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TRANSLATION THEOREMS FOR
FOURIER-FEYNMAN TRANSFORMS AND

CONDITIONAL FOURIER-FEYNMAN TRANSFORMS

SEUNG JUN CHANG, CHULL PARK AND DAVID SKOUG

1. Introduction. Translation theorems for Wiener integrals were
given by Cameron and Martin in [3] and by Cameron and Graves in
[2]. Translation theorems for analytic Feynman integrals were given by
Cameron and Storvick in [4], [7] and translation theorems for Feynman
integrals on abstract Wiener and Hilbert spaces were given by Chung
and Kang in [12].

The concept of an L1 analytic Fourier-Feynman transform (FFT) was
introduced by Brue in [1]. In [5], Cameron and Storvick introduced
an L2 FFT. In [20], Johnson and Skoug developed an Lp FFT for
1 ≤ p ≤ 2 which extended the results in [1], [5] and gave various
relationships between the L1 and L2 theories. In [15] [17], Huffman,
Park and Skoug obtained various results involving the FFT and the
convolution product, and in [18] used the concept of the (generalized)
Feynman integral [13], [24] to define a (generalized) FFT (GFFT) and
a generalized convolution product. Very recently [26], Park and Skoug
studied (generalized) conditional FFT’s (GCFFT’s) and conditional
convolution products.

In this paper we establish translation theorems for GFFT’s and
GCFFT’s. In Section 3 we establish a translation theorem for the
GFFT of very general functionals F defined on Wiener space C0[0, T ],
and in Section 4 we obtain a general translation theorem for GCFFT’s.
We then proceed to show that these general translation theorems apply
to two well-known classes of functionals; namely, the Banach algebra
S introduced by Cameron and Storvick in [6], and the space B(p)

n

consisting of functionals of the form

F (x) = f(〈α1, x〉, . . . , 〈αn, x〉)
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where 〈αj , x〉 denotes the Paley-Wiener-Zygmund stochastic integral∫ T

0
αj(s) dx(s).

In defining the FFT [5], [15], [19] of F , one starts with, for λ > 0,
the Wiener integral

(1.1) Ex[F (y + λ−1/2x)] =
∫

C0[0,T ]

F (y + λ−1/2x)m(dx)

and then extends analytically in λ to the right-half complex plane. In
[18], [26] and in this paper, in defining the GFFT we start with the
Wiener integral

(1.2) Ex[F (y + λ−1/2z(x, ·))] =
∫

C0[0,T ]

F (y + λ− 1
2 z(x, ·))m(dx)

where z is the Gaussian process

(1.3) z(x, t) =
∫ t

0

h(s) dx(s)

with h ∈ L2[0, T ] and
∫ t

0
h(s) dx(s) is the Paley-Wiener-Zygmund

stochastic integral. Of course if h(t) ≡ 1 on [0, T ], then z(x, t) = x(t)
and so the (generalized) Wiener integral in (1.2) reduces to the ordinary
Wiener integral given by (1.1).

2. Definitions and preliminaries. Let C0[0, T ] denote Wiener
space; that is, the space of all R-valued continuous functions x(t) on
[0,T] with x(0) = 0. Let M denote the class of all Wiener measurable
subsets of C0[0, T ] and let m denote Wiener measure. A subset B
of C0[0, T ] is said to be scale-invariant measurable [9], [21] provided
ρB ∈ M for all ρ > 0 and a scale-invariant measurable set N is said to
be scale-invariant null provided m(ρN) = 0 for all ρ > 0. A property
that holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere (s-a.e). If two functionals F and G are
equal s-a.e., we write F ≈ G.

For a detailed discussion of scale-invariant measurability and its
relation with other topics, see [21]. In [27], Segal gives an interesting
discussion of the relation between scale change in Wiener space and
certain questions in quantum field theory.
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Throughout this paper, we assume that every functional F we con-
sider is s-a.e. defined, is scale-invariant measurable and, for each λ > 0,
F (λ−1/2z(x, ·)) is Wiener integrable in x on C0[0, T ].

Let h be an element of L2[0, T ] with ‖h‖ > 0, let z(x, t) be given by
(1.3) and let

a(t) =
∫ t

0

h2(s) ds.

Then z is a Gaussian process with mean zero and covariance function

Ex[z(x, s)z(x, t)] = a(min{s, t}).

Next we state the definition of the (generalized) analytic Feynman
integral [13], [18]. Let C+ = {λ ∈ C : Reλ > 0} and let C̃+ =
{λ ∈ C : λ �= 0 and Reλ ≥ 0}. Let J(λ) = E[F (λ−1/2z(x, ·))]. If
a function J∗(λ) exists analytic in λ on C+ such that J∗(λ) = J(λ)
for all λ > 0, then J∗(λ) is called the (generalized) analytic Wiener
integral of F with parameter λ, and for λ ∈ C+, we write

(2.1) Eanwλ
x [F (z(x, ·))] = J∗(λ).

Let real q �= 0 be given. Then we define the (generalized) analytic
Feynman integral of F with parameter q by (λ ∈ C+)

(2.2) Eanfq
x [F (z(x, ·))] = lim

λ→−iq
Eanwλ

x [F (z(x, ·))]

if the limit exists.

Next we state the definition of the GFFT given in [18], [26] using
(2.1) and (2.2) above. For λ > 0 and y ∈ C0[0, T ], let

(2.3) Tλ(F )(y) = Eanwλ
x [F (y + z(x, ·))].

In the standard Fourier theory the integrals involved are often inter-
preted in the mean; a similar concept is useful in the FFT theory [20,
p. 104]. Let p ∈ (1, 2] and let p and p′ be related by 1/p + 1/p′ = 1.
Let {Hn} and H be scale-invariant measurable functionals such that,
for each ρ > 0,

lim
n→∞E[|Hn(ρy)− H(ρy)|p′

] = 0.
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Then we write
H ≈ l.i.m.n→∞Hn

and we call H the scale-invariant limit in the mean of order p′. A
similar definition is understood when n is replaced by the continuously
varying parameter λ. Let real q �= 0 be given. For 1 < p ≤ 2 we define
the Lp analytic GFFT, T

(p)
q (F ) of F , by the formula, λ ∈ C+,

(2.4) T (p)
q (F )(y) = l.i.m.λ→−iqTλ(F )(y)

if it exists. We define the L1 analytic GFFT, T
(1)
q (F ) of F , by the

formula, λ ∈ C+,

(2.5) T (1)
q (F )(y) = lim

λ→−iq
Tλ(F )(y)

if it exists. We note that for 1 ≤ p ≤ 2, T
(p)
q (F ) is defined only s-a.e.

We also note that if T
(p)
q (F ) exists and if F ≈ G, then T

(p)
q (G) exists

and T
(p)
q (G) ≈ T

(p)
q (F ).

The following Wiener integration formula is used throughout this
paper

(2.6) E

[
exp

{
i√
λ
〈u, x〉

}]
= exp

{
− ‖u‖2

2λ

}

for λ > 0 and u ∈ L2[0, T ].

3. A general translation theorem. Throughout this paper we
will always translate by

(3.1) x0(t) =
∫ t

0

β(s) ds, β ∈ L2[0, T ].

In our first result we obtain a translation theorem for the GFFT of
very general functionals F .

Theorem 3.1. Let p ∈ [1, 2] be given, and let F : C0[0, T ] → C
be such that the GFFT, T

(p)
q (F ) of F exists for all real q �= 0. Let
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x0 be given (3.1) and let z(x, t) be given by (1.3) with h ∈ L∞[0, T ],
(β/h) ∈ L2[0, T ] and (β/h2) ∈ L2[0, T ]. Then

(3.2) T (p)
q (F )(y + x0) ≈ exp

{
iq

〈
β

h2
, y

〉
+

iq

2

∥∥∥∥β

h

∥∥∥∥
2}

T (p)
q (F ∗)(y)

where

(3.3)
F ∗(z(x, ·)) = exp

{
− iq

∫ T

0

β(s)
h2(s)

dz(x, s)
}

F (z(x, ·))

= exp
{
− iq

〈
β

h
, x

〉}
F (z(x, ·)).

Proof. We will give the proof for the case p ∈ (1, 2]. The case p = 1
is similar, but somewhat easier. For λ > 0, using (3.3) we see that

I ≡ Tλ(F ∗)(y)

= Ex[F ∗(y + λ−1/2z(x, ·))]
= exp

{
− iq

〈
β

h2
, y

〉}

· Ex

[
exp

{
− iqλ−1/2

〈
β

h2
, z(x, ·)

〉}
F (y + λ−1/2z(x, ·))

]
.

Using the translation theorem in the form

E[F (x)] = exp
{
− ‖u′

0‖2

2

}
E[F (x+ u0) exp{−〈u′

0, x〉}]

with u0(t) = λ1/2
∫ t

0
β(s)/h(s) ds and x0(t) =

∫ t

0
β(s) ds =

λ−1/2
∫ t

0
h(s) du0(s), we get that

I = exp
{
− iq

〈
β

h2
, y

〉
− λ

2

∥∥∥∥β

h

∥∥∥∥
2

− iqλ−1/2

〈
β

h2
, z(u0, ·)

〉}

· Ex

[
exp

{
− iqλ−1/2

〈
β

h2
, z(x, ·)

〉
− λ1/2

〈
β

h
, x

〉}

· F (y + λ−1/2z(x, ·) + λ−1/2z(u0, ·))
]
.
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Noting that 〈β/h2, z(x, ·)〉 = 〈β/h, x〉, 〈β/h2, z(u0, ·)〉 = λ1/2‖β/h‖2,
and that z(u0, t) = λ1/2x0(t), we obtain that

(3.4)

I = exp
{
− iq

〈
β

h2
, y

〉
− 1
2
(λ+ 2iq)

∥∥∥∥β

h

∥∥∥∥
2}

· Ex

[
exp

{
− λ−1/2(iq + λ)

〈
β

h
, x

〉}

· F (y + x0 + λ−1/2z(x, ·))
]
.

Using Hölder’s inequality, we get that

Ex

[ ∣∣∣∣
(
exp

{
− λ−1/2(iq + λ)

〈
β

h
, x

〉}
− 1

)
F (y + x0 + λ−1/2z(x, ·))

∣∣∣∣
]

≤
(

Ex

[∣∣∣∣ exp
{
− λ−1/2(iq + λ)

〈
β

h
, x

〉}
− 1

∣∣∣∣
p′])1/p′

· (Ex[|F (y + x0 + λ−1/2z(x, ·))|p])1/p.

Note that each factor in the last expression has a limit as λ → −iq in
C+, and that

(
Ex

[ ∣∣∣∣ exp
{
− λ−1/2(iq + λ)

〈
β

h
, x

〉}
− 1

∣∣∣∣
p′])1/p′

−→ 0

as λ → −iq in C+. Hence

l.i.m.λ→−iqEx

[
exp

{
− λ−1/2(iq + λ)

〈
β

h
, x

〉}
F (y + x0 + λ−1/2z(x, ·))

]

= l.i.m.λ→−iqEx[F (y + x0 + λ−1/2z(x, ·))]
= l.i.m.λ→−iqTλ(F )(y + x0).

Hence, letting λ → −iq in (3.4) yields (3.2) as desired.

In our first corollary below we will see that the translation formula
(3.2) holds for the GFFT of functionals in the Banach algebra S
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introduced by Cameron and Storvick in [6]. The Banach algebra S
consists of functionals expressible in the form

(3.5) F (x) =
∫

L2[0,T ]

exp{i〈u, x〉} df(u)

for s-a.e. x ∈ C0[0, T ] where f is an element of M(L2[0, T ]), the space
of all C-valued countably additive finite Borel measures on L2[0, T ].
Further work on S shows that it contains many functionals of interest
in Feynman integration theory [8], [10], [22], [25], [28].

Corollary 3.1. Let F ∈ S be given by (3.5), and let x0 be given by
(3.1). Let z, h and β be as in Theorem 3.1. Then for all p ∈ [1, 2] and
all real q �= 0,

(3.6) T (p)
q (F )(y + x0) ≈ exp

{
iq

〈
β

h2
, y

〉
+

iq

2

∥∥∥∥β

h

∥∥∥∥
2}

T (p)
q (F ∗)(y)

where F ∗ is given by (3.3).

Proof. This corollary follows from Theorem 3.1 above since, by [18,
Theorem 3.1], T (p)

q (F ) exists for all p ∈ [1, 2] and all real q �= 0.

In our next theorem we observe that the two sides of (3.6) are
identically equal for every y ∈ C0[0, T ] of the form

(3.7) y(t) =
∫ t

0

φ(s) ds, 0 ≤ t ≤ T

for some φ ∈ L2[0, T ].

Theorem 3.2. Let F , F ∗, z and x0 be as in Corollary 3.1, and let
y be given by (3.7). Then for all p ∈ [1, 2] and all real q �= 0,

(3.8) T (p)
q (F )(y + x0) = exp

{
iq

〈
β

h2
, y

〉
+

iq

2

∥∥∥∥β

h

∥∥∥∥
2}

T (p)
q (F ∗)(y).
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Proof. We first note that y and y+x0 are both absolutely continuous
on [0, T ] and their derivatives are elements of L2[0, T ]. Then, direct
calculations show that T

(p)
q (F )(y + x0) and T

(p)
q (F ∗)(y) both exist for

every y of the form (3.7) and satisfy equation (3.8).

By choosing y(t) ≡ 0 and h(t) ≡ 1 on [0, T ] in Theorem 3.2 above,
we obtain Theorem 4 of [7] as a corollary since h(t) ≡ 1 implies that
z(x, t) = x(t).

Corollary 3.2. Let F , F ∗ and x0 be as in Theorem 3.2. Then for
all real q �= 0,

Eanfq
x [F (x+ x0)] = exp

{
iq‖β‖2

2

}
Eanfq

x [F ∗(x)]

= exp
{

iq‖β‖2

2

}
Eanfq

x [exp{−iq〈β, x〉}F (x)].

Next we want to briefly discuss another class of functionals to which
our general translation theorem applies. Let h ∈ L2[0, T ] and let z(x, t)
be given by (1.3). Then choose {α1, . . . , αn} from L2[0, T ] such that

(a) {α1, . . . , αn} are orthogonal on [0, T ], and
(b) {α1h, . . . , αnh} are orthonormal on [0, T ].

Remark 3.1. One way to do this would be to choose 0 = t0 < t1 <
. . . < tn = T with

Lebesgue measure {{ support of h} ∩ [tj−1, tj ]} > 0

for j = 1, . . . , n, and then letting

αj(s) =
( ∫ tj

tj−1

h2(s) ds
)−1/2

χ[tj−1,tj ](s).

Now let B(p)
n be the space of all functionals F on C0[0, T ] of the form

(3.9) F (x) = f(〈α1, x〉, . . . , 〈αn, x〉)
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s-a.e. where f ∈ Lp(Rn) and the αj ’s satisfy (a) and (b) above.

Corollary 3.3. Let p ∈ [1, 2], let x0 be given by (3.1), and let
z(x, t) be given by (1.3) with h ∈ L∞[0, T ], (β/h) ∈ L2[0, T ] and
(β/h2) ∈ L2[0, T ]. Let F ∈ B(p)

n be given by (3.9), and let F ∗ be given
by (3.3). Then, for all real q �= 0,

(3.10) T (p)
q (F )(y + x0) ≈ exp

{
iq

〈
β

h2
, y

〉
+

iq

2

∥∥∥∥β

h

∥∥∥∥
2}

T (p)
q (F ∗)(y).

Remark 3.2. In our proof below we use Lemmas 1.1 and 1.2 of
[19, pp. 98 102]. These two lemmas are true without the dimension
restriction ν < (2p/(2 − p)) (in our notation ν = n); in fact for each
p ∈ [1, 2], these two lemmas are valid for all integers ν > 0.

Proof of Corollary 3.3. In view of Theorem 3.1, it will suffice to show
that T

(p)
q (F ) exists for all p ∈ [1, 2] and all real q �= 0.

For λ > 0 we obtain that

Tλ(F )(y + x0)

= Ex[F (y + x0 + λ−1/2z(x, ·))]
= Ex[f(〈α1, y+x0〉+λ−1/2〈α1h, x〉, . . . , 〈αn, y+x0〉+λ−1/2〈αnh, x〉)]

=
(

λ

2π

)n/2 ∫
Rn

f(*u) exp
{
− λ

2

n∑
j=1

(uj − 〈αj , y + x0〉)2
}

d*u

= g(λ; 〈*α, y + x0〉)

for s-a.e. y ∈ C0[0, T ], where *u = (u1, . . . , un), 〈*α, y + x0〉 = (〈α1, y +
x0〉, . . . , 〈αn, y + x0〉), and where

(3.11) g(λ; *w) =
(

λ

2π

)n/2 ∫
Rn

f(*u) exp
{
− λ

2
‖*u − *w‖2

}
d*u.

Clearly g(λ; 〈*α, y + x0〉) is an analytic function of λ throughout C+.
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For the case p = 1, an application of the dominated convergence
theorem shows that T

(1)
q (F ) exists for all real q �= 0 and that

T (1)
q (F )(y + x0) ≈ g(−iq; 〈*α, y + x0〉)

≈
(

q

2πi

)n/2 ∫
Rn

f(*u) exp
{

iq

2
‖*u − 〈*α, y + x0〉‖2

}
d*u.

For the case p ∈ (1, 2], Lemma 1.1 of [19] tells us that for
all λ ∈ C̃+, g(λ; *w) is an element of Lp′(Rn) with ‖g(λ; ·)‖p′ ≤
‖f‖p(|λ|/2π)n(1−p)/2p. In addition, by Lemma 1.2 of [19], we have
that ‖g(λ; ·) − g(−iq; ·)‖p′ → 0 as λ → −iq through values in C+.
Hence for all ρ > 0,

Ey[|g(λ; 〈*α, ρy + x0〉)− g(−iq;〈*α, ρy + x0〉)|p′
]

≤ ρ−n‖g(λ; ·)− g(−iq; ·)‖p′
p′

which goes to zero as λ → −iq through C+. Hence for all p ∈ [1, 2],
T

(p)
q (F ) exists and we have that

T (p)
q (F )(y + x0) ≈ g(−iq; 〈*α, y + x0〉)

≈
(

q

2πi

)n/2∫
Rn

f(*u) exp
{

iq

2
‖*u − 〈*α, y + x0〉‖2

}
d*u

≈
(

q

2πi

)n/2∫
Rn

f(*u+ 〈*α, y + x0〉) exp
{

iq

2
‖*u‖2

}
d*u.(3.12)

Remark 3.3. For F ∈ B(p)
n given by (3.9) and F ∗ given by (3.3), using

the Gram-Schmidt orthogonalization procedure, one can show that

T (p)
q (F ∗)(y) ≈

(
q

2πi

)n/2

exp
{
− iq

〈
β

h2
, y

〉
− iq

2

∥∥∥∥β

h

∥∥∥∥
2

+
iq

2

n∑
j=1

〈αj , x0〉2
}

·
∫
Rn

f(〈*α, y〉+ *u) exp
{
− iq

n∑
j=1

〈αj , x0〉uj +
iq

2

n∑
j=1

u2
j

}
d*u.

Again, as in Theorem 3.2 above, it turns out that the two sides of
(3.10) are identically equal for every y of the form (3.7).
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Theorem 3.3. Let F , F ∗, z and x0 be as in Corollary 3.3, and let
y be given by (3.7). Then for all p ∈ [1, 2] and all real q �= 0,

(3.13) T (p)
q (F )(y + x0) = exp

{
iq

〈
β

h2
, y

〉
+

iq

2

∥∥∥∥β

h

∥∥∥∥
2}

T (p)
q (F ∗)(y).

4. Translation theorems for conditional transforms. In this
section we will first establish a translation theorem for the GCFFT
of very general functionals F . Then, as corollaries we will show that
this translation formula also holds for the GCFFT of functionals in
the classes S and B(p)

n discussed in Section 3. For some related work
involving conditional integrals and transforms, see [11], [13], [14], [23],
[24], [26], [29]. Throughout this section we will always condition by

(4.1) X(x) = z(x, T ).

First we will state the appropriate definitions of conditional integrals
and transforms [13], [14], [26]. For λ > 0 and η ∈ R let

(4.2) Jλ(η) = E[F (λ−1/2z(x, ·))|λ−1/2z(x, T ) = η]

denote the (generalized) conditional Wiener integral of F (λ−1/2z(x, ·))
given λ−1/2z(x, T ). If for almost all η ∈ R, there exists a function
J∗

λ(η), analytic in λ on C+ such that J∗
λ(η) = Jλ(η) for λ > 0,

then J∗
λ(η) is defined to be the conditional analytic Wiener integral

of F (z(x, ·)) given z(x, T ) with parameter λ and for λ ∈ C+ we write

(4.3) J∗
λ(η) = Eanwλ

x [F (z(x, ·))|z(x, T ) = η].

If, for fixed real q �= 0, limλ→−iq J∗
λ(η) exists for almost all η ∈ R, we

denote the value of this limit by

(4.4) Eanfq
x [F (z(x, ·))|z(x, T ) = η]

and call it the (generalized) conditional analytic Feynman integral of
F given X with parameter q.
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Remark 4.1. In [24], Park and Skoug give a formula for expressing
conditional Wiener integrals in terms of ordinary Wiener integrals;
namely, that for λ > 0,

(4.5)
E[F (λ−1/2z(x, ·))|λ−1/2z(x, T ) = η]

= Ex

[
F

(
λ−1/2z(x, ·)− λ−1/2 a(·)

a(T )
z(x, T ) +

a(·)
a(T )

η

)]
.

Thus we have that

(4.6)
Eanwλ

x [F (z(x, ·))|z(x, T ) = η]

= Eanwλ
x

[
F

(
z(x, ·)− a(·)

a(T )
z(x, T ) +

a(·)
a(T )

η

)]

and

(4.7)
Eanfq

x [F (z(x, ·))|z(x, T ) = η]

= Eanfq
x

[
F

(
z(x, ·)− a(·)

a(T )
z(x, T ) +

a(·)η
a(T )

)]

where in (4.6) and (4.7) the existence of either side implies the existence
of the other side and its equality.

Next we define the GCFFT. For λ ∈ C+ and y ∈ C0[0, T ], let
Tλ(F |X)(y, η) denote the conditional analytic Wiener integral of F (y+
z(x, ·)) given X(x) = z(x, T ), that is to say,

Tλ(F |X)(y, η) = Eanwλ
x [F (y + z(x, ·))|z(x, T ) = η]

= Eanwλ
x

[
F

(
y + z(x, ·)− a(·)

a(T )
z(x, T ) +

a(·)
a(T )

η

)]
.(4.8)

For 1 < p ≤ 2 we define the Lp analytic GCFFT, T
(p)
q (F |X)(y, η) by

the formula

(4.9) T (p)
q (F |X)(y, η) = l.i.m.λ→−iqTλ(F |X)(y, η)

if it exists, and we define the L1 analytic GCFFT of F by the formula

(4.10) T (1)
q (F |X)(y, η) = lim

λ→−iq
Tλ(F |X)(y, η)
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if it exists.

Remark 4.2. Using Remark 4.1 above, it follows that for all function-
als F in the classes S and B(p)

n , the GCFFT T
(p)
q (F |X) exists and is

given by the formula

(4.11)
T (p)

q (F |X)(y, η)

= Eanfq
x

[
F

(
y + z(x, ·)− a(·)

a(T )
z(x, T ) +

a(·)
a(T )

η

)]

for all p ∈ [1, 2] and all real q �= 0.

In our first theorem we obtain a very general translation theorem that
gives an interesting relationship between the conditional transforms
T

(p)
q (F |X) and T

(p)
q (F ∗|X).

Theorem 4.1. Let p ∈ [1, 2] be given, and let F : C0[0, T ] → C be
such that the GCFFT, T

(p)
q (F |X) of F exists for all real q �= 0. Let

X(x) be given by (4.1). Let x0 be given by (3.1) and z(x, t) by (1.3)
with h ∈ L∞[0, T ], β/h ∈ L2[0, T ] and β/h2 ∈ L2[0, T ]. Then for all
real q �= 0,

(4.12)

T (p)
q (F |X)(y + x0, η)

≈ exp
{

iq

〈
β

h2
, y

〉
+

iq

2

∥∥∥∥β

h

∥∥∥∥
2

+
iqx0(T )
a(T )

(
η +

x0(T )
2

)}

· T (p)
q (F ∗|X)(y, η + x0(T ))

where F ∗ is given by equation (3.3).

Proof. Again we will give the proof for the case p ∈ (1, 2]; the case
p = 1 is similar, but somewhat easier. For λ > 0 and η1 ∈ R, using
(3.3) and (4.5) we see that

I ≡ Tλ(F ∗|X)(y, η1)

= Ex[F ∗(y + λ−1/2z(x, ·))|λ−1/2z(x, T ) = η1]
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= Ex

[
F ∗

(
y + λ−1/2z(x, ·)− λ−1/2z(x, T )

a(·)
a(T )

+ η1
a(·)
a(T )

)]

= exp
{
− iq

〈
β

h2
, y

〉
− iqη1

x0(T )
a(T )

}

· Ex

[
exp

{
− iqλ−1/2

〈
β

h2
, z(x, ·)

〉
+ iqλ−1/2x0(T )

z(x, T )
a(T )

}

· F
(

y + λ−1/2z(x, ·)− λ−1/2z(x, T )
a(·)
a(T )

+ η1
a(·)
a(T )

)]
.

Using the translation theorem in the form

E[F (x)] = exp
{
− ‖u′

0‖2

2

}
E[F (x+ u0) exp{−〈u′

0, x〉}]

with u0(t) = λ1/2
∫ t

0
β(s)/h(s) ds and x0(t) =

∫ t

0
β(s) ds =

λ−1/2
∫ t

0
h(s) du0(s), we obtain that

I = exp
{
− iq

〈
β

h2
, y

〉
− iqη1

x0(T )
a(T )

− λ

2

∥∥∥∥β

h

∥∥∥∥
2

− iqλ−1/2

〈
β

h2
, z(u0, ·)

〉
+ iqλ−1/2x0(T )

z(u0, T )
a(T )

}

· Ex

[
exp

{
− iqλ−1/2

〈
β

h2
, z(x, ·)

〉

+ iqλ−1/2x0(T )
z(x, T )
a(T )

− λ1/2

〈
β

h
, x

〉}

· F
(

y + x0 + λ−1/2z(x, ·)− λ−1/2z(x, T )
a(·)
a(T )

− λ−1/2z(u0, T )
a(·)
a(T )

+ η1
a(·)
a(T )

)]
.

Next observing that 〈β/h2, z(x, ·)〉 = 〈β/h, x〉, 〈β/h2, z(u0, ·)〉 =
λ1/2‖β/h‖2, z(u0, T ) = λ1/2x0(T ), and then setting η1 = η+x0(T ), we



TRANSLATION THEOREMS 491

obtain that

I = Tλ(F ∗|X)(y, η + x0(T ))

= exp
{
− iq

〈
β

h2
, y

〉
− iqη

x0(T )
a(T )

−
(

λ

2
+ iq

)∥∥∥∥β

h

∥∥∥∥
2}

· Ex

[
exp

{
− λ−1/2(iq + λ)

〈
β

h
, x

〉
+ iqλ−1/2x0(T )

z(x, T )
a(T )

}(4.13)

· F
(

y + x0 + λ−1/2z(x, ·)− λ−1/2z(x, T )
a(·)
a(T )

+ η
a(·)
a(T )

)]
.

Since T
(p)
q (F |X) exists for each q ∈ R with q �= 0, we know that

T
(p)
λ (F |X) exists for each λ ∈ C+. Thus

Ex

[ ∣∣∣∣F
(

y + x0 + λ−1/2z(x, ·)− λ−1/2z(x, T )
a(·)
a(T )

+ η
a(·)
a(T )

) ∣∣∣∣
p ]

exists. Using Hölder’s inequality, we see that

Ex

[ ∣∣∣∣
(
exp

{
− λ−1/2(iq + λ)

〈
β

h
, x

〉}
− 1

)
exp

{
iqλ−1/2x0(T )

z(x, T )
a(T )

}

· F
(

y + x0 + λ−1/2z(x, ·)− λ−1/2z(x, T )
a(·)
a(T )

+ η
a(·)
a(T )

)∣∣∣∣
]

≤
(

Ex

[ ∣∣∣∣ exp
{
− λ−1/2(iq + λ)

〈
β

h
, x

〉}
− 1

∣∣∣∣
p′])1/p′

·
(

Ex

[ ∣∣∣∣ exp
{

iqλ−1/2x0(T )
z(x, T )
a(T )

}

· F
(

y+x0+λ−1/2z(x, ·)− λ−1/2z(x, T )
a(·)
a(T )

+ η
a(·)
a(T )

)∣∣∣∣
p])1/p

.

Note that z(x, T ) and z(x, ·) − z(x, T )a(·)/a(T ) are independent pro-
cesses. Hence

Ex

[ ∣∣∣∣ exp
{

iqλ−1/2x0(T )
z(x, T )
a(T )

}

· F
(

y + x0 + λ−1/2z(x, ·)− λ−1/2z(x, T )
a(·)
a(T )

+ η
a(·)
a(T )

)∣∣∣∣
p]
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= Ex

[ ∣∣∣∣ exp
{

iqλ−1/2x0(T )
z(x, T )
a(T )

}∣∣∣∣
p]

· Ex

[ ∣∣∣∣F
(

y + x0 + λ−1/2z(x, ·)− λ−1/2z(x, T )
a(·)
a(T )

+ η
a(·)
a(T )

)∣∣∣∣
p]

= Ex

[ ∣∣∣∣ exp
{

iqλ−1/2x0(T )
z(x, T )
a(T )

}∣∣∣∣
p]

· Ex[ |F (y + x0 + λ−1/2z(x, ·))|p |λ−1/2z(x, T ) = η].

Furthermore each factor in the last expression above has a limit as
λ → −iq in C+. Therefore, the last expression is bounded in a deleted
neighborhood of −iq intersected with C+. Since Ex[ | exp{−λ1/2(iq +
λ)〈β/h, x〉} − 1|p′

]→ 0 as λ → −iq in C+, we conclude that

Ex

[
exp

{
− λ−1/2(iq + λ)

〈
β

h
, x

〉
+ iqλ−1/2x0(T )

z(x, T )
a(T )

}

· F
(

y + x0 + λ−1/2z(x, ·)− λ−1/2z(x, T )
a(·)
a(T )

+ η
a(·)
a(T )

)]

and

Ex

[
exp

{
iqλ−1/2x0(T )

z(x, T )
a(T )

}

· F
(

y + x0 + λ−1/2z(x, ·)− λ−1/2z(x, T )
a(·)
a(T )

+ η
a(·)
a(T )

)]

have the same transform as λ → −iq in C+. Using the independence
between z(x, T ) and z(x, ·)− z(x, T )a(·)/a(T ) again, we see that

Ex

[
exp

{
iqλ−1/2x0(T )

z(x, T )
a(T )

}

· F
(

y + x0 + λ−1/2z(x, ·)− λ−1/2z(x, T )
a(·)
a(T )

+ η
a(·)
a(T )

)]

= Ex

[
exp

{
iqλ−1/2x0(T )

z(x, T )
a(T )

}](4.14)

· Ex

[
F

(
y + x0 + λ−1/2z(x, ·)− λ−1/2z(x, T )

a(·)
a(T )

+ η
a(·)
a(T )

)]
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= exp
{
− q2x2

0(T )
2λa(T )

}
Tλ(F |X)(y + x0, η).

Thus, using (4.14) and letting λ → −iq in (4.13), we obtain (4.12)
which concludes the proof of Theorem 4.1.

Next we observe that formula (4.12) holds for all functionals in the
classes S and B(p)

n .

Corollary 4.1. Let F ∈ S be given by (3.5) and X(x) by (4.1). Let
x0, z, h and β be as in Theorem 4.1. Then for all p ∈ [1, 2] and all real
q �= 0,

T (p)
q (F |X)(y + x0, η)

≈ exp
{

iq

〈
β

h2
, y

〉
+

iq

2

∥∥∥∥β

h

∥∥∥∥
2

+
iqx0(T )
a(T )

(
η +

x0(T )
2

)}

· T (p)
q (F ∗|X)(y, η + x0(T ))

where F ∗ is given by equation (3.3).

Proof. This corollary follows from Theorem 4.1 since, by Remark 4.2
above, T (p)

q (F |X) exists for all p ∈ [1, 2] and all real q �= 0.

Remark 4.3. For F ∈ S given by (3.5), direct calculations show that
T (p)

q (F |X)(y + x0, η)

≈
∫

L2[0,T ]

exp
{

i〈u, y+x0〉+ibη − i

2q

∫ T

0

[u(s)−b]2h2(s) ds
}

df(u),

and that

T (p)
q (F ∗|X)(y, η)

≈ exp
{
− iq

〈
β

h2
, y

〉
− iqx0(T )η

a(T )
− iq

2

∥∥∥∥β

h

∥∥∥∥
2

+
iqx2

0(T )
2a(T )

}

·
∫

L2[0,T ]

exp
{
− ibx0(T ) + i〈u, y + x0〉

+ ibη − i

2q

∫ T

0

[u(s)− b]2h2(s) ds
}

df(u)
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where

b =
1

a(T )

∫ T

0

u(s)h2(s) ds =
(u, h2)
a(T )

.

Corollary 4.2. Let X(x), x0, z, h and β be as in Theorem 4.1. Let
p ∈ [1, 2], let F ∈ B(p)

n be given by (3.9), let F ∗ be given by (3.3). Then
for all real q �= 0, T

(p)
q (F |X) and T

(p)
q (F ∗|X) exist and are related by

formula (4.15).

Proof. This corollary also follows immediately from Theorem 4.1
since by Remark 4.2 above, T

(p)
q (F |X) exists for all p ∈ [1, 2] and all

real q �= 0.
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