TRANSLATION THEOREMS FOR FOURIER-FEYNMAN TRANSFORMS AND CONDITIONAL FOURIER-FEYNMAN TRANSFORMS

SEUNG JUN CHANG, CHULL PARK AND DAVID SKOUG

1. Introduction. Translation theorems for Wiener integrals were given by Cameron and Martin in [3] and by Cameron and Graves in [2]. Translation theorems for analytic Feynman integrals were given by Cameron and Storvick in [4], [7] and translation theorems for Feynman integrals on abstract Wiener and Hilbert spaces were given by Chung and Kang in [12].

The concept of an L_{1} analytic Fourier-Feynman transform (FFT) was introduced by Brue in [1]. In [5], Cameron and Storvick introduced an L_{2} FFT. In [20], Johnson and Skoug developed an L_{p} FFT for $1 \leq p \leq 2$ which extended the results in [1], [5] and gave various relationships between the L_{1} and L_{2} theories. In [15]-[17], Huffman, Park and Skoug obtained various results involving the FFT and the convolution product, and in [18] used the concept of the (generalized) Feynman integral [13], [24] to define a (generalized) FFT (GFFT) and a generalized convolution product. Very recently [26], Park and Skoug studied (generalized) conditional FFT's (GCFFT's) and conditional convolution products.

In this paper we establish translation theorems for GFFT's and GCFFT's. In Section 3 we establish a translation theorem for the GFFT of very general functionals F defined on Wiener space $C_{0}[0, T]$, and in Section 4 we obtain a general translation theorem for GCFFT's. We then proceed to show that these general translation theorems apply to two well-known classes of functionals; namely, the Banach algebra \mathcal{S} introduced by Cameron and Storvick in [6], and the space $\mathcal{B}_{n}^{(p)}$ consisting of functionals of the form

$$
F(x)=f\left(\left\langle\alpha_{1}, x\right\rangle, \ldots,\left\langle\alpha_{n}, x\right\rangle\right)
$$

[^0]where $\left\langle\alpha_{j}, x\right\rangle$ denotes the Paley-Wiener-Zygmund stochastic integral $\int_{0}^{T} \alpha_{j}(s) d x(s)$.

In defining the FFT [5], [15], [19] of F, one starts with, for $\lambda>0$, the Wiener integral

$$
\begin{equation*}
E_{x}\left[F\left(y+\lambda^{-1 / 2} x\right)\right]=\int_{C_{0}[0, T]} F\left(y+\lambda^{-1 / 2} x\right) m(d x) \tag{1.1}
\end{equation*}
$$

and then extends analytically in λ to the right-half complex plane. In $[\mathbf{1 8}],[\mathbf{2 6}]$ and in this paper, in defining the GFFT we start with the Wiener integral

$$
\begin{equation*}
E_{x}\left[F\left(y+\lambda^{-1 / 2} z(x, \cdot)\right)\right]=\int_{C_{0}[0, T]} F\left(y+\lambda^{-\frac{1}{2}} z(x, \cdot)\right) m(d x) \tag{1.2}
\end{equation*}
$$

where z is the Gaussian process

$$
\begin{equation*}
z(x, t)=\int_{0}^{t} h(s) d x(s) \tag{1.3}
\end{equation*}
$$

with $h \in L_{2}[0, T]$ and $\int_{0}^{t} h(s) d x(s)$ is the Paley-Wiener-Zygmund stochastic integral. Of course if $h(t) \equiv 1$ on $[0, T]$, then $z(x, t)=x(t)$ and so the (generalized) Wiener integral in (1.2) reduces to the ordinary Wiener integral given by (1.1).
2. Definitions and preliminaries. Let $C_{0}[0, T]$ denote Wiener space; that is, the space of all \mathbf{R}-valued continuous functions $x(t)$ on $[0, T]$ with $x(0)=0$. Let \mathcal{M} denote the class of all Wiener measurable subsets of $C_{0}[0, T]$ and let m denote Wiener measure. A subset B of $C_{0}[0, T]$ is said to be scale-invariant measurable [9], [21] provided $\rho B \in \mathcal{M}$ for all $\rho>0$ and a scale-invariant measurable set N is said to be scale-invariant null provided $m(\rho N)=0$ for all $\rho>0$. A property that holds except on a scale-invariant null set is said to hold scaleinvariant almost everywhere (s-a.e). If two functionals F and G are equal s-a.e., we write $F \approx G$.

For a detailed discussion of scale-invariant measurability and its relation with other topics, see [21]. In [27], Segal gives an interesting discussion of the relation between scale change in Wiener space and certain questions in quantum field theory.

Throughout this paper, we assume that every functional F we consider is s-a.e. defined, is scale-invariant measurable and, for each $\lambda>0$, $F\left(\lambda^{-1 / 2} z(x, \cdot)\right)$ is Wiener integrable in x on $C_{0}[0, T]$.
Let h be an element of $L_{2}[0, T]$ with $\|h\|>0$, let $z(x, t)$ be given by (1.3) and let

$$
a(t)=\int_{0}^{t} h^{2}(s) d s
$$

Then z is a Gaussian process with mean zero and covariance function

$$
E_{x}[z(x, s) z(x, t)]=a(\min \{s, t\})
$$

Next we state the definition of the (generalized) analytic Feynman integral $[\mathbf{1 3}],[\mathbf{1 8}]$. Let $\mathbf{C}_{+}=\{\lambda \in \mathbf{C}: \operatorname{Re} \lambda>0\}$ and let $\tilde{\mathbf{C}}_{+}=$ $\{\lambda \in \mathbf{C}: \lambda \neq 0$ and $\operatorname{Re} \lambda \geq 0\}$. Let $J(\lambda)=E\left[F\left(\lambda^{-1 / 2} z(x, \cdot)\right)\right]$. If a function $J^{*}(\lambda)$ exists analytic in λ on \mathbf{C}_{+}such that $J^{*}(\lambda)=J(\lambda)$ for all $\lambda>0$, then $J^{*}(\lambda)$ is called the (generalized) analytic Wiener integral of F with parameter λ, and for $\lambda \in \mathbf{C}_{+}$, we write

$$
\begin{equation*}
E_{x}^{\operatorname{anw} \lambda}[F(z(x, \cdot))]=J^{*}(\lambda) . \tag{2.1}
\end{equation*}
$$

Let real $q \neq 0$ be given. Then we define the (generalized) analytic Feynman integral of F with parameter q by $\left(\lambda \in \mathbf{C}_{+}\right)$

$$
\begin{equation*}
E_{x}^{\operatorname{anf}_{q}}[F(z(x, \cdot))]=\lim _{\lambda \rightarrow-i q} E_{x}^{\operatorname{anw}_{\lambda}}[F(z(x, \cdot))] \tag{2.2}
\end{equation*}
$$

if the limit exists.
Next we state the definition of the GFFT given in [18], [26] using (2.1) and (2.2) above. For $\lambda>0$ and $y \in C_{0}[0, T]$, let

$$
\begin{equation*}
T_{\lambda}(F)(y)=E_{x}^{\operatorname{anw}_{\lambda}}[F(y+z(x, \cdot))] \tag{2.3}
\end{equation*}
$$

In the standard Fourier theory the integrals involved are often interpreted in the mean; a similar concept is useful in the FFT theory $[\mathbf{2 0}$, p. 104]. Let $p \in(1,2]$ and let p and p^{\prime} be related by $1 / p+1 / p^{\prime}=1$. Let $\left\{H_{n}\right\}$ and H be scale-invariant measurable functionals such that, for each $\rho>0$,

$$
\lim _{n \rightarrow \infty} E\left[\left|H_{n}(\rho y)-H(\rho y)\right|^{p^{\prime}}\right]=0
$$

Then we write

$$
H \approx \text { l.i.m. }_{\cdot n \rightarrow \infty} H_{n}
$$

and we call H the scale-invariant limit in the mean of order p^{\prime}. A similar definition is understood when n is replaced by the continuously varying parameter λ. Let real $q \neq 0$ be given. For $1<p \leq 2$ we define the L_{p} analytic GFFT, $T_{q}^{(p)}(F)$ of F, by the formula, $\lambda \in \mathbf{C}_{+}$,

$$
\begin{equation*}
T_{q}^{(p)}(F)(y)=\text { l.i.m. }{ }_{\lambda \rightarrow-i q} T_{\lambda}(F)(y) \tag{2.4}
\end{equation*}
$$

if it exists. We define the L_{1} analytic GFFT, $T_{q}^{(1)}(F)$ of F, by the formula, $\lambda \in \mathbf{C}_{+}$,

$$
\begin{equation*}
T_{q}^{(1)}(F)(y)=\lim _{\lambda \rightarrow-i q} T_{\lambda}(F)(y) \tag{2.5}
\end{equation*}
$$

if it exists. We note that for $1 \leq p \leq 2, T_{q}^{(p)}(F)$ is defined only s-a.e. We also note that if $T_{q}^{(p)}(F)$ exists and if $F \approx G$, then $T_{q}^{(p)}(G)$ exists and $T_{q}^{(p)}(G) \approx T_{q}^{(p)}(F)$.

The following Wiener integration formula is used throughout this paper

$$
\begin{equation*}
E\left[\exp \left\{\frac{i}{\sqrt{\lambda}}\langle u, x\rangle\right\}\right]=\exp \left\{-\frac{\|u\|^{2}}{2 \lambda}\right\} \tag{2.6}
\end{equation*}
$$

for $\lambda>0$ and $u \in L_{2}[0, T]$.
3. A general translation theorem. Throughout this paper we will always translate by

$$
\begin{equation*}
x_{0}(t)=\int_{0}^{t} \beta(s) d s, \quad \beta \in L_{2}[0, T] . \tag{3.1}
\end{equation*}
$$

In our first result we obtain a translation theorem for the GFFT of very general functionals F.

Theorem 3.1. Let $p \in[1,2]$ be given, and let $F: C_{0}[0, T] \rightarrow \mathbf{C}$ be such that the GFFT, $T_{q}^{(p)}(F)$ of F exists for all real $q \neq 0$. Let
x_{0} be given (3.1) and let $z(x, t)$ be given by (1.3) with $h \in L_{\infty}[0, T]$, $(\beta / h) \in L_{2}[0, T]$ and $\left(\beta / h^{2}\right) \in L_{2}[0, T]$. Then

$$
\begin{equation*}
T_{q}^{(p)}(F)\left(y+x_{0}\right) \approx \exp \left\{i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle+\frac{i q}{2}\left\|\frac{\beta}{h}\right\|^{2}\right\} T_{q}^{(p)}\left(F^{*}\right)(y) \tag{3.2}
\end{equation*}
$$

where

$$
\begin{align*}
F^{*}(z(x, \cdot)) & =\exp \left\{-i q \int_{0}^{T} \frac{\beta(s)}{h^{2}(s)} d z(x, s)\right\} F(z(x, \cdot)) \tag{3.3}\\
& =\exp \left\{-i q\left\langle\frac{\beta}{h}, x\right\rangle\right\} F(z(x, \cdot))
\end{align*}
$$

Proof. We will give the proof for the case $p \in(1,2]$. The case $p=1$ is similar, but somewhat easier. For $\lambda>0$, using (3.3) we see that

$$
\begin{aligned}
I \equiv & T_{\lambda}\left(F^{*}\right)(y) \\
= & E_{x}\left[F^{*}\left(y+\lambda^{-1 / 2} z(x, \cdot)\right)\right] \\
= & \exp \left\{-i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle\right\} \\
& \cdot E_{x}\left[\exp \left\{-i q \lambda^{-1 / 2}\left\langle\frac{\beta}{h^{2}}, z(x, \cdot)\right\rangle\right\} F\left(y+\lambda^{-1 / 2} z(x, \cdot)\right)\right]
\end{aligned}
$$

Using the translation theorem in the form

$$
E[F(x)]=\exp \left\{-\frac{\left\|u_{0}^{\prime}\right\|^{2}}{2}\right\} E\left[F\left(x+u_{0}\right) \exp \left\{-\left\langle u_{0}^{\prime}, x\right\rangle\right\}\right]
$$

with $u_{0}(t)=\lambda^{1 / 2} \int_{0}^{t} \beta(s) / h(s) d s$ and $x_{0}(t)=\int_{0}^{t} \beta(s) d s=$ $\lambda^{-1 / 2} \int_{0}^{t} h(s) d u_{0}(s)$, we get that

$$
\begin{array}{r}
I=\exp \left\{-i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle-\frac{\lambda}{2}\left\|\frac{\beta}{h}\right\|^{2}-i q \lambda^{-1 / 2}\left\langle\frac{\beta}{h^{2}}, z\left(u_{0}, \cdot\right)\right\rangle\right\} \\
\cdot E_{x}\left[\exp \left\{-i q \lambda^{-1 / 2}\left\langle\frac{\beta}{h^{2}}, z(x, \cdot)\right\rangle-\lambda^{1 / 2}\left\langle\frac{\beta}{h}, x\right\rangle\right\}\right. \\
\left.\cdot F\left(y+\lambda^{-1 / 2} z(x, \cdot)+\lambda^{-1 / 2} z\left(u_{0}, \cdot\right)\right)\right]
\end{array}
$$

Noting that $\left\langle\beta / h^{2}, z(x, \cdot)\right\rangle=\langle\beta / h, x\rangle,\left\langle\beta / h^{2}, z\left(u_{0}, \cdot\right)\right\rangle=\lambda^{1 / 2}\|\beta / h\|^{2}$, and that $z\left(u_{0}, t\right)=\lambda^{1 / 2} x_{0}(t)$, we obtain that

$$
\begin{gather*}
I=\exp \left\{-i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle-\frac{1}{2}(\lambda+2 i q)\left\|\frac{\beta}{h}\right\|^{2}\right\} \\
\cdot E_{x}\left[\exp \left\{-\lambda^{-1 / 2}(i q+\lambda)\left\langle\frac{\beta}{h}, x\right\rangle\right\}\right. \tag{3.4}\\
\left.\cdot F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)\right)\right]
\end{gather*}
$$

Using Hölder's inequality, we get that

$$
\begin{aligned}
& E_{x}\left[\left|\left(\exp \left\{-\lambda^{-1 / 2}(i q+\lambda)\left\langle\frac{\beta}{h}, x\right\rangle\right\}-1\right) F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)\right)\right|\right] \\
& \leq\left(E_{x}\left[\left|\exp \left\{-\lambda^{-1 / 2}(i q+\lambda)\left\langle\frac{\beta}{h}, x\right\rangle\right\}-1\right|^{p^{\prime}}\right]\right)^{1 / p^{\prime}} \\
& \cdot\left(E_{x}\left[\left|F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)\right)\right|^{p}\right]\right)^{1 / p}
\end{aligned}
$$

Note that each factor in the last expression has a limit as $\lambda \rightarrow-i q$ in \mathbf{C}_{+}, and that

$$
\left(E_{x}\left[\left|\exp \left\{-\lambda^{-1 / 2}(i q+\lambda)\left\langle\frac{\beta}{h}, x\right\rangle\right\}-1\right|^{p^{\prime}}\right]\right)^{1 / p^{\prime}} \longrightarrow 0
$$

as $\lambda \rightarrow-i q$ in \mathbf{C}_{+}. Hence

$$
\begin{aligned}
\text { l.i.m. }{ }_{\lambda \rightarrow-i q} E_{x}\left[\operatorname { e x p } \left\{-\lambda^{-1 / 2}\right.\right. & \left.\left.(i q+\lambda)\left\langle\frac{\beta}{h}, x\right\rangle\right\} F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)\right)\right] \\
& =\text { l.i.m. } \lambda \rightarrow-i q E_{x}\left[F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)\right)\right] \\
& =\text { l.i.m. } \lambda \rightarrow-i q T_{\lambda}(F)\left(y+x_{0}\right) .
\end{aligned}
$$

Hence, letting $\lambda \rightarrow-i q$ in (3.4) yields (3.2) as desired. \quad

In our first corollary below we will see that the translation formula (3.2) holds for the GFFT of functionals in the Banach algebra \mathcal{S}
introduced by Cameron and Storvick in [6]. The Banach algebra \mathcal{S} consists of functionals expressible in the form

$$
\begin{equation*}
F(x)=\int_{L_{2}[0, T]} \exp \{i\langle u, x\rangle\} d f(u) \tag{3.5}
\end{equation*}
$$

for s-a.e. $x \in C_{0}[0, T]$ where f is an element of $M\left(L_{2}[0, T]\right)$, the space of all C-valued countably additive finite Borel measures on $L_{2}[0, T]$. Further work on \mathcal{S} shows that it contains many functionals of interest in Feynman integration theory [8], [10], [22], [25], [28].

Corollary 3.1. Let $F \in \mathcal{S}$ be given by (3.5), and let x_{0} be given by (3.1). Let z, h and β be as in Theorem 3.1. Then for all $p \in[1,2]$ and all real $q \neq 0$,

$$
\begin{equation*}
T_{q}^{(p)}(F)\left(y+x_{0}\right) \approx \exp \left\{i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle+\frac{i q}{2}\left\|\frac{\beta}{h}\right\|^{2}\right\} T_{q}^{(p)}\left(F^{*}\right)(y) \tag{3.6}
\end{equation*}
$$

where F^{*} is given by (3.3).

Proof. This corollary follows from Theorem 3.1 above since, by [18, Theorem 3.1], $T_{q}^{(p)}(F)$ exists for all $p \in[1,2]$ and all real $q \neq 0$.

In our next theorem we observe that the two sides of (3.6) are identically equal for every $y \in C_{0}[0, T]$ of the form

$$
\begin{equation*}
y(t)=\int_{0}^{t} \phi(s) d s, \quad 0 \leq t \leq T \tag{3.7}
\end{equation*}
$$

for some $\phi \in L_{2}[0, T]$.

Theorem 3.2. Let F, F^{*}, z and x_{0} be as in Corollary 3.1, and let y be given by (3.7). Then for all $p \in[1,2]$ and all real $q \neq 0$,

$$
\begin{equation*}
T_{q}^{(p)}(F)\left(y+x_{0}\right)=\exp \left\{i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle+\frac{i q}{2}\left\|\frac{\beta}{h}\right\|^{2}\right\} T_{q}^{(p)}\left(F^{*}\right)(y) \tag{3.8}
\end{equation*}
$$

Proof. We first note that y and $y+x_{0}$ are both absolutely continuous on $[0, T]$ and their derivatives are elements of $L_{2}[0, T]$. Then, direct calculations show that $T_{q}^{(p)}(F)\left(y+x_{0}\right)$ and $T_{q}^{(p)}\left(F^{*}\right)(y)$ both exist for every y of the form (3.7) and satisfy equation (3.8).

By choosing $y(t) \equiv 0$ and $h(t) \equiv 1$ on $[0, T]$ in Theorem 3.2 above, we obtain Theorem 4 of $[\mathbf{7}]$ as a corollary since $h(t) \equiv 1$ implies that $z(x, t)=x(t)$.

Corollary 3.2. Let F, F^{*} and x_{0} be as in Theorem 3.2. Then for all real $q \neq 0$,

$$
\begin{aligned}
E_{x}^{\operatorname{anf}_{q}}\left[F\left(x+x_{0}\right)\right] & =\exp \left\{\frac{i q\|\beta\|^{2}}{2}\right\} E_{x}^{\operatorname{anf}_{q}}\left[F^{*}(x)\right] \\
& =\exp \left\{\frac{i q\|\beta\|^{2}}{2}\right\} E_{x}^{\operatorname{anf}_{q}}[\exp \{-i q\langle\beta, x\rangle\} F(x)]
\end{aligned}
$$

Next we want to briefly discuss another class of functionals to which our general translation theorem applies. Let $h \in L_{2}[0, T]$ and let $z(x, t)$ be given by (1.3). Then choose $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ from $L_{2}[0, T]$ such that
(a) $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ are orthogonal on $[0, T]$, and
(b) $\left\{\alpha_{1} h, \ldots, \alpha_{n} h\right\}$ are orthonormal on $[0, T]$.

Remark 3.1. One way to do this would be to choose $0=t_{0}<t_{1}<$ $\ldots<t_{n}=T$ with

Lebesgue measure $\left\{\{\right.$ support of $\left.h\} \cap\left[t_{j-1}, t_{j}\right]\right\}>0$
for $j=1, \ldots, n$, and then letting

$$
\alpha_{j}(s)=\left(\int_{t_{j-1}}^{t_{j}} h^{2}(s) d s\right)^{-1 / 2} \chi_{\left[t_{j-1}, t_{j}\right]}(s)
$$

Now let $\mathcal{B}_{n}^{(p)}$ be the space of all functionals F on $C_{0}[0, T]$ of the form

$$
\begin{equation*}
F(x)=f\left(\left\langle\alpha_{1}, x\right\rangle, \ldots,\left\langle\alpha_{n}, x\right\rangle\right) \tag{3.9}
\end{equation*}
$$

s-a.e. where $f \in L_{p}\left(\mathbf{R}^{n}\right)$ and the α_{j} 's satisfy (a) and (b) above.

Corollary 3.3. Let $p \in[1,2]$, let x_{0} be given by (3.1), and let $z(x, t)$ be given by (1.3) with $h \in L_{\infty}[0, T],(\beta / h) \in L_{2}[0, T]$ and $\left(\beta / h^{2}\right) \in L_{2}[0, T]$. Let $F \in \mathcal{B}_{n}^{(p)}$ be given by (3.9), and let F^{*} be given by (3.3). Then, for all real $q \neq 0$,

$$
\begin{equation*}
T_{q}^{(p)}(F)\left(y+x_{0}\right) \approx \exp \left\{i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle+\frac{i q}{2}\left\|\frac{\beta}{h}\right\|^{2}\right\} T_{q}^{(p)}\left(F^{*}\right)(y) \tag{3.10}
\end{equation*}
$$

Remark 3.2. In our proof below we use Lemmas 1.1 and 1.2 of [19, pp. 98-102]. These two lemmas are true without the dimension restriction $\nu<(2 p /(2-p))$ (in our notation $\nu=n$); in fact for each $p \in[1,2]$, these two lemmas are valid for all integers $\nu>0$.

Proof of Corollary 3.3. In view of Theorem 3.1, it will suffice to show that $T_{q}^{(p)}(F)$ exists for all $p \in[1,2]$ and all real $q \neq 0$.

For $\lambda>0$ we obtain that

$$
\begin{aligned}
& T_{\lambda}(F)\left(y+x_{0}\right) \\
& =E_{x}\left[F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)\right)\right] \\
& =E_{x}\left[f\left(\left\langle\alpha_{1}, y+x_{0}\right\rangle+\lambda^{-1 / 2}\left\langle\alpha_{1} h, x\right\rangle, \ldots,\left\langle\alpha_{n}, y+x_{0}\right\rangle+\lambda^{-1 / 2}\left\langle\alpha_{n} h, x\right\rangle\right)\right] \\
& =\left(\frac{\lambda}{2 \pi}\right)^{n / 2} \int_{\mathbf{R}^{n}} f(\vec{u}) \exp \left\{-\frac{\lambda}{2} \sum_{j=1}^{n}\left(u_{j}-\left\langle\alpha_{j}, y+x_{0}\right\rangle\right)^{2}\right\} d \vec{u} \\
& =g\left(\lambda ;\left\langle\vec{\alpha}, y+x_{0}\right\rangle\right)
\end{aligned}
$$

for s-a.e. $y \in C_{0}[0, T]$, where $\vec{u}=\left(u_{1}, \ldots, u_{n}\right),\left\langle\vec{\alpha}, y+x_{0}\right\rangle=\left(\left\langle\alpha_{1}, y+\right.\right.$ $\left.\left.x_{0}\right\rangle, \ldots,\left\langle\alpha_{n}, y+x_{0}\right\rangle\right)$, and where

$$
\begin{equation*}
g(\lambda ; \vec{w})=\left(\frac{\lambda}{2 \pi}\right)^{n / 2} \int_{\mathbf{R}^{n}} f(\vec{u}) \exp \left\{-\frac{\lambda}{2}\|\vec{u}-\vec{w}\|^{2}\right\} d \vec{u} \tag{3.11}
\end{equation*}
$$

Clearly $g\left(\lambda ;\left\langle\vec{\alpha}, y+x_{0}\right\rangle\right)$ is an analytic function of λ throughout \mathbf{C}_{+}.

For the case $p=1$, an application of the dominated convergence theorem shows that $T_{q}^{(1)}(F)$ exists for all real $q \neq 0$ and that

$$
\begin{aligned}
T_{q}^{(1)}(F)\left(y+x_{0}\right) & \approx g\left(-i q ;\left\langle\vec{\alpha}, y+x_{0}\right\rangle\right) \\
& \approx\left(\frac{q}{2 \pi i}\right)^{n / 2} \int_{\mathbf{R}^{n}} f(\vec{u}) \exp \left\{\frac{i q}{2}\left\|\vec{u}-\left\langle\vec{\alpha}, y+x_{0}\right\rangle\right\|^{2}\right\} d \vec{u}
\end{aligned}
$$

For the case $p \in(1,2]$, Lemma 1.1 of [19] tells us that for all $\lambda \in \tilde{\mathbf{C}}_{+}, g(\lambda ; \vec{w})$ is an element of $L_{p^{\prime}}\left(\mathbf{R}^{n}\right)$ with $\|g(\lambda ; \cdot)\|_{p^{\prime}} \leq$ $\|f\|_{p}(|\lambda| / 2 \pi)^{n(1-p) / 2 p}$. In addition, by Lemma 1.2 of [19], we have that $\|g(\lambda ; \cdot)-g(-i q ; \cdot)\|_{p^{\prime}} \rightarrow 0$ as $\lambda \rightarrow-i q$ through values in \mathbf{C}_{+}. Hence for all $\rho>0$,

$$
\begin{aligned}
E_{y}\left[\mid g\left(\lambda ;\left\langle\vec{\alpha}, \rho y+x_{0}\right\rangle\right)-g(-i q\right. & \left.\left.;\left\langle\vec{\alpha}, \rho y+x_{0}\right\rangle\right)\left.\right|^{p^{\prime}}\right] \\
& \leq \rho^{-n}\|g(\lambda ; \cdot)-g(-i q ; \cdot)\|_{p^{\prime}}^{p^{\prime}}
\end{aligned}
$$

which goes to zero as $\lambda \rightarrow-i q$ through \mathbf{C}_{+}. Hence for all $p \in[1,2]$, $T_{q}^{(p)}(F)$ exists and we have that

$$
\begin{align*}
T_{q}^{(p)}(F)\left(y+x_{0}\right) & \approx g\left(-i q ;\left\langle\vec{\alpha}, y+x_{0}\right\rangle\right) \\
& \approx\left(\frac{q}{2 \pi i}\right)^{n / 2} \int_{\mathbf{R}^{n}} f(\vec{u}) \exp \left\{\frac{i q}{2}\left\|\vec{u}-\left\langle\vec{\alpha}, y+x_{0}\right\rangle\right\|^{2}\right\} d \vec{u} \\
(3.12) \quad & \approx\left(\frac{q}{2 \pi i}\right)^{n / 2} \int_{\mathbf{R}^{n}} f\left(\vec{u}+\left\langle\vec{\alpha}, y+x_{0}\right\rangle\right) \exp \left\{\frac{i q}{2}\|\vec{u}\|^{2}\right\} d \vec{u} \tag{3.12}
\end{align*}
$$

Remark 3.3. For $F \in \mathcal{B}_{n}^{(p)}$ given by (3.9) and F^{*} given by (3.3), using the Gram-Schmidt orthogonalization procedure, one can show that

$$
\begin{aligned}
T_{q}^{(p)}\left(F^{*}\right)(y) \approx & \left(\frac{q}{2 \pi i}\right)^{n / 2} \exp \left\{-i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle-\frac{i q}{2}\left\|\frac{\beta}{h}\right\|^{2}+\frac{i q}{2} \sum_{j=1}^{n}\left\langle\alpha_{j}, x_{0}\right\rangle^{2}\right\} \\
& \cdot \int_{\mathbf{R}^{n}} f(\langle\vec{\alpha}, y\rangle+\vec{u}) \exp \left\{-i q \sum_{j=1}^{n}\left\langle\alpha_{j}, x_{0}\right\rangle u_{j}+\frac{i q}{2} \sum_{j=1}^{n} u_{j}^{2}\right\} d \vec{u}
\end{aligned}
$$

Again, as in Theorem 3.2 above, it turns out that the two sides of (3.10) are identically equal for every y of the form (3.7).

Theorem 3.3. Let F, F^{*}, z and x_{0} be as in Corollary 3.3, and let y be given by (3.7). Then for all $p \in[1,2]$ and all real $q \neq 0$,

$$
\begin{equation*}
T_{q}^{(p)}(F)\left(y+x_{0}\right)=\exp \left\{i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle+\frac{i q}{2}\left\|\frac{\beta}{h}\right\|^{2}\right\} T_{q}^{(p)}\left(F^{*}\right)(y) \tag{3.13}
\end{equation*}
$$

4. Translation theorems for conditional transforms. In this section we will first establish a translation theorem for the GCFFT of very general functionals F. Then, as corollaries we will show that this translation formula also holds for the GCFFT of functionals in the classes \mathcal{S} and $\mathcal{B}_{n}^{(p)}$ discussed in Section 3. For some related work involving conditional integrals and transforms, see [11], [13], [14], [23], [24], [26], [29]. Throughout this section we will always condition by

$$
\begin{equation*}
X(x)=z(x, T) \tag{4.1}
\end{equation*}
$$

First we will state the appropriate definitions of conditional integrals and transforms [13], [14], [26]. For $\lambda>0$ and $\eta \in \mathbf{R}$ let

$$
\begin{equation*}
J_{\lambda}(\eta)=E\left[F\left(\lambda^{-1 / 2} z(x, \cdot)\right) \mid \lambda^{-1 / 2} z(x, T)=\eta\right] \tag{4.2}
\end{equation*}
$$

denote the (generalized) conditional Wiener integral of $F\left(\lambda^{-1 / 2} z(x, \cdot)\right)$ given $\lambda^{-1 / 2} z(x, T)$. If for almost all $\eta \in \mathbf{R}$, there exists a function $J_{\lambda}^{*}(\eta)$, analytic in λ on \mathbf{C}_{+}such that $J_{\lambda}^{*}(\eta)=J_{\lambda}(\eta)$ for $\lambda>0$, then $J_{\lambda}^{*}(\eta)$ is defined to be the conditional analytic Wiener integral of $F(z(x, \cdot))$ given $z(x, T)$ with parameter λ and for $\lambda \in \mathbf{C}_{+}$we write

$$
\begin{equation*}
J_{\lambda}^{*}(\eta)=E_{x}^{\text {anw }}{ }_{\lambda}[F(z(x, \cdot)) \mid z(x, T)=\eta] . \tag{4.3}
\end{equation*}
$$

If, for fixed real $q \neq 0, \lim _{\lambda \rightarrow-i q} J_{\lambda}^{*}(\eta)$ exists for almost all $\eta \in \mathbf{R}$, we denote the value of this limit by

$$
\begin{equation*}
E_{x}^{\operatorname{anf}_{q}}[F(z(x, \cdot)) \mid z(x, T)=\eta] \tag{4.4}
\end{equation*}
$$

and call it the (generalized) conditional analytic Feynman integral of F given X with parameter q.

Remark 4.1. In [24], Park and Skoug give a formula for expressing conditional Wiener integrals in terms of ordinary Wiener integrals; namely, that for $\lambda>0$,

$$
\begin{align*}
& E\left[F\left(\lambda^{-1 / 2} z(x, \cdot)\right) \mid \lambda^{-1 / 2} z(x, T)=\eta\right] \\
& \quad=E_{x}\left[F\left(\lambda^{-1 / 2} z(x, \cdot)-\lambda^{-1 / 2} \frac{a(\cdot)}{a(T)} z(x, T)+\frac{a(\cdot)}{a(T)} \eta\right)\right] \tag{4.5}
\end{align*}
$$

Thus we have that

$$
\begin{align*}
& E_{x}^{\operatorname{anw}_{\lambda}}[F(z(x, \cdot)) \mid z(x, T)=\eta] \\
& \quad=E_{x}^{\operatorname{anw}_{\lambda}}\left[F\left(z(x, \cdot)-\frac{a(\cdot)}{a(T)} z(x, T)+\frac{a(\cdot)}{a(T)} \eta\right)\right] \tag{4.6}
\end{align*}
$$

and

$$
\begin{align*}
& E_{x}^{\operatorname{anf}_{q}}[F(z(x, \cdot)) \mid z(x, T)=\eta] \\
& \quad=E_{x}^{\operatorname{anf}_{q}}\left[F\left(z(x, \cdot)-\frac{a(\cdot)}{a(T)} z(x, T)+\frac{a(\cdot) \eta}{a(T)}\right)\right] \tag{4.7}
\end{align*}
$$

where in (4.6) and (4.7) the existence of either side implies the existence of the other side and its equality.
Next we define the GCFFT. For $\lambda \in \mathbf{C}_{+}$and $y \in C_{0}[0, T]$, let $T_{\lambda}(F \mid X)(y, \eta)$ denote the conditional analytic Wiener integral of $F(y+$ $z(x, \cdot))$ given $X(x)=z(x, T)$, that is to say,

$$
\begin{align*}
T_{\lambda}(F \mid X)(y, \eta) & =E_{x}^{\operatorname{anw}_{\lambda}}[F(y+z(x, \cdot)) \mid z(x, T)=\eta] \\
& =E_{x}^{\operatorname{anw}_{\lambda}}\left[F\left(y+z(x, \cdot)-\frac{a(\cdot)}{a(T)} z(x, T)+\frac{a(\cdot)}{a(T)} \eta\right)\right] . \tag{4.8}
\end{align*}
$$

For $1<p \leq 2$ we define the L_{p} analytic $\operatorname{GCFFT}, T_{q}^{(p)}(F \mid X)(y, \eta)$ by the formula

$$
\begin{equation*}
T_{q}^{(p)}(F \mid X)(y, \eta)=\text { l.i.m. }{ }_{\lambda \rightarrow-i q} T_{\lambda}(F \mid X)(y, \eta) \tag{4.9}
\end{equation*}
$$

if it exists, and we define the L_{1} analytic GCFFT of F by the formula

$$
\begin{equation*}
T_{q}^{(1)}(F \mid X)(y, \eta)=\lim _{\lambda \rightarrow-i q} T_{\lambda}(F \mid X)(y, \eta) \tag{4.10}
\end{equation*}
$$

if it exists.

Remark 4.2. Using Remark 4.1 above, it follows that for all functionals F in the classes \mathcal{S} and $\mathcal{B}_{n}^{(p)}$, the GCFFT $T_{q}^{(p)}(F \mid X)$ exists and is given by the formula

$$
\begin{align*}
T_{q}^{(p)}(F \mid X) & (y, \eta) \\
& =E_{x}^{\operatorname{anf}_{q}}\left[F\left(y+z(x, \cdot)-\frac{a(\cdot)}{a(T)} z(x, T)+\frac{a(\cdot)}{a(T)} \eta\right)\right] \tag{4.11}
\end{align*}
$$

for all $p \in[1,2]$ and all real $q \neq 0$.

In our first theorem we obtain a very general translation theorem that gives an interesting relationship between the conditional transforms $T_{q}^{(p)}(F \mid X)$ and $T_{q}^{(p)}\left(F^{*} \mid X\right)$.

Theorem 4.1. Let $p \in[1,2]$ be given, and let $F: C_{0}[0, T] \rightarrow \mathbf{C}$ be such that the GCFFT, $T_{q}^{(p)}(F \mid X)$ of F exists for all real $q \neq 0$. Let $X(x)$ be given by (4.1). Let x_{0} be given by (3.1) and $z(x, t)$ by (1.3) with $h \in L_{\infty}[0, T], \beta / h \in L_{2}[0, T]$ and $\beta / h^{2} \in L_{2}[0, T]$. Then for all real $q \neq 0$,

$$
\begin{align*}
& T_{q}^{(p)}(F \mid X)\left(y+x_{0}, \eta\right) \\
& \approx \exp \left\{i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle+\frac{i q}{2}\left\|\frac{\beta}{h}\right\|^{2}+\frac{i q x_{0}(T)}{a(T)}\left(\eta+\frac{x_{0}(T)}{2}\right)\right\} \tag{4.12}\\
& \cdot T_{q}^{(p)}\left(F^{*} \mid X\right)\left(y, \eta+x_{0}(T)\right)
\end{align*}
$$

where F^{*} is given by equation (3.3).

Proof. Again we will give the proof for the case $p \in(1,2]$; the case $p=1$ is similar, but somewhat easier. For $\lambda>0$ and $\eta_{1} \in \mathbf{R}$, using (3.3) and (4.5) we see that

$$
\begin{aligned}
I & \equiv T_{\lambda}\left(F^{*} \mid X\right)\left(y, \eta_{1}\right) \\
& =E_{x}\left[F^{*}\left(y+\lambda^{-1 / 2} z(x, \cdot)\right) \mid \lambda^{-1 / 2} z(x, T)=\eta_{1}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & E_{x}\left[F^{*}\left(y+\lambda^{-1 / 2} z(x, \cdot)-\lambda^{-1 / 2} z(x, T) \frac{a(\cdot)}{a(T)}+\eta_{1} \frac{a(\cdot)}{a(T)}\right)\right] \\
= & \exp \left\{-i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle-i q \eta_{1} \frac{x_{0}(T)}{a(T)}\right\} \\
& \cdot E_{x}\left[\exp \left\{-i q \lambda^{-1 / 2}\left\langle\frac{\beta}{h^{2}}, z(x, \cdot)\right\rangle+i q \lambda^{-1 / 2} x_{0}(T) \frac{z(x, T)}{a(T)}\right\}\right. \\
& \left.\quad \cdot F\left(y+\lambda^{-1 / 2} z(x, \cdot)-\lambda^{-1 / 2} z(x, T) \frac{a(\cdot)}{a(T)}+\eta_{1} \frac{a(\cdot)}{a(T)}\right)\right] .
\end{aligned}
$$

Using the translation theorem in the form

$$
E[F(x)]=\exp \left\{-\frac{\left\|u_{0}^{\prime}\right\|^{2}}{2}\right\} E\left[F\left(x+u_{0}\right) \exp \left\{-\left\langle u_{0}^{\prime}, x\right\rangle\right\}\right]
$$

with $u_{0}(t)=\lambda^{1 / 2} \int_{0}^{t} \beta(s) / h(s) d s$ and $x_{0}(t)=\int_{0}^{t} \beta(s) d s=$ $\lambda^{-1 / 2} \int_{0}^{t} h(s) d u_{0}(s)$, we obtain that

$$
\begin{aligned}
& I=\exp \left\{-i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle-i q \eta_{1} \frac{x_{0}(T)}{a(T)}-\frac{\lambda}{2}\left\|\frac{\beta}{h}\right\|^{2}\right. \\
& \left.\quad-i q \lambda^{-1 / 2}\left\langle\frac{\beta}{h^{2}}, z\left(u_{0}, \cdot\right)\right\rangle+i q \lambda^{-1 / 2} x_{0}(T) \frac{z\left(u_{0}, T\right)}{a(T)}\right\} \\
& \cdot E_{x}\left[\operatorname { e x p } \left\{-i q \lambda^{-1 / 2}\left\langle\frac{\beta}{h^{2}}, z(x, \cdot)\right\rangle\right.\right. \\
& \left.\quad+i q \lambda^{-1 / 2} x_{0}(T) \frac{z(x, T)}{a(T)}-\lambda^{1 / 2}\left\langle\frac{\beta}{h}, x\right\rangle\right\} \\
& \\
& \cdot F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)-\lambda^{-1 / 2} z(x, T) \frac{a(\cdot)}{a(T)}\right. \\
& \left.\left.\quad-\lambda^{-1 / 2} z\left(u_{0}, T\right) \frac{a(\cdot)}{a(T)}+\eta_{1} \frac{a(\cdot)}{a(T)}\right)\right]
\end{aligned}
$$

Next observing that $\left\langle\beta / h^{2}, z(x, \cdot)\right\rangle=\langle\beta / h, x\rangle,\left\langle\beta / h^{2}, z\left(u_{0}, \cdot\right)\right\rangle=$ $\lambda^{1 / 2}\|\beta / h\|^{2}, z\left(u_{0}, T\right)=\lambda^{1 / 2} x_{0}(T)$, and then setting $\eta_{1}=\eta+x_{0}(T)$, we
obtain that

$$
\begin{aligned}
I & =T_{\lambda}\left(F^{*} \mid X\right)\left(y, \eta+x_{0}(T)\right) \\
& =\exp \left\{-i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle-i q \eta \frac{x_{0}(T)}{a(T)}-\left(\frac{\lambda}{2}+i q\right)\left\|\frac{\beta}{h}\right\|^{2}\right\}
\end{aligned}
$$

$$
\begin{align*}
\cdot E_{x} & {\left[\exp \left\{-\lambda^{-1 / 2}(i q+\lambda)\left\langle\frac{\beta}{h}, x\right\rangle+i q \lambda^{-1 / 2} x_{0}(T) \frac{z(x, T)}{a(T)}\right\}\right.} \tag{4.13}\\
& \left.\cdot F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)-\lambda^{-1 / 2} z(x, T) \frac{a(\cdot)}{a(T)}+\eta \frac{a(\cdot)}{a(T)}\right)\right]
\end{align*}
$$

Since $T_{q}^{(p)}(F \mid X)$ exists for each $q \in \mathbf{R}$ with $q \neq 0$, we know that $T_{\lambda}^{(p)}(F \mid X)$ exists for each $\lambda \in \mathbf{C}_{+}$. Thus

$$
E_{x}\left[\left|F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)-\lambda^{-1 / 2} z(x, T) \frac{a(\cdot)}{a(T)}+\eta \frac{a(\cdot)}{a(T)}\right)\right|^{p}\right]
$$

exists. Using Hölder's inequality, we see that

$$
\begin{aligned}
& E_{x}\left[\left\lvert\,\left(\exp \left\{-\lambda^{-1 / 2}(i q+\lambda)\left\langle\frac{\beta}{h}, x\right\rangle\right\}-1\right) \exp \left\{i q \lambda^{-1 / 2} x_{0}(T) \frac{z(x, T)}{a(T)}\right\}\right.\right. \\
& \left.\left.\cdot F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)-\lambda^{-1 / 2} z(x, T) \frac{a(\cdot)}{a(T)}+\eta \frac{a(\cdot)}{a(T)}\right) \right\rvert\,\right] \\
& \leq\left(E_{x}\left[\left|\exp \left\{-\lambda^{-1 / 2}(i q+\lambda)\left\langle\frac{\beta}{h}, x\right\rangle\right\}-1\right|^{p^{\prime}}\right]\right)^{1 / p^{\prime}} \\
& \quad \cdot\left(E _ { x } \left[\left\lvert\, \exp \left\{i q \lambda^{-1 / 2} x_{0}(T) \frac{z(x, T)}{a(T)}\right\}\right.\right.\right. \\
& \left.\left.\left.\quad \cdot F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)-\lambda^{-1 / 2} z(x, T) \frac{a(\cdot)}{a(T)}+\eta \frac{a(\cdot)}{a(T)}\right)\right|^{p}\right]\right)^{1 / p} \cdot
\end{aligned}
$$

Note that $z(x, T)$ and $z(x, \cdot)-z(x, T) a(\cdot) / a(T)$ are independent processes. Hence

$$
\begin{aligned}
E_{x}[& \left\lvert\, \exp \left\{i q \lambda^{-1 / 2} x_{0}(T) \frac{z(x, T)}{a(T)}\right\}\right. \\
& \left.\left.\cdot F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)-\lambda^{-1 / 2} z(x, T) \frac{a(\cdot)}{a(T)}+\eta \frac{a(\cdot)}{a(T)}\right)\right|^{p}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & E_{x}\left[\left|\exp \left\{i q \lambda^{-1 / 2} x_{0}(T) \frac{z(x, T)}{a(T)}\right\}\right|^{p}\right] \\
& \cdot E_{x}\left[\left|F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)-\lambda^{-1 / 2} z(x, T) \frac{a(\cdot)}{a(T)}+\eta \frac{a(\cdot)}{a(T)}\right)\right|^{p}\right] \\
= & E_{x}\left[\left|\exp \left\{i q \lambda^{-1 / 2} x_{0}(T) \frac{z(x, T)}{a(T)}\right\}\right|^{p}\right] \\
& \cdot E_{x}\left[\left|F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)\right)\right|^{p} \mid \lambda^{-1 / 2} z(x, T)=\eta\right]
\end{aligned}
$$

Furthermore each factor in the last expression above has a limit as $\lambda \rightarrow-i q$ in \mathbf{C}_{+}. Therefore, the last expression is bounded in a deleted neighborhood of $-i q$ intersected with \mathbf{C}_{+}. Since $E_{x}\left[\mid \exp \left\{-\lambda^{1 / 2}(i q+\right.\right.$ $\left.\lambda)\langle\beta / h, x\rangle\}-\left.1\right|^{p^{\prime}}\right] \rightarrow 0$ as $\lambda \rightarrow-i q$ in \mathbf{C}_{+}, we conclude that

$$
\begin{aligned}
E_{x}[\exp & \left\{-\lambda^{-1 / 2}(i q+\lambda)\left\langle\frac{\beta}{h}, x\right\rangle+i q \lambda^{-1 / 2} x_{0}(T) \frac{z(x, T)}{a(T)}\right\} \\
\cdot & \left.F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)-\lambda^{-1 / 2} z(x, T) \frac{a(\cdot)}{a(T)}+\eta \frac{a(\cdot)}{a(T)}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
E_{x}[\exp & \left\{i q \lambda^{-1 / 2} x_{0}(T) \frac{z(x, T)}{a(T)}\right\} \\
& \left.\cdot F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)-\lambda^{-1 / 2} z(x, T) \frac{a(\cdot)}{a(T)}+\eta \frac{a(\cdot)}{a(T)}\right)\right]
\end{aligned}
$$

have the same transform as $\lambda \rightarrow-i q$ in \mathbf{C}_{+}. Using the independence between $z(x, T)$ and $z(x, \cdot)-z(x, T) a(\cdot) / a(T)$ again, we see that

$$
\begin{align*}
& E_{x}\left[\exp \left\{i q \lambda^{-1 / 2} x_{0}(T) \frac{z(x, T)}{a(T)}\right\}\right. \\
& \left.\quad \cdot F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)-\lambda^{-1 / 2} z(x, T) \frac{a(\cdot)}{a(T)}+\eta \frac{a(\cdot)}{a(T)}\right)\right] \\
& \tag{4.14}\\
& =E_{x}\left[\exp \left\{i q \lambda^{-1 / 2} x_{0}(T) \frac{z(x, T)}{a(T)}\right\}\right] \\
& \quad \cdot E_{x}\left[F\left(y+x_{0}+\lambda^{-1 / 2} z(x, \cdot)-\lambda^{-1 / 2} z(x, T) \frac{a(\cdot)}{a(T)}+\eta \frac{a(\cdot)}{a(T)}\right)\right]
\end{align*}
$$

$$
=\exp \left\{-\frac{q^{2} x_{0}^{2}(T)}{2 \lambda a(T)}\right\} T_{\lambda}(F \mid X)\left(y+x_{0}, \eta\right)
$$

Thus, using (4.14) and letting $\lambda \rightarrow-i q$ in (4.13), we obtain (4.12) which concludes the proof of Theorem 4.1.

Next we observe that formula (4.12) holds for all functionals in the classes \mathcal{S} and $\mathcal{B}_{n}^{(p)}$.

Corollary 4.1. Let $F \in \mathcal{S}$ be given by (3.5) and $X(x)$ by (4.1). Let x_{0}, z, h and β be as in Theorem 4.1. Then for all $p \in[1,2]$ and all real $q \neq 0$,

$$
\begin{aligned}
T_{q}^{(p)}(F \mid X)(y & \left.+x_{0}, \eta\right) \\
\approx & \exp \left\{i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle+\frac{i q}{2}\left\|\frac{\beta}{h}\right\|^{2}+\frac{i q x_{0}(T)}{a(T)}\left(\eta+\frac{x_{0}(T)}{2}\right)\right\} \\
& \cdot T_{q}^{(p)}\left(F^{*} \mid X\right)\left(y, \eta+x_{0}(T)\right)
\end{aligned}
$$

where F^{*} is given by equation (3.3).

Proof. This corollary follows from Theorem 4.1 since, by Remark 4.2 above, $T_{q}^{(p)}(F \mid X)$ exists for all $p \in[1,2]$ and all real $q \neq 0$.

Remark 4.3. For $F \in \mathcal{S}$ given by (3.5), direct calculations show that

$$
\begin{aligned}
& T_{q}^{(p)}(F \mid X)\left(y+x_{0}, \eta\right) \\
& \quad \approx \int_{L_{2}[0, T]} \exp \left\{i\left\langle u, y+x_{0}\right\rangle+i b \eta-\frac{i}{2 q} \int_{0}^{T}[u(s)-b]^{2} h^{2}(s) d s\right\} d f(u),
\end{aligned}
$$

and that

$$
\begin{aligned}
& T_{q}^{(p)}\left(F^{*} \mid X\right)(y, \eta) \\
& \qquad \begin{array}{l}
\approx \exp \left\{-i q\left\langle\frac{\beta}{h^{2}}, y\right\rangle-\frac{i q x_{0}(T) \eta}{a(T)}-\frac{i q}{2}\left\|\frac{\beta}{h}\right\|^{2}+\frac{i q x_{0}^{2}(T)}{2 a(T)}\right\} \\
\\
\quad \cdot \int_{L_{2}[0, T]} \exp \left\{-i b x_{0}(T)+i\left\langle u, y+x_{0}\right\rangle\right. \\
\\
\left.\quad+i b \eta-\frac{i}{2 q} \int_{0}^{T}[u(s)-b]^{2} h^{2}(s) d s\right\} d f(u)
\end{array}
\end{aligned}
$$

where

$$
b=\frac{1}{a(T)} \int_{0}^{T} u(s) h^{2}(s) d s=\frac{\left(u, h^{2}\right)}{a(T)} .
$$

Corollary 4.2. Let $X(x), x_{0}, z, h$ and β be as in Theorem 4.1. Let $p \in[1,2]$, let $F \in \mathcal{B}_{n}^{(p)}$ be given by (3.9), let F^{*} be given by (3.3). Then for all real $q \neq 0, T_{q}^{(p)}(F \mid X)$ and $T_{q}^{(p)}\left(F^{*} \mid X\right)$ exist and are related by formula (4.15).

Proof. This corollary also follows immediately from Theorem 4.1 since by Remark 4.2 above, $T_{q}^{(p)}(F \mid X)$ exists for all $p \in[1,2]$ and all real $q \neq 0$.

Acknowledgment. The first author wishes to express his gratitude to Professors D. Skoug and C. Park for their encouragement and valuable advice as well as to the University of Nebraska-Lincoln for its hospitality.

REFERENCES

1. M.D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, Ph.D. Thesis, University of Minnesota, Minneapolis, 1972.
2. R.H. Cameron and G.E. Graves, Additional functionals on a space of continuous functions, I, Trans. Amer. Math. Soc. 70 (1951), 160-176.
3. R.H. Cameron and W.T. Martin, Transformations of Wiener integrals under translations, Ann. of Math. 45 (1944), 386-396.
4. R.H. Cameron and D.A. Storvick, A translation theorem for analytic Feynman integrals, Trans. Amer. Math. Soc. 125 (1966), 1-6.
5. \quad, An L_{2} analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30.
6. - Some Banach algebras of analytic Feynman integrable functionals, Analytic functions (Kozubnik, 1979), Lecture Notes in Math. 798, Springer, Berlin, 1980, 18-67.
7. -, A new translation theorem for the analytic Feynman integral, Rev. Roum. Math. Pures Appl. 27 (1982), 937-944.
8. -, A simple definition of the Feynman integral, with applications, Mem. Amer. Math. Soc. 46 (1983), 1-46.
9. K.S. Chang, Scale-invariant measurability in Yeh-Wiener Space, J. Korean Math. Soc. 19 (1982), 61-67.
10. K.S. Chang, G.W. Johnson and D.L. Skoug, Functions in the Banach algebra $S(v)$, J. Korean Math. Soc. 24 (1987), 151-158.
11. S.J. Chang and D.M. Chung, A class of conditional Wiener integrals, J. Korean Math. Soc. 30 (1993), 161-172.
12. D.M. Chung and S.J. Kang, Translation theorems for Feynman integrals on abstract Wiener and Hilbert spaces, Bull. Korean Math. Soc. 23 (1986), 177-187.
13. D.M. Chung, C. Park and D.L. Skoug, Generalized Feynman integrals via conditional Feynman integrals, Michigan Math. J. 40 (1993), 377-391.
14. D.M. Chung and D.L. Skoug, Conditional analytic Feynman integrals and a related Schrödinger integral equation, SIAM J. Math. Anal. 20 (1989), 950-965.
15. T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661-673.
16. - Convolution and Fourier-Feynman transforms, Rocky Mountain J. Math. 27 (1997), 827-841.
17. -, Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), 247-261.
18. -, Generalized transforms and convolutions, Internat. J. Math. Math. Sci. 20 (1997), 19-32.
19. G.W. Johnson and D.L. Skoug, The Cameron-Storvick function space integral: An $L\left(L_{p}, L_{p^{\prime}}\right)$ theory, Nagoya Math. J. 60 (1976), 93-137.
20. - An L_{p} analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), 103-127.
21. , Scale-invariant measurability in Wiener space, Pacific J. Math 83 (1979), 157-176.
22. -, Notes on the Feynman integral, III, Pacific J. Math. 105 (1983), 321-358.
23. C. Park and D. Skoug, A simple formula for conditional Wiener integrals with applications, Pacific J. Math. 135 (1988), 381-394.
24. -, A Kac-Feynman integral equation for conditional Wiener integrals, J. Integral Equations Appl. 3 (1991), 411-427.
25. The Feynman integral of quadratic potentials depending on n time parameters, Nagoya Math. J. 110 (1998), 151-162.
26. - Conditional Fourier-Feynman transformations and conditional convolution products, submitted.
27. I. Segal, Transformations in Wiener space and squares of quantum fields, Adv. Math. 4 (1970), 91-108.
28. D.A. Storvick, The analytic Feynman integral, in Dirichlet forms and stochastic processes, Proc. of the Internat. Conf., Beijing, China, 1993, 355-362.
29. J. Yeh, Inversion of conditional Wiener integrals, Pacific J. Math. 59 (1975), 623-638.

Department of Mathematics, Dankook University, Cheonan, 330-714, Korea
E-mail address: sejchang@anseo.dankook.ac.kr
Department of Mathematics and Statistics, Miami University, Oxford, OH 45056
E-mail address: cpark@miavx1.acs.muohio.edu
Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska, 68588-0323
E-mail address: dskoug@math.unl.edu

[^0]: Received by the editors on December 16, 1998.
 The first author was supported by KOSEF post-doctoral fellowship in Korea in 1997.

