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FAITHFULNESS AND CANCELLATION
OVER NOETHERIAN DOMAINS

H. PAT GOETERS AND BRUCE OLBERDING

A recent theme in the study of commutative rings is to observe the
necessary structure present in a ring in order for a particular theorem
in abelian group theory to hold true when interpreted for the ring. A
theorem of Warfield [13] asserts that when X is a nonzero subgroup
of the group of rational integers, then G ∼=nat Hom(X,XG) for any
torsion-free End (X)-module G, here XG has the appropriate meaning
as a subgroup of the divisible hull of G. A module M over a ring R
is called faithful, in the sense of Arnold and Lady [2], if IM = M
implies I = R for any ideal I of R. In our work we will consider several
variations of the faithful concept and relate them to Warfield’s result.

Below, all unadorned Hom and ⊗ symbols are with respect to the
integral domain R, and Q is used to represent the quotient field of R.
Given a torsion-free module M over R, we define the ring of fractions
of M as EM = {t ∈ Q | tM ⊆ M} which is the largest overring of
R in Q over which M is a module. The rank of a torsion-free module
M is the dimension of the Q-vector space, Q ⊗ M . In case X is a
torsion-free module of rank one, EX is just the endomorphism ring of
X. We note without future reference that if S is an overring of R in
Q and X and Y are torsion-free modules with S ⊆ EX ∩ EY , then
Hom (X,Y ) = HomS(X,Y ). In particular, EX is independent of the
base ring R. When P is a prime ideal of R, the notation SP represents
the localization of the module S at P and is therefore SP = RP ·S ⊆ Q.

1. Noetherian domains.

Definitions. An integral domain R is called strongly faithful if, for
any submodule X of Q and torsion-free module G, one has G ∼=nat

Hom(X,XG) when EX ⊆ EG. Here XG is the submodule of the
divisible hull of G,QG, generated by xg such that x ∈ X and g ∈ G.
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We will say that R has restricted cancellation if, for any nonzero
ideals I, J and K with EI ⊆ EJ ∩ EK , IJ = IK implies J = K; as in
the proof of Lemma 5 below, this is equivalent to each nonzero ideal I
of R being a cancellation ideal of EI .

An integral domain R is called HT -faithful if G ∼=nat Hom(X,X⊗EX

G) for any rank one module X and torsion-free module G with EX ⊆
EG.

It follows easily from the definitions that strongly faithful domains
have restricted cancellation. Also, it is well known that if, for any ideals
I, J and K of R with I 
= 0, IJ = IK implies J = K, then R is Prüfer,
so without the restrictions on the rings of fractions imposed above, the
Noetherian domains described are precisely the Dedekind domains.

Recall that an ideal I of an integral domain R is called stable, in the
sense of Sally and Vasconcelos [12], if I is projective as a module over
its ring of endomorphisms. The ring R is called stable if every nonzero
ideal of R is stable. Below we will establish a series of equivalences
thereby substantiating our main result.

Main theorem. Let R be a Noetherian domain. The following are
equivalent:

(1) R is stable.

(2) R is HT -faithful.

(3) R is strongly faithful.

(4) R has restricted cancellation.

The following is a standard observation.

Lemma 1. Let X be a torsion-free module of rank one over an
integral domain S. The following are equivalent:

(a) X is flat over S.

(b) I ⊗S X is torsion-free for every ideal I of S.

(c) G⊗S X is torsion-free for every torsion-free S-module G.

Proof. If X is flat and G is torsion-free, then G embeds in QG, the



FAITHFULNESS AND CANCELLATION 187

divisible hull of G. Hence G⊗S X embeds in the torsion-free divisible
module QG ⊗S X, establishing (a) → (c). To finish, we need to show
(b) → (a). Given an ideal I of S, since I ⊗S X is torsion-free, then
I ⊗S X ∼= IX follows by considering ranks, and therefore X is flat by
this well-known criterion [11].

Since R is Noetherian, R is stable if and only if every ideal of R is
flat as a module over its ring of endomorphisms. In [5] it is shown that
when R is Noetherian, R is stable if and only if every rank one module
is faithfully flat as a module over its ring of endomorphisms.

Proposition 2. Let R be a Noetherian domain. Then R is stable if
and only if R is HT -faithful.

Proof. Assume that R is HT -faithful but some ideal I of R is not
flat over its ring of endomorphisms. A moment’s reflection reveals that
every overring of R in Q is HT -faithful. Also it is easy to see that EI

is Noetherian, so we may assume that R = EI to simplify notation. By
Lemma 1, I ⊗ J has a nonzero torsion submodule T for some ideal J
of R.

Again, since R is Noetherian, it is easy to see that the torsion
module T has an element x whose annihilator is a nonzero prime
ideal P of R, [7, p. 387]. Consequently, the torsion submodule of
(I ⊗ J)P = IP ⊗RP

JP , namely TP , has a submodule T ′ isomorphic
to (R/P )P = RP /PRP . By Nakayama’s lemma, PIP 
= IP and
consequently IP /PIP is a finite direct sum of copies of the field
κ = RP /PRP . Therefore, because T ′ ⊆ TP and IP /PIP contains κ as a
direct factor, 0 
= Hom(κ, T ′) ⊆ Hom(IP /PIP , TP ) ⊆ Hom(IP , TP ) ⊆
Hom(IP , IP ⊗RP

JP ). It is a well-known result that, because I is
finitely presented, Hom(IP , IP ) = Hom (I, I)P = RP [9]. But R is
HT -faithful which implies that Hom (IP , IP ⊗RP

JP ) ∼=nat JP , thus
leading to the conclusion that Hom (κ, T ′) ∼= κ is a submodule of the
torsion-free module JP . This contradiction shows that every ideal is
flat hence projective over its ring of endomorphisms.

Now suppose that R is stable, and let X be a rank one module.
In order to show that R is HT -faithful, we may assume that X is a
submodule of Q containing R. Set S = EX and let G be torsion-
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free such that EX ⊆ EG. As mentioned prior to the statement of this
proposition, X is a faithfully flat S-module. In particular, X⊗S G ∼=nat

XG. This is due to the fact that tensoring the epimorphism X⊗S G →
XG with Q produces the isomorphism Q⊗S X⊗S G = Q⊗S Q⊗S G ∼=
Q⊗SXG ∼= QG implying that Ker (X⊗SG → XG) is torsion. However,
X ⊗S G is torsion-free by Lemma 1. So, in order to conclude that R is
HT -faithful, it is enough to argue that G ∼=nat Hom(X,XG).

Identify G with its canonical image in Hom(X,XG), and let T =
Hom(X,XG)/G. Our aim is to show that T = 0. In order to do this
we first need to show that T is a torsion module. Let f : X → XG
and write f(1) = Σjxjgj with xj ∈ X and gj ∈ G. Since X ⊆ Q,
there is an element 0 
= r ∈ R with rxj ∈ R for each j. Then
rf(1) = Σjrxjgj = g ∈ G. Thus, given x = c/d ∈ X with c, d ∈ R,
rdf(x) = cg so that rf(x) = (c/d)g = xg. That is, rf belongs to the
image of G in Hom (X,XG) and T is torsion.

Tensoring 0 → G → Hom(X,XG) → T → 0 with X yields a
commutative rectangle

0 w G ⊗S X

u

α

w Hom(X, XG) ⊗S X

u

σ

w T ⊗S X

u

β

w 0

0 w XG w XG w 0 w 0.

The map α was shown above to be an isomorphism. It follows from
the Snake Lemma [11] that Imα = Kerβ = T ⊗S X, with T ⊗S X
torsion. But because X is flat, Hom (X,XG) ⊗S X is torsion-free by
Lemma 1. Consequently, the map σ must be an isomorphism and
therefore T⊗SX = 0. However, X is faithfully flat over S, as mentioned
above, forcing T = 0. Thus G = Hom(X,XG) canonically.

We note for later reference that the proof above contains an argument
that Noetherian stable domains are strongly faithful.

Lemma 3. Let R be an integral domain with nonzero ideals I and
J . If I is a cancellation ideal of EI and S = EJ , ESI = SEI .

Proof. Clearly SEI ⊆ ESI , from which it follows that IESI = SI.
Thus IESI = I(SEI). Let 0 
= t ∈ J ∩ I. Then (t2)ESI ⊆ tSI ⊆
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JI ⊆ EI and t2(SEI) ⊆ JI. Since I is a cancellation ideal of EI ,
(t2)SEI = (t2)ESI and so ESI = SEI .

As mentioned in the proof of Proposition 2, Hom(I, I)P = Hom(IP , IP )
when I is a finitely presented ideal of R and P ∈ max(R). We require
a more general version of this fact.

Lemma 4. Let S be an overring of the integral domain R inside
the quotient field Q of R. If I and J are ideals of S with I finitely
generated, then for any P ∈ max(R), Hom(I, J)P = Hom(IP , JP ). In
particular, (EI)P = EIP

.

Proof. One has Hom(I, J)P ⊆ Hom(IP , JP ) canonically. Let
x1, . . . , xn generate I. If f ∈ Hom(IP , JP ), then for each j there
exists tj ∈ R\P such that tj · f(xj) ∈ J . Then for t = t1 · · · tn,
t · f ∈ Hom(I, J) and so Hom(IP , JP ) ⊆ Hom(I, J)P .

Lemma 5. If I is a nonzero ideal of an integral domain R with
restricted cancellation, then EI has restricted cancellation.

Proof. Since I is an ideal of S = EI , for any 0 
= r ∈ I, rS ⊆ I. Thus
if I ′, J and K are ideals of S with I ′J = I ′K and EI′ ⊆ EJ ∩EK , then
(rI ′)(rJ) = (rI ′)(rK) over R, implying J = K.

Lemma 6. Let R be an integral domain and I a nonzero finitely
generated ideal of R. Given any P ∈ max(R), there are only finitely
many maximal ideals of EI containing P .

Proof. Assume that I can be generated by n elements over R and
suppose to the contrary that there are maximal ideals P1, . . . , Pn+1 of
S = EI containing P . By Nakayama’s lemma, PI 
= I, so that I/PI
is a nonzero vector space over R/P of dimension at most n.

Set J = ∩jPj . By the Chinese remainder theorem, I/JI ∼= I/P1I ⊕
· · · ⊕ I/Pn+1I. But I is finitely generated over S so by Nakayama’s
lemma again, PjI 
= I for all j. This means that I/PjI is a nonzero
R/P -module and implies that I/JI has dimension at least n + 1. As
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I/JI is an epimorphic image of I/PI, we are left with a contradiction.

The next observation undoubtedly appears elsewhere but as it follows
directly from Lemmas 4 and 6 and is required below, a proof is included.

Corollary 7. Let I be a finitely generated ideal of an integral domain
R. Then I is stable if and only if for every P ∈ max(R), IP is a
principal ideal in (EI)P .

Proof. By Lemma 4, Hom (I, EI)P = Hom(IP , (EI)P ) for each
P ∈ max(R). Therefore, I is invertible in EI if and only if IP is
invertible in (EI)P for each maximal ideal P . Now Lemma 6 shows
that (EI)P is semi-local for each P ∈ max(R), and a direct application
of the Chinese remainder theorem shows that a projective ideal in a
semi-local ring is principal. Therefore, I is projective over EI if and
only if IP is a principal ideal in (EI)P for each P ∈ max(R).

Lemma 8. If R is an integral domain with restricted cancellation,
then every ideal which is generated by two elements over its ring of
endomorphisms is stable.

Proof. Let I be an ideal 2-generated over its ring EI of endomor-
phisms. By Lemma 5, EI has restricted cancellation and we may as-
sume without loss of generality that R = EI . Let P ∈ max(R) and
represent I as (a, b).

It is easy to see that the cancellation assumption on I is equivalent to
the property that whenever IJ ⊆ IK for ideals J and K, then J ⊆ K
[8]. Therefore, (a, b)(ab) ⊆ (a, b)(a2, b2) implies (ab) ⊆ (a2, b2). Write
ab = ca2 + db2. Then (a, b)(db) ⊆ (a, b)(a) and therefore (db) ⊆ (a).
Write db = ua. If u ∈ P , then ab = ca2 + uab implies b = ca + ub and
consequently that b = c(1 − u)−1a in RP . If u /∈ P , then a = u−1db
in RP . In either case, IP is principal. Since P was arbitrary and I is
finitely generated, I is projective over EI by Corollary 7.
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Theorem 9. In a domain with restricted cancellation, every ideal
that is finitely generated over its ring of endomorphisms is stable.

Proof. Let R be an integral domain with restricted cancellation, and
let I be an ideal of R finitely generated over its ring of endomorphisms.
We will show that I is stable by induction on n, the minimal number
of generators required to generate I over EI . Clearly we may pass to
the inductive step and, by Lemma 8, assume that n > 2. In order to
show that I is stable over EI when I is n-generated over EI , we may
assume that EI = R since, by Lemma 5, EI has restricted cancellation.
By the induction hypothesis, there exist x1, x2, . . . , xn ∈ I such that
I = Rx1 + · · · + Rxn, and any ideal of R generated by less than n
elements is stable.

By Corollary 7 we need to show that IP is principal in RP for
every maximal ideal P of R, so let us fix P ∈ max(R). The ideals
I1 = Rx2 + · · · + Rxn and I2 = R(x2 − x1) + · · · + R(xn − x1) of R
are stable. Set Sj = EIj

. By Corollary 7, the localization of Ij at P ,
(Ij)P , is a principal ideal of (Sj)P . Write (Ij)P = (Sj)Paj for some
aj ∈ Ij ⊆ I. By device, I1 + I2 = I. From this it is easy to see that I is
a module over S1∩S2 and, because R = EI , we must have R = S1∩S2.

For each i = 1, 2, consider the ideals Ji = Rx1 + Rai ⊆ I. By
assumption, each Ji is stable, and therefore by Corollary 7, (Ji)P is
a principal ideal of (Ti)P where Ti = EJi

. Write (Ji)P = (Ti)P bi for
some bi ∈ Ji ⊆ I. Applying Lemma 3, ESiJi

= SiEJi
= TiSi. Recall

that Rx1 + Ii = I for i = 1, 2. Since SiJi = Six1 + Siai ⊆ SiI, if we
localize at P , (SiJi)P = (Si)Px1+(Si)Pai = (Si)Px1+(Ii)P = (SiI)P .
By Lemma 3, again, Si = ESiI and so, by Lemma 4 and the remarks
above, (Si)P = E(SiI)P

= E(SiJi)P
= (Si)P (EJi

)P = (Si)P (Ti)P . This
shows that (Ti)P ⊆ (Si)P for i = 1, 2. Also, from Ji + Ii = I, it follows
that I is a module over Ti ∩ Si, so Ti ∩ Si = R. Assimilating these
observations, (Ti)P = (Ti ∩ Si)P = RP for i = 1, 2.

Now consider the ideal K = Rb1 + Rb2. By Lemma 8, K is stable,
so by Corollary 7 again, KP is principal in SP where S = EK . Write
KP = SP c where c belongs to K ⊆ I. Recall that (SiJi)P = (Si)P IP =
(Si)P bi because (Ti)P ⊆ (Si)P . Then (SI)PKP = (Si)P IP for i = 1, 2.
Applying Lemma 3, SiS = ESiK . Hence, using Lemma 4 as above,
(Si)P = (ESiI)P = E(SiK)P

= (Si)P (EK)P = (Si)PSP for i = 1, 2.
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From this we notice that SP ⊆ (S1)P ∩ (S2)P = RP and so KP = RP c.
Finally, KP = RP c ⊆ IP ⊆ (S1I)P ∩ (S2I)P = (S1K)P ∩ (S2K)P =
(S1)P c ∩ (S2)P c = (S1 ∩ S2)P c = RP c = KP , so IP is principal. This
induction argument shows that every ideal finitely generated over its
endomorphism ring is stable.

Thus, if R is Noetherian with restricted cancellation, then R is stable.
As mentioned at the start of the section, strongly faithful domains have
restricted cancellation, and the observation that Noetherian stable do-
mains are strongly faithful was made during the proof of Proposition 2.
This completes the cycle in our main theorem. Using a result in [1],
it is not hard to give a different proof of Theorem 9, and we would
like to thank Professor Dan Anderson for providing a preprint of [1]
subsequent to our development here.

2. A strongly faithful integral domain that is not stable.
In this section we show that the main theorem does not generalize to
arbitrary domains. In particular, we give an example of a strongly
faithful integrally closed domain that is not stable. We state only the
results necessary to justify our example, postponing a more systematic
treatment of the integrally closed case until [6].

A Prüfer domain R is defined to be strongly discrete if, for each
nonzero prime ideal P of R, P 
= P 2. An integral domain R is said to
satisfy (#) provided

⋂

M∈∆1

RM 
=
⋂

N∈∆2

RN

whenever ∆1 and ∆2 are nonempty disjoint subsets of max(R). If every
overring of R satisfies (#), then R is said to satisfy (##). A generalized
Dedekind domain is a strongly discrete Prüfer domain satisfying (##)
[3].

Proposition 10. Generalized Dedekind domains are strongly faith-
ful.

Proof. Let R be a generalized Dedekind domain with quotient field
Q. We first show that each submodule X of Q is locally free as an
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EX -module. Let X be a proper submodule of Q, S = EX and M ∈
max(S). Then SM = Hom(X,∩N∈max(S)XN )M = Hom(XM , XM ) ∩
(∩N �=MHom(XN , XN ))M . Since S is a Prüfer domain, SM is a
valuation domain, which means the SM -submodules of Q are lin-
early ordered. Therefore, either Hom (X,X)M = Hom(XM , XM ) or
Hom (X,X)M = (∩N �=MHom(XN , XM ))M . If we assume the latter,
then ∩N �=MSN ⊆ (∩N �=MHom(XN , XN ))M = Hom(X,X)M = SM ,
which contradicts (##). It follows that Hom (X,X)M = Hom(XM ,
XM ). Moreover, XM 
= Q. Since SM is a valuation domain, XM

is a fractional ideal of SM . Strongly discrete valuation domains are
stable [3, Proposition 5.3.8]. Therefore, XM

∼= Hom(XM , XM ) =
Hom (X,X)M , proving the claim.

Assuming still that X is a proper submodule of Q, let G be a torsion-
free R-module such that S = EX ⊆ EG. Viewing G as contained
in Hom (X,XG) and Hom (X,XG) as contained in Hom (X,QG), we
then have

Hom (X,XG) =
⋂

M∈max(S)

Hom(XM , XMGM )

=
⋂

M∈max(S)

Hom(SM , SMGM )

=
⋂

M∈max(S)

GM

= G,

as desired.

Gabelli has given an example of a generalized Dedekind domain that
is not stable [4]. In [10], it is shown that other examples can be
constructed in the following way: Let R be a generalized Dedekind
domain having infinitely many maximal ideals. If Q is the quotient
field of R and Q[X] is the polynomial ring of Q in X, then R+XQ[X]
is a generalized Dedekind domain [3, Corollary 5.7.3] that is not stable,
since every nonzero ideal of an integrally closed stable domain must be
contained in at most finitely many maximal ideals [10, Theorem 4.5].
In particular, Z + XQ[X] is a strongly faithful domain that is not
stable.
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