DIOPHANTINE TRIPLES AND CONSTRUCTION OF HIGH-RANK ELLIPTIC CURVES OVER Q WITH THREE NONTRIVIAL 2-TORSION POINTS

ANDREJ DUJELLA

1. Introduction. Let E be an elliptic curve over \mathbf{Q}. The famous theorem of Mordell-Weil states that

$$
E(\mathbf{Q}) \simeq E(\mathbf{Q})_{\mathrm{tors}} \times \mathbf{Z}^{r}
$$

and by a theorem of Mazur [15] we know that only possible torsion groups over \mathbf{Q} are

$$
E(\mathbf{Q})_{\text {tors }}= \begin{cases}\mathbf{Z} / m \mathbf{Z} & m=1,2, \ldots, 10 \text { or } 12 \\ \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 m \mathbf{Z} & m=1,2,3,4\end{cases}
$$

Let

$$
\begin{aligned}
B(F) & =\sup \left\{\operatorname{rank}(E): E \text { curve over } \mathbf{Q} \text { with } E(\mathbf{Q})_{\text {tors }} \simeq F\right\} \\
B_{r}(F) & =\limsup \left\{\operatorname{rank}(E): E \text { curve over } \mathbf{Q} \text { with } E(\mathbf{Q})_{\text {tors }} \simeq F\right\} .
\end{aligned}
$$

An open question is whether $B(F)<\infty$.
The examples of Martin-McMillen and Fermigier [8] show that $B(0) \geq 23$ and $B(\mathbf{Z} / 2 \mathbf{Z}) \geq 14$. It follows from results of Montgomery [18] and Atkin-Morain [1] that $B_{r}(F) \geq 1$ for all torsion groups F. Kihara [11] proved that $B_{r}(0) \geq 14$ and Fermigier [8] that $B_{r}(\mathbf{Z} / 2 \mathbf{Z}) \geq 8$. Recently, Kihara [12] and Kulesz [14] proved using parametrization by $\mathbf{Q}(t)$ and $\mathbf{Q}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)$ that $B_{r}(\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}) \geq 4$ and Kihara [13] proved using parametrization by rational points of an elliptic curve that $B_{r}(\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}) \geq 5$. Kulesz also proved that $B_{r}(\mathbf{Z} / 3 \mathbf{Z}) \geq 6, B_{r}(\mathbf{Z} / 4 \mathbf{Z}) \geq 3, B_{r}(\mathbf{Z} / 5 \mathbf{Z}) \geq 2, B_{r}(\mathbf{Z} / 6 \mathbf{Z}) \geq 2$ and $B_{r}(\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 4 \mathbf{Z}) \geq 2$. The methods used in $[\mathbf{1 2}]$ and $[\mathbf{1 4}]$ are similar to the method of Mestre $[\mathbf{1 6}, \mathbf{1 7}]$.

In the present paper we prove that $B_{r}(\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}) \geq 4$ by a different method. Namely, we use the theory of, so called, Diophantine

[^0]m-tuples. By specialization, we obtain an example of elliptic curve over \mathbf{Q} with torsion group $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$ whose rank is equal to 7 , which shows that $B(\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}) \geq 7$.
2. Construction. A set of m nonzero rationals $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is called a (rational) Diophantine m-tuple if $a_{i} a_{j}+1$ is a perfect square for all $1 \leq i<j \leq m$ (see [4]).

Let $\{a, b, c\}$ be a Diophantine triple, i.e.,

$$
a b+1=q^{2}, \quad a c+1=r^{2}, \quad b c+1=s^{2}
$$

Define

$$
\begin{aligned}
& d=a+b+c+2 a b c+2 q r s \\
& e=a+b+c+2 a b c-2 q r s
\end{aligned}
$$

Then it can be easily checked that $a d+1, b d+1, c d+1, a e+1, b e+1$ and $c e+1$ are perfect squares. For example, $a d+1=(a s+q r)^{2}$.

Let us mention that, for a, b, c positive integers, there is a conjecture that if x is a positive integer such that $\{a, b, c, x\}$ is a Diophantine quadruple, then x has to be equal to d or e. This conjecture was verified for some special Diophantine triples (see $[\mathbf{2}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{1 0}]$).

Furthermore, assume that $d e+1$ is also a perfect square. Note that this is impossible if a, b, c are positive integers and $d e \neq 0$, but it is possible for rationals a, b, c.

Consider now the elliptic curve

$$
E: y^{2}=(b x+1)(d x+1)(e x+1)
$$

One may expect that E has at least four independent points of infinite order, namely, points with x-coordinates

$$
0, \quad a, \quad c, \quad \frac{1}{b d e} .
$$

The main problem is to satisfy condition $d e+1=w^{2}$. It can be done, for example, in the following way. Let a be fixed. Put $b=a k^{2}+2 k$. Then $q=a k+1$, and put $c=4 q(q-a)(b-q)$. It is easy to check that now $\{a, b, c\}$ is a Diophantine triple. Namely, $r=q^{2}+a b-2 a q$
and $s=q^{2}+a b-2 b q$. Furthermore, let $a k=t$. Now the condition $d e+1=w^{2}$ becomes

$$
\begin{align*}
{\left[k^{2}(t+2)(2 t+1)(2 t+3)-4 k(t+1)\right.} & \left.\left(2 t^{2}+4 t+1\right)+t(2 t+1)(2 t+3)\right]^{2} \\
& -k^{2}\left(4 t^{2}+8 t+3\right)=w^{2} \tag{1}
\end{align*}
$$

There are two obvious solutions of (1), namely, $\left(k_{0}, w_{0}\right)=(0, t(2 t+$ $1)(2 t+3))$ and $\left(k_{1}, w_{1}\right)=(1,1)$, but in both cases we have $b c d=0$ and therefore they do not lead to a usable formula. However, using the solution $\left(k_{0}, w_{0}\right)$ we may construct a nontrivial and usable solution of (1). Denote the polynomial on the left side of (1) by $F(k, t)$. Choose the polynomial $f(k, t)=\alpha(t) k^{2}+\beta(t) k+\gamma(t)$ such that

$$
F(k, t)-[f(k, t)]^{2}=k^{3} \cdot G(k, t)
$$

Then from the condition $G(k, t)=0$ we obtain a nontrivial solution of (1)

$$
\begin{equation*}
k_{2}=\frac{16 t(t+1)\left(2 t^{2}+4 t+1\right)}{16 t^{4}+64 t^{3}+76 t^{2}+24 t-1} . \tag{2}
\end{equation*}
$$

Using (2) we obtain the following expressions for b, d and e

$$
\begin{equation*}
b(t)=\frac{16 t(t+1)(t+2)\left(2 t^{2}+4 t+1\right)}{16 t^{4}+64 t^{3}+76 t^{2}+24 t-1} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
d(t)=\frac{256 t^{8}+2048 t^{7}+6272 t^{6}+8960 t^{5}+5424 t^{4}+192 t^{3}-888 t^{2}-112 t+33}{16\left(16 t^{4}+64 t^{3}+76 t^{2}+24 t-1\right)\left(2 t^{2}+4 t+1\right)(t+1)} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& e(t)=\left(4096 t^{12}+49152 t^{11}+262144 t^{10}+819200 t^{9}+1665024 t^{8}\right. \tag{5}\\
&+ 2310144 t^{7}+2233728 t^{6}+ \\
&+3507584 t^{5}+697856 t^{4}+211968 t^{3} \\
&\left.+38624 t^{2}+3520 t+105\right) / {\left[16\left(16 t^{4}+64 t^{3}+76 t^{2}+24 t-1\right)\right.} \\
&\left.\times\left(2 t^{2}+4 t+1\right)(t+1)\right]
\end{align*}
$$

Theorem 2.1. Let $b(t), d(t)$ and $e(t)$ be defined by (3), (4) and (5). Then the elliptic curve

$$
\begin{equation*}
E: y^{2}=(b(t) x+1)(d(t) x+1)(e(t) x+1) \tag{6}
\end{equation*}
$$

over $\mathbf{Q}(t)$ has the torsion group isomorphic to $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$ and the rank greater than or equal to 4 .

Proof. The points $\mathcal{O}, A=(-(1 / b(t)), 0), B=(-(1 / d(t)), 0)$, $C=(-(1 / e(t)), 0)$ form a subgroup of the torsion group $E_{\text {tors }}(\mathbf{Q}(t))$ which is isomorphic to $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$. By Mazur's theorem and a theorem of Silverman [19, Theorem 11.4, p. 217], it suffices to check that there is no point on $E(\mathbf{Q}(t))$ of order four or six.

If there is a point D on $E(\mathbf{Q}(t))$ such that $2 D \in\{A, B, C\}$, then 2-descent proposition (see $[\mathbf{9}, 4.1$, p. 37]) implies that at least one of the expressions $\pm b(t)[e(t)-d(t)], \pm d(t)[e(t)-b(t)], \pm e(t)[d(t)-b(t)]$ is a perfect square. However, by specialization $t=1$ we see that this is not the case.

If there is a point $F=(x, y)$ on $E(\mathbf{Q}(t))$ such that $3 F=A, F \neq A$, then from $2 F=-F+A$ we obtain the equation

$$
\begin{equation*}
x^{4}-6 h(t) x^{2}-4 g(t) h(t) x-3 h(t)^{2}=0 \tag{7}
\end{equation*}
$$

where $g(t)=b(t) e(t)+d(t) e(t)-2 b(t) d(t), h(t)=b(t) d(t)[e(t)-$ $d(t)][e(t)-b(t)]$. One can easily check that, e.g., for $t=1$, the equation (7) has no rational solution. Similarly, we can prove that there is no point F on $E(\mathbf{Q}(t))$ such that $3 F=B, F \neq B$ or $3 F=C, F \neq C$. Therefore, we conclude that $E_{\text {tors }}(\mathbf{Q}(t))$ is isomorphic to $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$.

Now we will prove that four points with x-coordinates 0 ,

$$
\begin{gathered}
a(t)=\frac{16 t^{4}+64 t^{3}+76 t^{2}+24 t-1}{16\left(2 t^{2}+4 t+1\right)(t+1)} \\
c(t)=\frac{(t+1)\left(16 t^{4}+64 t^{3}+68 t^{2}+8 t+1\right)\left(16 t^{4}+64 t^{3}+100 t^{2}+72 t+17\right)}{4\left(16 t^{4}+64 t^{3}+76 t^{2}+24 t-1\right)\left(2 t^{2}+8 t+1\right)}
\end{gathered}
$$

and

$$
\frac{1}{b(t) d(t) e(t)}
$$

are independent $\mathbf{Q}(t)$-rational points. Since the specification map is always a homomorphism, we only have to show that there is a rational number t for which the above four points are specialized to four independent Q-rational points. We claim that this is the case for $t=1$.

We obtain the elliptic curve

$$
\begin{aligned}
E^{*}: y^{2}= & x^{3}+6039621860663185 x^{2} \\
& +4139229575576935297875399628800 x \\
& +48358738060886226093564403421659325399040000
\end{aligned}
$$

and the points

$$
\begin{aligned}
P & =(0,6954044726695840435200) \\
Q & =(2322788497348275,234053443113019268212650) \\
R & =(48986399479921200,11499867835919119918338000) \\
S & =(51511970169856 / 9,229496624258539337814016 / 27)
\end{aligned}
$$

Then $S=2 S_{1}, P-Q=2 Q_{1}, P-R=2 R_{1}$, where

$$
\begin{aligned}
Q_{1} & =(265264199014080,-39874704566573066299200) \\
R_{1} & =(3714953903426304,387359212888080790925568) \\
S_{1} & =(2452641432447360,247558457515476853468800)
\end{aligned}
$$

It is sufficient to prove that the points P, Q_{1}, R_{1}, S_{1} are independent. The curve E^{*} has three 2-torsion points:

$$
\begin{aligned}
& A^{*}=(-11888861752320,0), \\
& B^{*}=(-5253470166461440,0), \\
& C^{*}=(-774262832449425,0)
\end{aligned}
$$

Consider all points of the form

$$
X=\varepsilon_{1} P+\varepsilon_{2} Q_{1}+\varepsilon_{3} R_{1}+\varepsilon_{4} S_{1}+T
$$

where $\varepsilon_{i} \in\{0,1\}$ for $i=1,2,3,4, T \in\left\{\mathcal{O}, A^{*}, B^{*}, C^{*}\right\}$ and $X=$ $(x, y) \neq \mathcal{O}$. For all of these 63 points at least one of the numbers $x+11888861752320$ and $x+5253470166461440$ is not a perfect square. Hence, from 2-descent proposition [9, 4.1, p. 37], it follows that $X \notin$ $2 E(\mathbf{Q})$.

Assume now that P, Q_{1}, R_{1}, S_{1} are dependent modulo torsion, i.e., that there exist integers i, j, m, n such that $|i|+|j|+|m|+|n| \neq 0$ and

$$
i P+j Q_{1}+m R_{1}+n S_{1}=T
$$

where $T \in\left\{\mathcal{O}, A^{*}, B^{*}, C^{*}\right\}$. Then the result which we just proved shows that i, j, m, n are even, say $i=2 i_{1}, j=2 j_{1}, m=2 m_{1}, n=2 n_{1}$ and $T=\mathcal{O}$. Thus we obtain

$$
i_{1} P+j_{1} Q_{1}+m_{1} R_{1}+n_{1} S_{1} \in\left\{\mathcal{O}, A^{*}, B^{*}, C^{*}\right\}
$$

Arguing as above, we conclude that $i_{1}, j_{1}, m_{1}, n_{1}$ are even, and continuing this process we finally obtain that $i=j=m=n=0$, a contradiction.

By a theorem of Silverman [19, Theorem 11.4, p. 271], the specialization map is an injective homomorphism for all but finitely many points $t \in \mathbf{Q}$. This fact implies that by specialization of the parameter t to a rational number one gets in all but finitely many cases elliptic curves over \mathbf{Q} of rank at least four, and with subgroup of the torsion group which is isomorphic to $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$. Hence, we have

Corollary 1. There is an infinite number of elliptic curves over \mathbf{Q} with three nontrivial 2-torsion points whose rank is greater than or equal to 4.
3. An example of high-rank curve. We use the program mwrank (see [3]) for computing the rank of elliptic curves obtained from (6) by specialization of parameter t. However, since the coefficients in the corresponding Weierstrass form are usually very large, we were able to determine the rank unconditionally only for a few values of t. The following table shows the values of t for which we were able to compute the rank.

t	$\frac{1}{4}$	$\frac{1}{2}$	1	$\frac{3}{2}$	2
Selmer rank	8	4	5	8	9
rank	4	4	5	6	7

Hence, we obtain

Theorem 2. There is an elliptic curve over \mathbf{Q} with the torsion group $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$ whose rank is equal to 7 .

Let us write this example of the curve with rank equal to 7 explicitly:

$$
y^{2}=\left(\frac{2176}{373} x+1\right)\left(\frac{192386145}{101456} x+1\right)\left(\frac{122265}{101456} x+1\right)
$$

or in Weierstrass form:
(8)

$$
\begin{aligned}
y^{2}= & x^{3}+19125010376436745905 x^{2} \\
& +52038165131253677052054066913723699200 x \\
& +521987941186440643611574160434960523120404754595840000
\end{aligned}
$$

Seven independent points on (8) are

$$
\begin{aligned}
P_{1} & =(727040606274688800,6989234854370183719797420000) \\
P_{2} & =\left(\frac{106210585076366036700000}{12769}, \frac{69679298576214445317616490513378400}{1442897}\right) \\
P_{3} & =\left(\frac{335675366319765814629760}{71289}, \frac{529539341511970538352844395949129600}{19034163}\right) \\
P_{4} & =\left(\frac{8891873190221412964144}{81}, \frac{910251624041798036784012061900208}{729}\right) \\
P_{5} & =\left(\frac{101700294221755145291440}{841}, \frac{34956857441184030025736520646806800}{24389}\right) \\
P_{6} & =\left(\frac{73133606420424854742955}{114921}, \frac{251397104609526457099162042379450150}{38958219}\right) \\
P_{7} & =(-11146430015095060400,20291973801839968429609236400)
\end{aligned}
$$

Acknowledgments. The author would like to thank J.E. Cremona and the referee for helpful suggestions and L. Kulesz for kindly providing his recent preprint.

REFERENCES

1. A.O.L. Atkin and F. Morain, Finding suitable curves for the elliptic curve method of factorization, Math. Comp. 60 (1993), 399-405.
2. A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
3. J.E. Cremona, Algorithms for modular elliptic curves, Cambridge Univ. Press, 1997.
4. A. Dujella, On Diophantine quintuples, Acta Arith. 81 (1997), 69-79.
5. - The problem of the extension of a parametric family of Diophantine triples, Publ. Math. Debrecen 51 (1997), 311-322.
6. -, A proof of the Hoggatt-Bergum conjecture, Proc. Amer. Math. Soc. 127 (1999), 1999-2005.
7. A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
8. S. Fermigier, Exemples de courbes elliptiques de grand rang sur $\mathbf{Q}(t)$ et sur \mathbf{Q} posséndant des points d'ordre 2, C.R. Acad. Sci. Paris Sér. I 332 (1996), 949-952.
9. D. Husemöller, Elliptic curves, Springer-Verlag, New York, 1987.
10. K.S. Kedlaya, Solving constrained Pell equations, Math. Comp. 67 (1998), 833-842.
11. S. Kihara, On an infinite family of elliptic curves with rank ≥ 14 over \mathbf{Q}, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 32.
12. Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 77-78.
13. - On the rank of elliptic curves with three rational points of order 2, II, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), 151.
14. L. Kulesz, Courbes elliptiques de rang élevé, possédant un sous-groupe de torsion non trivial sur \mathbf{Q}, preprint.
15. B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129-162.
16. J.-F. Mestre, Courbes elliptiques de rang ≥ 11 sur $\mathbf{Q}(t)$, C.R. Acad. Sci. Paris Sér. I 313 (1991), 139-142.
17. - Courbes elliptiques de rang ≥ 12 sur $\mathbf{Q}(t)$, C.R. Acad. Sci. Paris Sér. I 313 (1991), 171-174.
18. P.L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math. Comp. 48 (1987), 243-264.
19. J.H. Silverman, Advanced topics in the arithmetic of elliptic curves, SpringerVerlag, New York, 1994.

Department of Mathematics, University of Zagreb, Bijenička Cesta 30, 10000 Zagreb, Croatia
E-mail address: duje@math.hr

[^0]: Received by the editors on June 12, 1998, and in revised form on November 16, 1998.

