 + 2k−1 ≤ n ≤ 2k − 1, we have

φk(xn) ≥ 2k−2

n
>

2k−2

2k
=

1
4
.

Therefore, ‖xn‖∞ → 0, but (xn) does not converge to zero uniformly
weakly. The proof of the following result is essentially contained in [7].
We give it for completeness.

Proposition 1.7. Let (xn) be a normalized sequence in S such that
‖xn‖∞ → 0. Then (xn) contains a subsequence equivalent to the c0-
basis.

Proof. Let us denote by supp (x) the support of x. Passing to a
subsequence and perturbing it with a null sequence, we can assume
that max supp (xn) < min supp (xn+1), and

(1.1) ‖xn‖∞ ≤ 1
2n max supp (xn−1)

.

Given xn1 , . . . , xnm
and an admissible set A, we take k0 to be the

minimum value of k such that A ∩ supp (xnk
) �= ∅. In particular, this

implies that cardA ≤ max supp (xnk0
). Denoting xn(i) := xi

n, we have

∑
i∈A

∣∣∣∣
( m∑

k=1

xnk

)
(i)

∣∣∣∣ =
∑
i∈A

∣∣∣∣
( m∑

k=k0

xnk

)
(i)

∣∣∣∣

=
m∑

k=k0

∑
i∈A∩supp (xnk

)

|xnk
(i)|

≤ ‖xnk0
‖+

m∑
k=k0+1

‖xnk
‖∞ · cardA

≤ ‖xnk0
‖+

m∑
k=k0+1

2−nk ≤ 2,
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where we have used (1.1). Thus we have proved that

∥∥∥∥
m∑

k=1

xnk

∥∥∥∥ ≤ 2

and hence the series
∑
xn is weakly unconditionally Cauchy. Therefore,

(xn) has a subsequence equivalent to the c0-basis [10].

Combining the last two results with Proposition 1.5 yields

Theorem 1.1. Schreier’s space S has the hereditary wDPP.

We now show that the dual S∗ of Schreier’s space fails the wDPP.
The next result follows the lines of [17].

Proposition 1.8. Let (φn) be a normalized block basis of the unit
basis of S∗ such that ‖φn‖∞ → 0. Then (φn) contains a subsequence
equivalent to the l1-basis.

Proof. Let (xn) be a sequence in S such that ‖xn‖ < 2, supp (xn) =
supp (φn) and φn(xn) = 1 for every n.

First we select n1 such that min supp (φn1) > 22 and ‖φn1‖∞ < 2−4.
Since ‖xn1‖ < 2, the set

A1 = {i ∈ N : |xn1(i)| ≥ 2−1}

has fewer than 22 elements. We define yn1(i) = 0 if i ∈ A1 and
yn1(i) = xn1(i) otherwise, and obtain yn1 ∈ S such that ‖yn1‖ < 2,
‖yn1‖∞ < 2−1 and

|φn1(yn1)| ≥ φn1(xn1)− |φn1(yn1 − xn1)| > 1− 2(22)2−4 = 2−1.

Next we select n2 > n1 such that min supp (φn2) > 23 and ‖φn2‖∞ <
2−5. Since ‖xn2‖ < 2, the set

A2 = {i ∈ N : |xn2(i)| ≥ 2−2}
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has fewer than 23 elements. We define yn2(i) = 0 if i ∈ A2 and
yn2(i) = xn1(i) otherwise, and obtain yn2 ∈ S such that ‖yn2‖ < 2,
‖yn2‖∞ < 2−2 and

|φn2(yn2)| ≥ φn2(xn2)− |φn2(yn2 − xn2)| > 1− 2(23)2−5 = 2−1.

In this way we get a subsequence (φnj
) and a sequence (ynj

) ⊂ S
such that |φnj

(ynj
)| > 2−1, ‖ynj

‖ < 2 and ‖ynj
‖∞ < 2−j . Passing to a

subsequence we can assume by Proposition 1.7 that (ynj
) is equivalent

to the c0-basis, from which it easily follows that (φnj
) is equivalent to

the l1-basis.

Proposition 1.9. The dual S∗ of Schreier’s space S has the weak
Banach-Saks property.

Proof. Let (φn) be a normalized weakly null sequence in S∗. Passing
to a subsequence we can assume that (φn) is equivalent to a block basis
of the unit basis. We have that ((φ1 + · · · + φn)/n) is a weakly null
sequence and ‖(φ1 + · · · + φn)/n‖∞ → 0. If ‖(φ1 + · · · + φn)/n‖ does
not converge to zero, passing to a subsequence, it follows from Propo-
sition 1.8 that ((φ1+ · · ·+φn)/n) contains a subsequence equivalent to
the l1-basis, a contradiction.

Corollary 1.2. The dual S∗ of Schreier’s space does not have the
wDPP.

2. Applications to polynomials. In this section we describe the
P-convergence of sequences in S, thereby obtaining some polynomial
properties of this space, and characterize the Banach-Saks sets in it.

We shall use the fact that S may be algebraically embedded in l2
and that the natural inclusion j : S → l2 is continuous. To see this,
take x := (xi) ∈ S, ‖x‖S = 1 and call y := (yi) the sequence (|xi|),
reordered in a nonincreasing way. Then ‖y‖2 = ‖x‖2 and ‖y‖S ≤ 1.
This implies y2k−1 ≤ k−1 for each k. Therefore,

‖y‖2
2 =

∞∑
i=1

y2
i ≤ 1 + 1 +

1
22

+
1
22

+
1
32

+
1
32

+ · · · = π2

3
,
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from which ‖j‖ ≤ π/
√
3.

As a consequence, P (x) := ‖x‖2
2 defines a 2-homogeneous polynomial

on S.

Proposition 2.1. Let (xn) be a sequence in S. The following
assertions are equivalent

(a) (xn) is P-null;

(b) (xn) is bounded in S and ‖xn‖2 → 0;

(c) (xn) is bounded in S and ‖xn‖∞ → 0.

Proof. (a) ⇒ (b) since P (x) := ‖x‖2
2 is a polynomial on S.

(b) ⇒ (c) is clear.

(c) ⇒ (a). It is enough to show that (xn) has a P-null subsequence.
If inf ‖xn‖ > 0, then there is a subsequence of (xn) equivalent to the
c0-basis (Proposition 1.7) and so P-null, since the c0-basis is P-null. If
inf ‖xn‖ = 0, then there is a norm null subsequence, which is P-null a
fortiori.

A Banach space has the hereditary polynomial DPP if every closed
subspace has the polynomial DPP.

Theorem 2.1. The space S has the hereditary polynomial DPP.

Proof. By Propositions 2.1 and 1.7 every normalized P-null sequence
in S contains a subsequence equivalent to the c0-basis. Obvious
modifications in the “if” part of the proof of Proposition 1.4 yield the
result.

It is shown in [3] that, given two P-null sequences (xn), (yn) in a
space with the polynomial DPP, the sequence (xn + yn) is P-null. A
Banach space where this is not true was recently found by Castillo et
al. [5].
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Proposition 2.2. Let A be a subset of S. The following assertions
are equivalent:

(a) A is a Banach-Saks set;

(b) A is relatively P-compact;

(c) A is relatively weakly compact in S and relatively compact as a
subset of l∞.

Proof. (a) ⇒ (b). Let A be a Banach-Saks set. Given a sequence
(xn) ⊂ A, passing to a subsequence, we may assume that (xn) converges
to some x uniformly weakly in S. Then (xn − x) has a subsequence
which is either norm null or equivalent to the c0-basis. In both cases
(xn) is P-convergent to x.
(b) ⇒ (c). If A is relatively P-compact, it is relatively weakly

compact. Moreover, given a sequence (xn) ⊂ A, we can assume that
(xn − x) is P-null for some x. By Proposition 2.1, ‖xn − x‖∞ → 0 and
so A is relatively compact as a subset of l∞.

(c) ⇒ (a). Choose a sequence (xn) ⊂ A. We may assume that
(xn) is weakly convergent to some x and ‖xn − x‖∞ → 0. Passing to
a subsequence, we have either ‖xn − x‖ → 0 or, by Proposition 1.7,
(xn − x) is equivalent to the c0-basis and is therefore uniformly weakly
null.

Corollary 2.1. If A is a Banach-Saks set in S, then the absolutely
convex closed hull of A is a Banach-Saks set.

The following two properties were introduced in [1] and studied by
various authors (see, e.g., [3], [9]).

(a) A Banach space E has property (P) if, given two bounded
sequences (un), (vn) in E such that P (un) − P (vn) → 0 for every
P ∈ P(kE) and all k, it follows that the sequence (un − vn) is P-
null. Every superreflexive space and every space with the DPP have
property (P). A Banach space failing to have property (P) has been
found by Castillo et al. [5].

(b) A Banach space E has property (RP) if, given two bounded
sequences (un), (vn) in E such that the sequence (un − vn) is P-null, it
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follows that P (un)− P (vn) → 0 for every P ∈ P(kE) and all k. Every
Λ-space and every predual of a Banach space with the Schur property
have property (RP). The spaces L1[0, 1], C[0, 1] and L∞[0, 1] fail to
have property (RP) [1].

We now show that S has property (P) and fails property (RP).

Proposition 2.3. The space S fails property (RP).

Proof. Consider the vectors

vn := en; un := en + 21−n(e2n−1 + · · ·+ e2n−1).

Then ‖un − vn‖∞ → 0 and so (un − vn) is P-null in S. Define

P (x) :=
∞∑

n=1

x2
n

( 2n−1∑
k=2n−1

xk

)
, for x = (xn) ∈ S.

Since

|P (x)| ≤ ‖x‖S · ‖x‖2
2 ≤ π2

3
· ‖x‖3

S ,

we get that P ∈ P(3S). We have P (vn) = 0 and P (un) = 1 for all
n > 1.

In the above proof, we need a polynomial of degree greater than or
equal to three. Indeed, if P ∈ P(2S) and (un), (vn) ⊂ S are bounded
with (un − vn) P-null, denoting wn := un − vn, we have

P (un)− P (vn) = P (wn + vn)− P (vn) = 2P̂ (wn, vn) + P (wn),

where P̂ is the symmetric bilinear form associated to P . Let P : S → S∗

be the operator defined by P (x)(y) := P̂ (x, y). Since S has an
unconditional basis and contains no copy of l1, the space S∗ has an
unconditional basis and is weakly sequentially complete. Therefore
every operator from S into S∗ is weakly compact. Passing to a
subsequence we can assume that (wn) is uniformly weakly null. Since
S has the wDPP, ‖P (wn)‖ → 0. Hence, P̂ (wn, vn) = P (wn)(vn) → 0.
Clearly, P (wn) → 0 and so P (un)− P (vn) → 0.
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Proposition 2.4. The space S enjoys property (P).

Proof. Let (un), (vn) ⊂ S be bounded sequences such that (un − vn)
is not P-null. We wish to find Q ∈ P(kS) for some k so that
(Q(un)−Q(vn)) does not tend to zero. By ui

n and vi
n we shall denote

the ith coordinate of un and vn, respectively.

If (un − vn) is not weakly null, then φ(un) − φ(vn) �→ 0 for some
φ ∈ S∗. It is enough to take Q := φ.

If (un − vn) is weakly null, passing to a subsequence and perturbing
it by a norm null sequence, we can assume that (un − vn) is a block
basis

un − vn =
ln∑

i=kn

aiei.

Take pn with kn ≤ pn ≤ ln and |apn
| = ‖un − vn‖∞. We know that

‖un − vn‖∞ does not go to zero. Passing to a subsequence, we may
assume

vpn
n −→ v; upn

n −→ u; u �= v.

Let P ∈ P(2S) be given by

P (x) :=
∞∑

i=1

(xpi
)2.

If P (un)− P (vn) �→ 0 we are done. If

0 = lim[P (un)− P (vn)] = lim[(upn
n )2 − (vpn

n )2]
= u2 − v2 = (u− v)(u+ v),

we have u = −v = α for some α �= 0. Defining Q ∈ P(3S) by

Q(x) :=
∞∑

i=1

(xpi
)3,

we have Q(un)−Q(vn) → 2α3 �= 0, and the proof is finished.
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Proposition 2.5. Let (xn), (yn) ⊂ S be P-null sequences. Then

(a) the set {xn ⊗ yn} is a Banach-Saks set in S ⊗π S;

(b) the sequence (xn ⊗ yn) is P-null in S ⊗π S.

Proof. (a) Since (xn) and (yn) have subsequences equivalent to the
c0-basis, it is enough to show that (en ⊗ en) is uniformly weakly null
in c0 ⊗π c0. Take L ∈ (c0 ⊗π c0)∗, which may be viewed as an operator
from c0 into l1. Since the series

∑
en is weakly unconditionally Cauchy,

using [14, Theorem 2] we can find C > 0 such that
∑ |〈Len, en〉| ≤ C

whenever ‖L‖ ≤ 1. Therefore, given ε > 0, choosing N ∈ N with
N ≥ C/ε, we have

card {n ∈ N : |〈Len, en〉| ≥ ε} ≤ N

if ‖L‖ ≤ 1, and the result is proved.

(b) Since S has the polynomial DPP, part (b) follows from [3,
Theorem 2.1].

As a consequence, if A,B ⊂ S are Banach-Saks sets, then A⊗B is a
Banach-Saks set in S ⊗π S.
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14. M. González and J.M. Gutiérrez, Unconditionally converging polynomials on
Banach spaces, Math. Proc. Cambridge Philos. Soc. 117 (1995), 321 331.

15. , Gantmacher type theorems for holomorphic mappings, Math. Nachr.
186 (1997), 131 145.

16. J.A. Jaramillo and A. Prieto, Weak polynomial convergence on a Banach
space, Proc. Amer. Math. Soc. 118 (1993), 463 468.

17. D. Leung, Uniform convergence of operators and Grothendieck spaces with
the Dunford-Pettis property, Math. Z. 197 (1988), 21 32.

18. S. Mercourakis, On Cesaro summable sequences of continuous functions,
Mathematika 42 (1995), 87 104.

19. J. Mujica, Complex analysis in Banach spaces, North-Holland Math. Stud.
120, North-Holland, Amsterdam, 1986.

20. M.I. Ostrovskii, Three space problem for the weak Banach-Saks property,
Math. Notes 38 (1985), 905 907.
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