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STABILITY OF BROCARD POINTS OF POLYGONS

ADI BEN-ISRAEL AND STEPHAN FOLDES

ABSTRACT. A continuous nested sequence of similar tri-
angles converging to the Brocard point of a given triangle is
investigated. All these triangles have the same Brocard point.
For polygons, the Brocard point need not exist, but there is
always a limit object for an analogously defined nested se-
quence of inner polygons. This limit object is a Brocard point
if and only if the inner polygons are all similar to the orig-
inal polygon. The similarity of two distinct inner polygons
already suffices. In that case, all the inner polygons have the
same Brocard point.

1. Introduction. The positive Brocard point of a triangle A1A2A3

is the unique point Ω within the triangle such that the angle between
AiΩ and AiAi+1 is the same for all i modulo 3. This is illustrated in
Figure 2, where the vertices are denoted A, B, C. The earliest easily
accessible reference to the Brocard point that we are aware of is [16].
According to Honsberger [6], the Brocard point was already known to
Crelle, Jacobi and others at the beginning of the 19th century. Indeed,
the historically more accurate name of Crelle-Brocard point is used by
Mitrinovic, Pecaric and Volenec [15] (where other references to both
older and contemporary work are also given).

Traditionally, the Brocard point was constructed by rule and com-
pass: see Honsberger [6], Johnson [7], Shively [17]. An entirely different
approach to generate the Brocard point, by an infinite limit process,
was taken by Yff in [18]. Another infinite limit process to generate the
Brocard point was described by the present authors in [1]. In this latter
paper the limit process was defined for arbitrary convex polygons, and
it yields the Brocard point whenever it exists, as in Figure 3. (For n-
gons the Brocard point is defined analogously with the triangle case as
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above, with arbitrary n instead of 3.) In the present paper we analyze
the Brocard point limit process described in [1], both for triangles and
general convex polygons.

For yet another approach to the generation of triangle centers, in
fact placing [16] in a general framework, see Kimberling [8 13]. Note
also that the infinite process we consider in [1], and in the present
paper, is based on nonconcurrent cevians converging to concurrency.
The Brocard point theory has already been linked to Ceva’s theorem
by a proof of Abi-Khuzam’s inequality due to Veldkamp, Stroeker and
Hoogland (see [15]). Very recent work on polygonal generalizations of
Ceva’s theorem includes Grünbaum and Shephard [2 5], where further
references are given.

Notation and terminology. All points and sets are in the real Eu-
clidean plane R2.

For any two points X, Y , the directed segment (vector) from X to Y

is denoted by
−−→
XY , and its length by |XY |.

Given three distinct points X, Y, Z, the vector
−−→
Y X can be rotated

around Y to the direction of
−→
Y Z in two ways, see Figure 1(a),(b). The

signed angle ∠XY Z is the smaller of these two rotations and is positive
if the rotation is counterclockwise, negative otherwise.

If the points X, Y, Z are collinear, with Y between X and Z, we define
∠XY Z = π.

The absolute angle, or just angle, is the absolute value of ∠XY Z.
Absolute angles are denoted by lower case Greek letters.

For the triangle ABC of Figure 1(c), it follows that

∠BAC + ∠CBA + ∠ACB = α + β + γ,

∠ABC + ∠BCA + ∠CAB = −(α + β + γ).

Definition 1. A direct similarity is a map h : R2 → R2 such that:

(a) there is a positive real number t, called the stretch ratio of h, such
that

(1) |h(x)h(y)| = t|xy|, for any two points x, y
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(c) The (absolute) angles of a triangle.

FIGURE 1. Signed and absolute angles.
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(b) for any three distinct points x, y, z:

(2) ∠h(x)h(y)h(z) = ∠xyz.

Remark 1. Note that Definition 1(a) implies that h is injective. In
fact, the elementary theory of similarities tells us the following (see,
e.g., [14]):

(a) Direct similarities are bijective maps: R2 → R2, and form a
group under composition, with the identity map as a neutral element.

(b) The image, under a direct similarity, of any convex set is convex.

(c) Each direct similarity is determined by its action on any two
distinct points.

A convex polygon in the Euclidean plane R2 can be represented in
two ways:

• An intersection of finitely many halfplanes.

• A convex hull of finitely many points, the vertices of the polygon.

In the latter case we assume that the set of vertices {V1, . . . , Vn}
is minimal and ordered, enumerated clockwise or counterclockwise.
The indices 1, 2, . . . , n are understood modulo n so that Vn = V0,
Vn+1 = V1, etc.

Definition 2. Let Π and Π′ be two polygons with the same number
of vertices, enumerated counterclockwise as V1, . . . , Vn and V ′

1 , . . . , V ′
n,

respectively. Then Π and Π′ are called similar if there is a direct
similarity h such that h(Vi) = V ′

i , i = 1, . . . , n. We write Π ∼ Π′, the
corresponding vertex sequences being understood.

Remark 2. (a) Definition 2 can be restated as follows. Two polygons
Π and Π′ with vertices enumerated counterclockwise V1, V2, . . . , Vn and
V ′

1 , V ′
2 , . . . , V ′

n, respectively, are similar if:

• Corresponding signed angles are equal,

∠Vi−1ViVi+1 = ∠V ′
i−1V

′
i V ′

i+1, i = 1, . . . , n.
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• Corresponding sides have equal ratios,

|V ′
i V ′

i+1|
|ViVi+1| = constant, i = 1, . . . , n.

(b) Polygon similarity is an order specific property. For example,
a triangle ABC is in general not similar to the triangle BCA or to
CBA. However, if ABC ∼ A′B′C ′, then BCA ∼ B′C ′A′ and also
CBA ∼ C ′B′A′.

Remark 3. Let A, B, C, D be four distinct points, and consider the
four triangles ABC, ABD, ACD and BCD. If any three of the points
A, B, C, D are collinear, they define a degenerate triangle (segment).

Let A′, B′, C ′, D′ be a set of corresponding points. If any two of the
triangle pairs are similar, say

ABC ∼ A′B′C ′ and ABD ∼ A′B′D′

then the other two pairs are similar,

ACD ∼ A′C ′D′ and BCD ∼ B′C ′D′.

2. The Brocard transformation. Given a triangle ABC, there is
a unique angle ω and a unique point Ω such that

ω = ∠ACΩ = ∠BAΩ = ∠CBΩ,

see Figure 2(a). The angle ω is called the Brocard angle, and the point
Ω is the (positive) Brocard point of the triangle. The negative Brocard
point, Ω′, is the isogonal conjugate of Ω, and

ω = ∠Ω′AC = ∠Ω′BA = ∠Ω′CB,

see Figure 2(b). The two Brocard points coincide if the triangle is
equilateral, in which case ω = π/6.

We study Brocard points and angles for polygons using the following
transformation (introduced in [1]).
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A B

C

A B

C

(a) The point Ω and angle ω. (b) The point Ω′ and angle ω.

FIGURE 2. The Brocard angle ω, and two Brocard points Ω, Ω′ of a triangle
ABC.

Definition 3. Let the convex polygon Π have n vertices V1, V2, . . . , Vn,
numbered counter-clockwise, and let θ be an angle not exceeding the
smallest angle of the polygon. For i = 1, . . . , n, let

• Li(θ) be the line through Vi with (counter-clockwise) angle θ from
the direction

−−−−→
ViVi+1,

• L+
i (θ) be the closed half-plane defined by Li(θ), which:

◦ if θ > 0, excludes the next vertex Vi+1, and

◦ if θ = 0, includes the vertex Vi+2.

(a) The (positive) Brocard transform Π(θ) is the intersection (possibly
empty) of the n half-planes L+

i (θ), i = 1, . . . , n.

(b) The (positive) Brocard angle ω is the largest angle θ with
nonempty Π(θ) (see Remark 4(c)).

(c) If Π(ω) is a singleton {Ω}, and if all lines {Li(ω) : i = 1, . . . , n}
intersect at Ω, then Ω is called the (positive) Brocard point of Π.

The negative Brocard transforms, angle and point are defined analo-
gously, and have analogous properties. It therefore suffices to study the
positive Brocard objects, and the adjective positive can be omitted, as
we do below.

The Brocard transformation is illustrated in Figure 3(b) for the
polygon Π with vertices A, B, . . . , Z. The Brocard point and angle
are shown in Figure 3(c).
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(a) A polygon Π with vertices A, B, . . . , Z.

A

B

Z
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α θ−

β θ− γ θ−

Π θ( )

(b) A Brocard transform Π(θ).
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Z

C

(c) The Brocard point Ω and angle ω.

FIGURE 3. Illustration of the Brocard transformation of polygons.
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Remark 4. (a) The Brocard transforms Π(θ) are closed convex
polygons, by their definition as intersections of finitely many closed
half-planes.

(b) Π(0) coincides with Π. If Π is nonempty, it follows that Π(θ) is
nonempty for all sufficiently small θ.

(c) The Brocard transformation is monotone in the sense that

0 ≤ θ1 ≤ θ2 =⇒ Π(θ2) ⊆ Π(θ1) ⊆ Π

so that

(3) Π(θ) =
⋂

0≤α≤θ

Π(α)

showing that the Brocard angle ω is well defined. Its existence follows
by a standard compactness argument.

(d) If Π is an n-polygon, the polygon Π(ω) is either

• a singleton, the intersection of n lines Li(ω), or

• a singleton, the intersection of fewer than n lines, or

• a line segment.

The Brocard point exists only in the first case.

Our main results are:

Existence. Given a polygon Π, the following statements are equiva-
lent:

• Π has a Brocard point

• Π ∼ Π(θ) for some 0 < θ < ω

• Π ∼ Π(θ) for all 0 ≤ θ < ω

• Π(θ1) ∼ Π(θ2) for some 0 ≤ θ1 < θ2 < ω.

By definition, similar Brocard transforms Π(θ) have the same number
of vertices V1(θ), . . . , Vn(θ). We number corresponding vertices consis-
tently as Vi(θ) := Li−1(θ) ∩ Li(θ).

Stability. If the polygon Π has a Brocard point, then all polygons
{Π(θ) : 0 ≤ θ < ω} have the same Brocard point.
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Triangles, considered in Section 3, present a special case. Both
(positive and negative) Brocard points exist, and the (positive and
negative) Brocard angles are equal. The proof of the stability result
for triangles is particularly simple, see Theorem 1.

For general polygons considered in Section 4, neither existence of
Brocard points nor equality of Brocard angles is guaranteed.

3. Triangles. Let ∆ be a triangle with vertices A, B, C, and let
θ be any angle smaller than the Brocard angle ω of ∆. The Brocard
transform ∆(θ) is illustrated in Figure 4.

The original triangle corresponds to θ = 0 and is denoted ∆(0).
The triangles ∆(0) and ∆(θ) are similar, and therefore all triangles
{∆(θ) : 0 ≤ θ < ω} are similar.

We denote the area of the triangle ∆(θ) by A(θ). The ratio A(θ)/A(0)
is therefore the square of the ratio of lengths of corresponding sides of
∆(θ) and ∆(0),

A(θ)
A(0)

= k2(θ)(4a)

where

k(θ) =
|A′B′|
|AB| ,(4b)

see Figure 4.

The factor k(θ) is calculated here twice, first in terms of the three
angles α, β and γ (Lemma 1), then in terms of the Brocard angle ω
(Lemma 2).

Lemma 1.

(5) k(θ) = cos θ − l sin θ, where l = cot β +
sin β

sin α sin γ
.

Proof. Using the notation of Figure 4(a),

|A′B′| = |AB′| − |AA′|
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Bα θ−
β θ−

γ θ−
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A

∆ θ( )

B

(a) ∆(θ) positioned in the original triangle.

A

B

C

C

A

B

α ω− β ω−

γ ω−

π β−

π α−

(b) ∆(θ) and the Brocard point Ω.

FIGURE 4. Illustration of the triangle ∆(θ).
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|AB′| = |AB| sin(β − θ)
sin β

(6)

|AA′| = |AC| sin θ

sin α
= |AB| sin β

sin γ

sin θ

sin α

∴ |A′B′| = |AB|
(

sin(β − θ)
sin β

− sin β sin θ

sin α sin γ

)

∴ k(θ) =
sin(β − θ)

sin β
− sin β sin θ

sin α sin γ
,

by (4b),

= cos θ − sin θ

(
cot β +

sin β

sin α sin γ

)
.

Lemma 2.

(7) k(θ) =
sin(ω − θ)

sin ω
.

Proof. Using the notation of Figure 4(b),

|AA′| = |AC| sin θ

sin α
= |AΩ| sin(π−α)

sin ω

sin θ

sin α

= |AB| sin(β−ω)
sin β

sin α

sin ω

sin θ

sin α

∴ |A′B′| = |AB′| − |AA′| = |AB|
(

sin(β−θ)
sin β

− sin θ

sin ω

sin(β−ω)
sin β

)
,

by (6).

∴ k(θ) =
|A′B′|
|AB| =

sin(β−θ)
sin β

− sin θ

sin ω

sin(β−ω)
sin β

= cos θ − cot ω sin θ

=
sin(ω − θ)

sin ω
.(8)

Remark 5. By comparing (5) and (8) we obtain the following well-
known identity, giving the Brocard angle in terms of the angles of the



422 A. BEN-ISRAEL AND S. FOLDES

triangle,

(9)

cot ω = cot β +
sin β

sin α sin γ

= cot β +
sin(α + γ)
sin α sin γ

= cot α + cot β + cot γ.

The following result is needed in the sequel.

Lemma 3. Let ω be the Brocard angle of a triangle with angles α, β
and γ. Then

(10)
sin(β − ω)

sin ω
=

sin2 β

sin α sin γ
.

Proof.

sin(β − ω)
sin ω

=
sin β cos ω − sin ω cos β

sin ω

= sin β cot ω − cos β

= sin β(cot α + cot β + cot γ) − cos β,

by (9)

= sin β

(
cos α

sin α
+

cos β

sin β
+

cos γ

sin γ

)
− cos β

= sin β

(
cos α

sin α
+

cos γ

sin γ

)

= sin β
cos α sin γ + cos γ sin α

sin α sin γ

= sin β
sin(α + γ)
sin α sin γ

=
sin2 β

sin α sin γ
.



STABILITY OF BROCARD POINTS 423

Given a triangle ∆ with Brocard angle ω, consider all Brocard
transforms {∆(θ) : 0 ≤ θ < ω} of ∆. These triangles are similar
and therefore have the same Brocard angle ω. We prove that they also
share the (positive) Brocard point Ω, i.e., Ω is stable under the Brocard
transformations.

As θ increases from 0 to ω, the triangles ∆(θ) shrink, and their areas
A(θ) satisfy

(11)
A(θ)
A(0)

=
sin2(ω − θ)

sin2 ω
,

see (4a) and (7). In particular, A(ω) = 0, i.e., ∆(ω) is a point, which
by definition is the positive Brocard point Ω of ∆.

Theorem 1. Given a triangle ∆ with Brocard angle ω and a
(positive) Brocard point Ω, all the triangles {∆(θ) : 0 ≤ θ < ω} have
the same Brocard point.

Proof. We prove that ∆ and ∆(θ) have the same (positive) Brocard
point for any 0 < θ < ω.

Let O be the positive Brocard point of ∆(θ), see Figure 5(a). It
suffices to show the equality of the signed angles

(12) ∠BAO = ∠CBO.

To prove (12) we show that the triangles AA′O and BB′O are similar,
see Figure 5(b).

A repeated application of the sine-rule gives

|AA′|
|AC| =

sin θ

sin α

|BB′|
|AB| =

sin θ

sin β

∴ |AA′|
|BB′| =

|AC|
|AB|

sin β

sin α

=
sin2 β

sin α sin γ
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(a) O is a Brocard point of ∆(θ).
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O

(b) The triangles AA′O and BB′O are similar.

FIGURE 5. Illustration of Theorem 1.
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also |A′O|
|B′O| =

sin(β − ω)
sin ω

.

From the last two equations and (10) we conclude

|AA′|
|A′O| =

|BB′|
|B′O|

showing that the triangles AA′O and BB′O are similar.

4. Polygons.

Theorem 2. Let Π be a nonempty convex n-polygon. Then the
following are equivalent:

(a) Π has a Brocard point.

(b) Π ∼ Π(θ) for all 0 ≤ θ < ω where ω is the Brocard angle of Π.

(c) Π ∼ Π(θ) for some 0 < θ < ω.

(d) There exist two angles 0 ≤ θ1 < θ2 < ω such that Π(θ1) and Π(θ2)
are similar n-polygons.

If these conditions hold, all Brocard transforms {Π(θ) : 0 ≤ θ < ω}
have the same Brocard point.

Proof. (a) ⇒ (b). Let Ω be the Brocard point of Π. Then

|A′B′| = |AB′| − |AA′|,
see Figure 6,

|AB′| = |AB| sin(β − θ)
sin β

|AA′| = |AZ| sin θ

sin α

= |AΩ| sin α

sin ω

sin θ

sin α

= |AB| sin(β − ω)
sin β

sin α

sin ω

sin θ

sin α
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A

B

C

C

A

B

α θ−
β θ−

γ θ−

Z

Π θ( )

π α− π β−

FIGURE 6. Π(θ) positioned in the original polygon.

∴ |A′B′|
|AB| =

sin(β − θ)
sin β

− sin θ sin(β − ω)
sin ω sin β

= cos θ − cot ω sin θ

proving that Π ∼ Π(θ).

(b) ⇒ (c). Clear.

(c) ⇒ (d). Take θ1 = 0, θ2 = θ.

(d) ⇒ (a). Let 0 ≤ θ1 < θ2 < ω be such that Π(θ1) ∼ Π(θ2). The
difference of these two angles is denoted by

(13) δ := θ2 − θ1.

Let h be the direct similarity

(14) Π(θ2) = h(Π(θ1)).

The vertices of Π, Π(θ1), Π(θ2) are denoted by A, B, C, . . . , Z; A1, B1,
C1, . . . , Z1; A2, B2, C2, . . . , Z2, respectively, where

A2 = h(A1), B2 = h(B1), . . . , Z2 = h(Z1),

see Figure 7(a). The angles of the similar polygons Π(θ1), Π(θ2) are
denoted α, β, γ . . . .
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A2
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1
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(a) The polygons Π and Π(θ1)∼Π(θ2). (b) The points A, A1, A2, Z are concyclic.

FIGURE 7. Illustration of Theorem 2.

Corresponding sides in Π(θ1), Π(θ2) are related by

(15)
|A2B2|
|A1B1| = t

where 0 < t < 1 is the stretch ratio of the similarity h.

Define the sequence of similar polygons {Πn} by

(16) Πn := h(Πn−1) = hn−1(Π1), with Π1 := Π(θ1).

Clearly the polygons Πn are nested and become smaller as n increases.
We prove that there is a point Ω such that

lim
n→∞ Πn = {Ω}(17)

∠BAΩ = ∠CBΩ = · · · = ∠AZΩ(18)

i.e., Ω is the Brocard point of the original polygon Π.

Proof of (17). Denote the vertices of Πn by {An, Bn, . . . , Zn}. Then

|AnAn+1| = |hn−1(A1)hn−1(A2)| = tn−1|A1A2|
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A An

An+1

A

An

An+1

(a) Positive angle. (b) Negative angle.

FIGURE 8. The signed angle ∠AnAAn+1.

shows that |AnAn+1| → 0, i.e., the sequence {An} converges to some
point, say Ω. But

|AnBn| = |hn−1(A1)hn−1(B1)| = tn−1|A1B1|
shows that |AnBn| → 0. Therefore, the sequence {Bn} converges to
the same point. Similarly all vertices of Πn converge to Ω, proving (17).

Proof of (18). The angle ∠BAΩ is the sum

(19) ∠BAΩ = θ1 +
∞∑

n=1

∠AnAAn+1

where some of the signed angles in the right side may be negative, see,
e.g., Figure 8(b). We prove (18) by showing the equality of the signed
angles

∠AnAAn+1 = ∠BnBBn+1 = · · · = ∠ZnZZn+1

which we prove by establishing the similarity of triangles

(20) AAnAn+1 ∼ BBnBn+1 ∼ · · · ∼ ZZnZn+1

by induction on n.

Verification of (20) for n = 1. The equality of angles ∠ZA1A =
∠ZA2A implies that the four points A, A1, A2, Z are concyclic, see
Figure 7(b). We can thus compute the angles

∠A2A1A = π − θ2(21)
∴ ∠B1A1A2 = θ2(22)

∠AA2A1 = π − (π − θ2) − δ = θ1(23)
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A

A2

A1

B11

2

2

B2
A3

π θ− 2

FIGURE 9. The triangle A1A2A3.

by (13). It follows from (21) and (23) that the angles of the triangle
AA1A2 depend only on θ1 and θ2, showing the similarity of triangles

AA1A2 ∼ BB1B2 ∼ · · · ∼ ZZ1Z2,

verifying (20) for n = 1.

The inductive step. Assume (20) for n, and we’ll prove it for n + 1.
We first prove the similarity of the triangles

(24) AnAn+1An+2 ∼ BnBn+1Bn+2 ∼ · · · ∼ ZnZn+1Zn+2

for all n. Since AnAn+1An+2 = hn−1(A1A2A3), BnBn+1Bn+2 =
hn−1(B1B2B3) . . . , it is enough to prove (24) for n = 1, i.e.,

(25) A1A2A3 ∼ B1B2B3 ∼ · · · ∼ Z1Z2Z3.

Since B2A2A3 = h(B1A1A2) we have, see Figure 9,

∠B2A2A3 = ∠B1A1A2 = θ2

by (22)

∴ ∠A3A2A1 = θ1 + π − θ2 = π − δ.(26)

Moreover, since A2 = h(A1), A3 = h(A2),

(27)
|A2A3|
|A1A2| = t.

Since (26) and (27) depend only on θ1, θ2 and the similarity h, it follows
that all triangles in (25) are similar.
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Combining (20) and (24),

AAnAn+1 ∼ BBnBn+1 ∼ · · ·
AnAn+1An+2 ∼ BnBn+1Bn+2 ∼ · · · ,

it follows from Remark 3 that

AAn+1An+2 ∼ BBn+1Bn+2 ∼ · · · ,

which is (20) for n + 1.

Finally we prove that if Π has a Brocard point, then all Brocard
transforms {Π(θ) : 0 ≤ θ < ω} have the same Brocard point. Let Π(θ)
be one such transform. Because it is similar to Π, it has a Brocard
point Ω, see Figure 10(a). We prove that Ω is a Brocard point of Π by
showing that

∠BAΩ = ∠CBΩ = · · ·
which will follow from the similarity of triangles

(28) AA′Ω ∼ BB′Ω ∼ · · · .

Since the angles ∠ΩA′A = ∠ΩB′B = · · · = π−ω, it is enough to prove
the equality of ratios of corresponding sides, say

(29)
|BB′|
|CC ′| =

|B′Ω|
|C ′Ω| .

Applying the sine rule to the triangle ABB′ (see Figure 10(a)),

|BB′|
|AB| =

sin θ

sin β
.

Analogously,
|CC ′|
|BC| =

sin θ

sin γ
.

Therefore,

(30)
|BB′|
|CC ′| =

|AB|
|BC|

sin γ

sin β
.



STABILITY OF BROCARD POINTS 431

A

B

C

C

A

B
α θ−

β θ−

γ θ−

Z

Π θ( )

π α− π β−

Ω

(a) Ω̄ of Π(θ).

A

B

C

Z

π β−

γ ω−

β ω−

π γ−

(b) Ω of Π.

FIGURE 10. The Brocard points of Π(θ) and Π.
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Now let Ω be the Brocard point of Π, see Figure 10(b). Then

|ΩB|
|BC| =

sin(γ − ω)
sin(π − γ)

=
sin(γ − ω)

sin γ

|ΩB|
|BC| =

|ΩB|
|AB|

|AB|
|BC|

=
sin ω

sin(π − β)
|AB|
|BC|

=
sin ω

sin β

|AB|
|BC|

∴ sin(γ − ω)
sin γ

=
sin ω

sin β

|AB|
|BC|

or

sin(γ − ω)
sin ω

=
sin γ

sin β

|AB|
|BC|(31)

=
|BB′|
|CC ′| .(32)

by (30). Applying the sine rule to the triangle ΩB′C ′, we get

sin(γ − ω)
sin ω

=
|B′Ω|
|C ′Ω|

which, combined with (32), proves (29).

If a convex polygon Π with internal angles α1, . . . , αn has a positive
Brocard point with positive Brocard angle ω, then it is not difficult to
show (see, e.g., [1]) that

sinn ω =
∏

i

sin(αi − ω).

Thus, for a polygon Π that has a positive Brocard point, the positive
Brocard angle ω is fully determined by the internal angles αi. Further,
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V2V1

V6

V3

V4V5

FIGURE 11. A nonregular hexagon with different Brocard angles.

if Π also has a negative Brocard point, then the negative and positive
Brocard angles are the same.

However, the existence of a positive Brocard point does not imply
that a negative Brocard point also exists. For example, consider
the nonregular hexagon of Figure 11 with vertices V1 = (0,−1),
V2 = (1,−1), V3 = (3/2,−1/2), V4 = (3/2, 1/2), V5 = (1, 1/2) and
where the vertex V6 is the intersection, with negative ordinate, of the
line through V5 with slope 1, and the unit circle with center (0,0). This
hexagon has a positive Brocard point and a positive Brocard angle of
π/4, and it can easily be verified that the negative Brocard angle is less
than π/4. A different example appears in [1].

Acknowledgment. We thank the referee for pointing out to us the
infinite limit process described by Yff [18] to construct the Brocard
point. The referee has also noted that the ratios k(θ) of (4a), (4b) and
(7) appear in [18] as the ratios of similarity of the inscribed Miquel
triangles that constitute the possible starting points of Yff’s infinite
limit process.
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15. D.S. Mitrinović, J.E. Pečarić and V. Volenec, Recent advances in geometric
inequalities, Kluwer Academic Publishers, Dordrecht, 1989.

16. C.B. Seymour, Exercise 100 & solution, Ann. of Math. 2 (1886), 119 120; 3
(1887), 55 62.

17. L.S. Shively, An introduction to modern geometry, John Wiley & Sons, New
York, 1939.

18. P. Yff, On the Brocard points of a triangle, Amer. Math. Monthly 67 (1960),
520 525.

RUTCOR Rutgers Center for Operations Research, Rutgers Univer-

sity, 640 Bartholomew Rd., Piscataway, NJ 08854-8003, U.S.A.

E-mail address: bisrael@rutcor.rutgers.edu

RUTCOR Rutgers Center for Operations Research, Rutgers Univer-

sity, 640 Bartholomew Rd., Piscataway, NJ 08854-8003, U.S.A.

E-mail address: sfoldes@rutcor.rutgers.edu


