SMOOTH POINTS OF ESSENTIALLY BOUNDED VECTOR FUNCTION SPACES

MANUEL FERNÁNDEZ AND ISIDRO PALACIOS

ABSTRACT. We characterize the smooth points of $L_{\infty}(X)$, where X is any normed space.

1. Introduction. Let X be a normed space and $x, y \in X$. The one-sided derivatives at $x \neq 0$ in the direction $y \neq 0$ are

$$
D_{X}^{ \pm}(x, y)=\lim _{h \rightarrow 0^{ \pm}} \frac{\|x+h y\|-\|x\|}{h}
$$

Both limits always exist and, if they have the same value, we write $D_{X}(x, y)=D_{X}^{+}(x, y)=D_{X}^{-}(x, y)$. It is easy to see that this is equivalent to saying: For every $\varepsilon>0$ there exists $\delta>0$ such that $0<h<\delta$ implies $\|x+h y\|+\|x-h y\|<2\|x\|+\varepsilon h$.

We say that $x \neq 0$ is smooth, if $D(x, y)$ exists, for every $y \in S_{X}$, where S_{X} denotes the unit sphere of X, or equivalently, if there is a unique norm-one functional $x^{*} \in X^{*}$, the topological dual of X, such that $x^{*}(x)=\|x\|\left[\mathbf{1}\right.$, page 179]. Since $D_{X}(t x, y)=D_{X}(x, y)$ for $t>0$, we can restrict our attention to the smooth points of S_{X}.

Deeb and Khalil [3] have characterized the smooth points of the Lebesgue-Bochner spaces $L_{p}(I, X), 1 \leq p<\infty$, when I has finite measure and X has a separable dual. Cerda, Hudzik and Mastylo [2] characterize the smooth points of the Köthe-Bochner space $E(X)$, if X is real with separable dual, E is order continuous, and the norm of E^{*} is strictly monotonic. In this paper we characterize the smooth points of $L_{\infty}(X)$. In contrast to the $L_{p}(I, X), 1 \leq p<\infty$, it is worth noticing that the smoothness of $x \in L_{\infty}(X)$ does not imply the smoothness of $x(t) \in X$ for almost every $t \in T$.

Let (T, Σ, μ) be a complete, positive measure space and X a normed space. The function $x: T \rightarrow X$ is said to be simple if there

[^0]exist $T_{1}, \ldots, T_{n} \in \Sigma$, disjoint, and $x_{1}, \ldots, x_{n} \in X$ such that $x=$ $\sum_{i=1}^{n} x_{i} \chi_{T_{i}}$, where $\chi_{T_{i}}$ is the characteristic function of T_{i}. The function $x: T \rightarrow X$ is defined as measurable if, for every finite measurable set F, there exists a sequence of simple functions $\left\{s_{n}\right\}_{n \in \mathbf{N}}$ such that $x \chi_{F}=\lim _{n \rightarrow \infty} s_{n}$ almost everywhere [4]. The set of measurable functions is a linear space.

A measurable set A is called an atom if $\mu(A)>0$ and, whenever B is a measurable subset of A, we have either $\mu(B)=0$ or $\mu(A \backslash B)=0$.

We use $L_{\infty}(X)$ to denote the space of measurable equivalence classes of functions $x: T \rightarrow X$ such that ess $\sup _{t \in T}\left\{\|x(t)\|_{X}\right\}<\infty$, where ess sup denotes the essential supremum, i.e.,

$$
\underset{t \in T}{\operatorname{ess} \sup }\left\{\|x(t)\|_{X}\right\}=\inf \left\{c: \mu\left\{t \in T:\|x(t)\|_{X}>c\right\}=0\right\}
$$

It is a normed space, normed by $\|x\|=\operatorname{ess} \sup _{t \in T}\left\{\|x(t)\|_{X}\right\}$.
If $X=\mathbf{R}$, we write $L_{\infty}(X)=L_{\infty}$. To avoid confusion, from now on we shall use $\|\cdot\|$ for the norm in $L_{\infty}(X)$ and $\|\cdot\|_{X}$ for the norm in X.

We collect the following easy results in a lemma.

Lemma 1. (i) If the function $x: T \rightarrow X$ is measurable and A is a finite-measure atom, then $x \chi_{A}$ is a constant function on A. If $X=\mathbf{R}$, the assumption "finite measure" can be removed.
(ii) Let $x \in S_{L_{\infty}}, A$ be an atom and $\left\|x \chi_{T \backslash A}\right\|<1$. Then $|x(t)|=1$ for almost every $t \in A$.
(iii) Let $x, y \in L_{\infty}, x \geq 0$ and $y \geq 0$. If A is an atom, then $\left\|(x+y) \chi_{A}\right\|=\left\|x \chi_{A}\right\|+\left\|y \chi_{A}\right\|$.
2. Smooth points in L_{∞} and $L_{\infty}(X)$. We begin with the scalar case.

Theorem 2. Let $x \in S_{L_{\infty}}$ and $A=\{t \in T:|x(t)|=1\}$. Then x is smooth if and only if A is an atom and $\left\|x \chi_{T \backslash A}\right\|<1$.

Proof. Suppose either A is non-atom with $\mu(A)>0$ or $\left\|x \chi_{T \backslash A}\right\|=1$.

We then prove the existence of $P, Q \in \Sigma$ such that
$P \cap Q=\varnothing, \quad \mu(P)>0, \quad \mu(Q)>0 \quad$ and $\quad\left\|x \chi_{P}\right\|=\left\|x \chi_{Q}\right\|=1$.
If A is non-atom with $\mu(A)>0$, then obviously (2.1) holds. Let $\left\|x \chi_{T \backslash A}\right\|=1$. Take $0<r_{1}<r_{2}<\cdots<1$ with $\lim _{n \rightarrow \infty} r_{n}=1$. Define $A_{n}=\left\{t \in T \backslash A: r_{n-1}<|x(t)| \leq r_{n}\right\}$. We claim that there exists a subsequence $\left(A_{n_{k}}\right)_{k \in \mathbf{N}}$ with $\mu\left(A_{n_{k}}\right)>0$ for every $k=1,2, \ldots$. Otherwise, we may suppose that $\mu\left(A_{n}\right)=0$ for every $n \in \mathbf{N}$; thus, $\mu\left(\cup_{n \in \mathbf{N}} A_{n}\right)=\mu\left\{t \in T \backslash A: r_{1}<|x(t)|\right\}=0$. Therefore, we have the contradiction $\left\|x \chi_{T \backslash A}\right\| \leq r_{1}<1$. Now it is easy to check that $P=\cup_{k \text { even }} A_{n_{k}}$ and $Q=\cup_{k \text { odd }} A_{n_{k}}$ satisfy (1).
Let $T_{+}=\{t \in T: x(t) \geq 0\}, T_{-}=\{t \in T: x(t)<0\}$ and $y=\chi_{P \cap T_{+}}-\chi_{P \cap T_{-}}$.
For every $h>0$, we have $|x(t)+h y(t)|=|x(t)|+h$, if $t \in P$ and $|x(t)-h y(t)|=|x(t)|$, if $t \in Q$. Thus $1+h \geq\|x+h y\| \geq$ $\left\|(x+h y) \chi_{P}\right\|=\left\|(|x|+h) \chi_{P}\right\|=1+h$ and $\|x-h y\|=\left\|x \chi_{Q}\right\|=1$. Therefore, $D_{L_{\infty}}^{+}(x, y)=1$ and $D_{L_{\infty}}^{-}(x, y)=0$.
Conversely, let A be an atom, $\left\|x_{\chi T \backslash A}\right\|=r<1$ and $y \in S_{L_{\infty}}$. We prove that $D_{L_{\infty}}^{+}(x, y)=D_{L_{\infty}}^{-}(x, y)$. If $0 \leq h \leq(1-r) / 2$, then for almost every $t^{\prime \infty} \in T \backslash A$ and $t \in A$, we have by Lemma 1 (ii)

$$
\begin{align*}
\left|x\left(t^{\prime}\right) \pm h y\left(t^{\prime}\right)\right| & \leq r+h\left|y\left(t^{\prime}\right)\right| \leq r+h \leq 1-h \\
& \leq 1-h\left\|y \chi_{A}\right\| \leq 1-h|y(t)| \tag{2.2}\\
& =|x(t)|-h|y(t)| \leq|x(t) \pm h y(t)| .
\end{align*}
$$

Therefore $\|x \pm h y\|=\left\|(x \pm h y) \chi_{A}\right\|$. Set $B=\{t \in A: \operatorname{sgn} x(t)=$ $\operatorname{sgn} y(t)\}$, where sgn denotes the sign function. Then $B \in \Sigma$ and $|x(t) \pm h y(t)|=(1 \pm h|y(t)|) \chi_{B}(t)+(1 \mp h|y(t)|) \chi_{A \backslash B}(t), \quad$ for a.e. $t \in A$.

If $\mu(B)>0$, then $\mu(A \backslash B)=0$. So $\left\|(x+h y) \chi_{A}\right\|=\left\|(x+h y) \chi_{B}\right\|=$ $1+h\left\|y \chi_{B}\right\|$ and $\left\|(x-h y) \chi_{A}\right\|=\left\|(x-h y) \chi_{B}\right\|=1-h\left\|y \chi_{B}\right\|$. Then we have $D_{L_{\infty}}^{+}(x, y)=\left\|y \chi_{B}\right\|=D_{L_{\infty}}^{-}(x, y)$. If $\mu(B)=0$, then $\mu(A \backslash B)>0$ and we obtain $D_{L_{\infty}}^{+}(x, y)=-\left\|y \chi_{A \backslash B}\right\|=D_{L_{\infty}}^{-}(x, y)$.

Now the vectorial case.

Theorem 3. Let $x \in S_{L_{\infty}(X)}$ and $A=\left\{t \in T:\|x(t)\|_{X}=\right.$ 1\}. Then x is smooth if and only if A is an atom, $\left\|x \chi_{T \backslash A}\right\|<1$ and, for every $y \in S_{L_{\infty}(X)}$, there exists $D_{X}(x(t), y(t))$ uniformly in $\{(x(t), y(t))$, for a.e. $t \in A\}$.

Proof. Assume that A is an atom and $\left\|x \chi_{T \backslash A}\right\|=r<1$. Changing $|\cdot|$ to $\|\cdot\|_{X}$ in (2.2), we obtain

$$
\begin{gathered}
\left\|x\left(t^{\prime}\right) \pm h y\left(t^{\prime}\right)\right\|_{X} \leq\|x(t) \pm h y(t)\|_{X} \\
\text { for a.e. } t^{\prime} \in T \backslash A, \quad t \in A
\end{gathered}
$$

whenever $0 \leq h \leq(1-r) / 2$. Therefore $\|x \pm h y\|=\left\|(x \pm h y) \chi_{A}\right\|$. Since A is an atom and the functions $\|x(\cdot) \pm h(\cdot)\|_{X}$ are positive, by Lemma 1 we have

$$
\begin{aligned}
\|x+h y\|+\|x-h y\|= & \left\|(x+h y) \chi_{A}\right\|+\left\|(x-h y) \chi_{A}\right\| \\
= & \underset{t \in T}{\operatorname{ess} \sup }\left\{\left\|(x(\cdot)+h y(\cdot)) \chi_{A}(\cdot)\right\|_{X}\right\} \\
& \left.+\underset{t \in T}{\operatorname{esssup}}\{\| x(\cdot)-h y(\cdot)) \chi_{A}(\cdot) \|_{X}\right\} \\
= & \underset{t \in T}{\operatorname{ess} \sup }\left\{\left\|(x(\cdot)+h y(\cdot)) \chi_{A}(\cdot)\right\|_{X}\right. \\
& \left.\quad+\| x(\cdot)-h y(\cdot)) \chi_{A}(\cdot) \|_{X}\right\} .
\end{aligned}
$$

Thus the existence of $D_{L_{\infty}(X)}(x, y)$ is equivalent to the existence of $D_{X}(x(t), y(t))$ uniformly in $\{(x(t), y(t))$, for a.e. $t \in A\}$.

Conversely, suppose that $x \in S_{L_{\infty}(X)}$ is smooth and write $Z=\{t \in$ $T: x(t)=0\}$. Let $u(\cdot) \in S_{L_{\infty}}$ and take $w \in S_{X}$. The function $y(t)=\left(u(t) x(t) /\|x(t)\|_{X}\right) \chi_{T \backslash Z}(t)+u(t) w \chi_{Z}(t)$ belongs to $y \in S_{L_{\infty}(X)}$. Moreover, for $h \geq 0$,

$$
\begin{aligned}
\|x \pm h y\| & =\left\|\frac{x(\cdot)}{\|x(\cdot)\|_{X}}\left(\|x(\cdot)\|_{X} \pm h u(\cdot)\right) \chi_{T \backslash Z}(\cdot) \pm h u(\cdot) w \chi_{Z}(\cdot)\right\|_{L_{\infty}} \\
& =\left\|\left(\|x(\cdot)\|_{X} \pm h u(\cdot)\right)\right\|_{L_{\infty}} .
\end{aligned}
$$

Hence the existence of $D_{L_{\infty}(X)}(x, y)$ implies the existence of $D_{L_{\infty}}\left(\|x(\cdot)\|_{X}, u(\cdot)\right)$. By Theorem 2, A is an atom and $\left\|\left(\|x(\cdot)\|_{X}\right) \chi_{T \backslash A}\right\|_{L_{\infty}}<1$. Moreover, as we have already proved, the existence of $D_{L_{\infty}(X)}(x, y)$ is equivalent to the existence of $D_{X}(x(t), y(t))$ uniformly in $\{(x(t), y(t))$, for a.e. $t \in A\}$.

If μ is σ-finite, every atom has finite measure, and then each function $x \in L_{\infty}(X)$ is a constant on the atom. Consequently, we obtain

Corollary 4. Let μ be σ-finite. Then $x \in S_{L_{\infty}(X)}$ is smooth if and only if $A=\left\{t \in T:\|x(t)\|_{X}=1\right\}$ is an atom, $\left\|x_{\chi_{T \backslash A}}\right\|<1$ and $x(t)$ is smooth for almost every $t \in A$.

When (T, Σ, μ) is a discrete measure space, one has $L_{\infty}=l_{\infty}$ and ess sup $=$ sup. If $\left\{X_{i}\right\}_{i \in I}$ is a family of normed spaces, the space of functions $x: I \rightarrow \cup_{i \in I} X_{i}$, such that $x_{i} \in X_{i}$ for each $i \in I$ and $\left(\left\|x_{i}\right\|_{i}\right) \in l_{\infty}$ is a normed space endowed with the norm $\|x\|=\sup _{i \in I}\left\|x_{i}\right\|_{i}$. We denote it by $l_{\infty}\left(X_{i}\right)$. Since, in this case, each element of I is an atom of measure one, we get as a consequence of Theorem 2 and Corollary 4:

Corollary 5. (i) $x \in S_{l_{\infty}}$ is smooth if and only if there exists $j \in I$ such that $\sup _{i \neq j}\left|x_{i}\right|<1$.
(ii) $x \in S_{l_{\infty}\left(X_{i}\right)}$ is smooth if and only if there exists $j \in I$ such that $\sup _{i \neq j}\left\|x_{i}\right\|_{i}<1$ and $x_{j} \in X_{j}$ is smooth.

REFERENCES

1. B. Beauzamy, Introduction to Banach spaces and their geometry, 2nd ed., Math. Stud., North Holland, Amsterdam, 1985.
2. J. Cerda, H. Hudzik and M. Mastylo, Geometric properties of Köthe-Bochner spaces, Math. Proc. Cambridge Philos. Soc. 120 (1996), 521-533.
3. W. Deeb and R. Khalil, Smooth points of vector valued function spaces, Rocky Mountain J. Math. 24 (1994), 505-512.
4. A.C. Zaanen, Integration, North-Holland Publ. Co., Amsterdam, 1967.

Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain
E-mail address: ghierro@unex.es
Departamento de Matemáticas, Universidad de Extremadura, 06071
Badajoz, Spain
E-mail address: ipalacio@unex.es

[^0]: Received by the editors on October 15, 1997, and in revised form on September 30, 1998.

 1991 AMS Mathematics Subject Classification. 46B20
 Key words and phrases. Smooth points.

