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EXTREMAL DOMAINS FOR THE GEOMETRIC
REFORMULATION OF BRENNAN’S CONJECTURE

MICHAEL D. O’NEILL

ABSTRACT. In [7], Carleson and Makarov convert the
conjecture of Brennan on the order of growth of integral means
of the derivative of a univalent function to a purely geometric
and equivalent conjecture about some conformal invariants
related to extremal length. Here we show that the failure
of the geometric version of the conjecture always implies the
existence of an extremal domain which must be bounded by
the trajectory of a rational quadratic differential. We use a
second variation developed by Chang, Schiffer and Schober to
rule out the possibility of any zeros of order higher than two
in such a trajectory.

1. Introduction. In [4], Brennan conjectured that for any confor-
mal map φ of a simply connected domain Ω ⊂ C onto the open unit
disk D ∫∫

Ω

|φ′|p dx dy < +∞

for all p such that (4/3) < p < 4.

A technique of Carleson from [6] for estimating harmonic measure
is used in [4] to show that the upper bound for p is 3 + τ for some
universal τ > 0. By simpler methods it is shown in the same paper
that the conjectured upper bound of 4 is the correct one for the class
of close-to-convex domains. It is also explained in [4] that the problem
has its origin in questions of approximation theory from the work of
Metzger [12], Havin and Maz’ja [10] and Brennan [5].

An equivalent statement of the conjecture is that, for any conformal
map f of the unit disk D into C, any p ∈ (−∞,−2] and any ε > 0,

∫ 2π

0

|f ′(reit)|p dt = O

(
1

(1 − r)|p|−1+ε

)
, r → 1
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holds. The conjectured upper bound of −2 corresponds to the upper
bound of 4 in Brennan’s statement.

By a very different approach than Brennan’s based on manipulation
of differential inequalities for the function

u(r) =
∫ 2π

0

|f ′(reit)|p dt

Pommerenke proved in [14] that

∫ 2π

0

|f ′(reit)|p dt = O

(
1

(1 − r)|p|−.399+ε

)
, r → 1

for all p ≤ −1 and for all ε > 0. This corresponds to an upper bound
of p = 3.399 in Brennan’s original statement. Pommerenke’s result has
been improved slightly by Bertilsson [3], who combined the idea from
[14] with new estimates for the coefficients

(f ′(z))p =
∞∑

n=0

cn,pz
n

for univalent functions f in D normalized by f(0) = 0 and f ′(0) = 1.
The coefficient estimates in [3] are found by using the Loewner theory
in a way suggested by DeBranges’s proof of the Bieberbach conjecture.

The geometric approach to the problem was taken up again in [7]
where Carleson and Makarov proved the following theorem on harmonic
measure in simply connected domains:

Theorem A. An absolute constant K exists such that, for every
simply connected domain Ω satisfying

∞ ∈ Ω, diam ∂Ω = 1

and any numbers ε > 0 and ρ > 0, the maximal number of disjoint
disks of radius ρ and harmonic measure, evaluated at ∞, greater than
ρ(1/2)+ε is at most

(abs. constant)ρ−Kε.
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This theorem has the corollary that, for any univalent f in D and
any p ≤ −(1/2)K,

∫ 2π

0

|f ′(reit)‖p dt = O

(
1

(1 − r)|p|−1+ε

)
, r → 1

for every ε > 0. Thus, Brennan’s conjecture is equivalent to the
conjecture that K = 4 is the best possible constant in Theorem A.

The relationship between harmonic measure and extremal distance is
exploited in [7] to give a further reformulation of Brennan’s conjecture
in terms of “beta numbers,” which are introduced for the purpose. We
will now briefly describe this version of the conjecture assuming some
familiarity with the various conformal invariants. Some good references
for harmonic measures, extremal length and extremal distance are [1,
15] and [9].

Let Ω be a simply connected domain and a, b ∈ Ĉ any pair of
points. For ε > 0, let Γε denote the family of curves in C which join
{z : |z − a| < ε} and {z : |z − b| < ε} (or if b = ∞, {z : |z| > (1/ε)}).
Let Cε(w) denote the boundary of {z : |z − w| < ε}. If Ia and Ib are
arcs of Cε(a) ∩ Ω and Cε(b) ∩ Ω, respectively, let

λ̃ε(a, b) = inf
(Ia,Ib)

dΩ (Ia, Ib)

where dΩ denotes extremal distance in Ω. Following [7], define

βε(a, b,Ω) = exp{2π [λ(Γε) − λ̃ε(a, b)]}

and
β(a, b,Ω) = lim

ε→0
βε(a, b,Ω)

where λ denotes extremal length. The limit in the definition exists by
the serial rule for extremal lengths.

By an n-configuration {Ω; a0, a1, . . . , an} we will mean a simply
connected domain Ω together with n + 1 distinct points a0, a1, . . . , an

on ∂Ω. Let Cn denote the set of all n-configurations.

Fixing one point a0 and taking n distinct other points a1, . . . , an on
∂Ω, we denote

βj = β(aj , a0,Ω).
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In [7] it is shown that Brennan’s conjecture is equivalent to the
statement that

(1)
n∑

j=1

β2
j ≤ 1

for all n and all configurations {Ω; a0, a1, . . . , an} and the inequality is
proven to hold in the case n = 2. In fact, it is shown that if

(2)
n∑

j=1

β2
j > 1

for some configuration, then it would be possible to find a domain
bounded by a polygonal tree with n + 1 tips for which (2) holds (the
beta numbers being evaluated at the tips) and this tree can be used
as a “generator” in the recursive construction of the fractal boundary
of a domain for which Brennan’s conjecture fails (in the form given
in Theorem A with K = 4). Conversely, if Brennan’s conjecture fails
for some domain Ω then it is possible to construct a polygonal “tree”
approximating ∂Ω for which (2) holds, the βj ’s being evaluated at
the tips of the tree. It should be mentioned that Baranski, Volberg
and Zudnik [2] have shown that Brennan’s conjecture is satisfied for
simply connected basins of attraction for polynomials z2 + c. The
fractal domains considered by Carleson and Makarov are the critical
case for the conjecture and are of a different nature than such basins
of attraction.

The case n = 2 for the beta number formulation of Brennan’s
conjecture is handled in [7] as follows. Supposing that β2

1 + β2
2 > 1

for some configuration, the existence of an extremal configuration for
the sum β2

1 + β2
2 is taken as being clear after normalization. The

Schiffer variation is then applied to show that the boundary of the
extremal domain is the trajectory of a certain quadratic differential. A
differential equation is obtained for an appropriate mapping function,
and this equation can be integrated completely to give an explicit
computation of the sum β2

1 + β2
2 which is thereby shown to be strictly

less than one. The present paper is an attempt to extend this approach
to n > 2 using both first and second variation arguments. Brennan’s
conjecture remains open, but we are able to obtain some information
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on the extremal domains. We will prove (for all n) that the failure of
the Carleson-Makarov version of the conjecture implies the existence of
extremal domains for the sum (1), that such an extremal domain must
be bounded by the trajectory of a quadratic differential, and that such a
boundary trajectory cannot contain a zero of the quadratic differential
with order higher than two. This means that one way to establish
Brennan’s conjecture might be to rule out the possibility of zeros of
order one or two in an extremal trajectory of the above type.

In Section 2 we will prove

Theorem 1. If M is the first integer for which there is some M -
configuration

{Ω0; a0, a1, . . . , aM}
such that

M∑
j=1

(β(aj , a0,Ω0))2 > 1,

then there is an M -configuration

{Ω∗; a∗0, a
∗
1, . . . , a

∗
M}

such that

n∑
j=1

(β(a∗j , a
∗
0,Ω

∗))2 = sup
CM

M∑
j=1

(β(aj, a0,Ω))2.

As mentioned earlier, this is stated in [7] for the case n = 2. For
n > 2, a little argument is required since the positions of four or more
endpoints cannot be completely normalized. The well-known second
variation developed by Chang, Schiffer and Schober, originally intended
as an investigative tool for coefficient problems, will be adapted in
Section 3 to prove the following

Theorem 2. Any extremal domain whose existence is established in
Theorem 1 would necessarily be bounded by the trajectory of a rational
quadratic differential with second order poles at {a∗0, a∗1, . . . , a∗M}, and
such a trajectory cannot contain a zero of order greater than 2.
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During the proof of Theorem 2 the differential equation (23) is also
derived.

2. The existence of extremal domains. Proof of Theorem 1.
In the proofs of Theorem 1.1 and Theorem 1.2 we will use the notation

Rν(aj) ≡ {z : e−(ν+1)A < |z − aj | < e−νA}

for open annuli centered at aj , and

Rν(∞) ≡
{
z : e−(ν+1)A <

1
|z| < e−νA

}

for open annuli centered at ∞. Also, we denote

Xν(aj) ≡ λν(aj) − λ,

where λ = A/2π is the extremal distance between the boundaries of
the annuli, and where

λν(aj) = inf{dΩ (l+, l−) : l± are arcs on ∂± ∩ Ω}.

Here ∂± are the inner and outer boundaries of Rν(aj) and dΩ is
extremal distance in Ω.

We will also use the following lemmas. They are from [7]. The proofs
are included here for the sake of completeness.

Lemma 1. Let R = {z : 1 < |z| < eA}, and let E be a connected,
compact subset of R such that ∂R∪E is connected and R \E is simply
connected. Suppose also that neither {|z| = 1} \ E nor {|z| = eA} \ E
is empty. Let θ be the smallest angle of any sector containing R ∩ E
(θ = 2π if E cannot be contained in a sector), and let I0, IA be arcs of
{|z| = 1}\E and {|z| = eA}\E, respectively. Then there is a numerical
constant A0 > 0 such that if A ≥ A0,

dR\E(I0, IA) ≥ A +
cθ3

A

for some numerical constant c > 0. The estimate holds for any A if θ
is sufficiently small (depending on A).
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Proof. Observe that the paths connecting the two arcs must pass
outside the sector containing R ∩ E. By a conformal mapping, it is
therefore sufficient to estimate the extremal length of the family of
paths Γ′ in the rectangle (0, A) × (−π, π) which join the two vertical
sides and which pass outside of [0, A]× (−θ/2, θ/2). Paths are allowed
to continue through one horizontal edge to the other and no path can
traverse the strip {|y| ≤ θ/2}. Consider the metric

ρ(x, y) =




1
A

0 ≤ x ≤ A, θ/4 < |y| < π,

1√
A2 + kθ2

0 ≤ x ≤ A, 0 ≤ |y| ≤ θ/4.

Of all paths in Γ′ which intersect the strip {|y| ≤ (θ/4)}, a path with
minimal ρ-length must have the form p1p2∪p2p3 where p1 = (0, (θ/4)),
p2 = (d, (θ/4)) for some 0 ≤ d ≤ A and p3 = (A, (θ/2)), or be a
reflection of such a path in x = (A/2) or in y = 0. The minimal ρ-
length of any path which intersects the strip |y| ≤ (θ/4) is then found
by minimizing the function

l(d) =
d√

A2 + kθ2
+

1
A

√
(A− d)2 +

(
θ

4

)2

.

By elementary methods, the minimizing value of d is determined to be

d = A

(
1 − 1

4
√
k

)
,

for which we have

l(d) = 1 +
(√

k

4
− k

2

)
θ2

A2
+ · · · .

Choosing k = 1/8 ensures that all curves in the family have ρ-length
greater than one, and we have

∫∫
ρ2 dx dy =

2π
A

− θ3

16A3
+ · · · ,

from which the lemma follows by taking reciprocals.
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Lemma 2. Let Ω be a simply connected domain in Ĉ and ξ ∈ ∂Ω.
Let R be an annulus centered at ξ such that ∂Ω intersects both boundary
circles of R. Let C+ denote the outer and C− the inner boundary circle
of R, and let λ denote the extremal distance between C+ and C− in R.
If I+ is any arc of C+ ∩ Ω and I− any arc of C− ∩ Ω then we have

dΩ(I+, I−) − λ ≥ cθ3

λ

where c is a numerical constant and θ is the smallest angle of a sector
of R containing R ∩ ∂Ω.

Proof. Given the arcs I+ and I− we may chose two arcs I∗+ and I∗−
such that I∗+ and I∗− both separate I+ and I− and so that I∗+ and I∗−
are not separated in Ω by any other arcs of Ω ∩ C+ or Ω ∩ C−. Let
U denote the simply connected subdomain of R determined by Ω and
the arcs I∗+, I∗−. Let θ∗ denote the smallest angle of a sector containing
R \U . By elementary properties of extremal distance and the previous
lemma, we have

dΩ(I+, I−) ≥ dR(I∗+, I
∗
−) ≥ λ +

cθ3
∗
λ

≥ λ+
cθ3

λ
.

Proof of Theorem 1.1. Let M be the first integer such that some
M -configuration {Ω0; a0, a1, . . . , aM} exists for which

M∑
j=1

(β(aj , a0,Ω0))2 > 1.

Let {Ω(k); a0, a
(k)
1 , . . . , a

(k)
M } be a sequence of M -configurations such

that

M∑
j=1

(β(a(k)
j , a0,Ω(k)))2 −→ sup

CM

M∑
j=1

(β(aj , a0,Ω))2 ≡ S.

Taking subsequences, we may assume that for each j, a(k)
j → aj and

β(a(k)
j , a0,Ω(k)) → βj > δ > 0. We may also assume that the sets
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∂Ω(k) converge in the Hausdorff metric on the sphere to the boundary
of a simply connected limit domain.

Suppose first that the points of {a0, a1, . . . , an} are all distinct. Given
δ > 0 we want to show that

M∑
j=1

β2
j > s− δ.

Choose ε′ > 0 such that for each ε < ε′,

M∑
j=1

β2
j >

M∑
j=1

β2
j,ε −

δ

2
.

By Lemma 2, if ε′ is sufficiently small and k sufficiently large, the
boundaries of the domains Ω(k) and of the limit domain all pass through
a narrow corridor of the annuli with radii ε and eAε centered at the
aj . So the numbers βj,ε and β

(k)
j,ε are computed using quadrilaterals

whose end edges are the large circular arcs of the circles Cε(aj). Now
the theorem on convergence of the module from [11, p. 27] shows that

M∑
j=1

β2
j,ε ≥

M∑
j=1

(β(k)
j,ε )2 − δ

2

for all sufficiently large k, and therefore

M∑
j=1

β2
j ≥

M∑
j=1

(β(k)
j,ε )2 − δ ≥

M∑
j=1

(β(k)
j )2 − δ

and it follows that
M∑

j=1

β2
j > S − δ.

We finish the proof by ruling out the possibility that {a0, a1, . . . , an}
contains fewer than n + 1 distinct points. By Moebius invariance, we
may assume that a(k)

1 = 0, a(k)
2 = 1, a0 = ∞ for every k.

If a sequence a(k)
j were to approach a0 = ∞, the points a(k)

j and the

parts of the boundary ending at the a
(k)
j would have to pass through



1490 M.D. O’NEILL

annular sectors of arbitrarily narrow angles containing the parts of the
boundaries ending at a0. We would then have

lim
k→∞

∞∑
ν=1

Xν(a(k)
j ) = +∞

and therefore we would have β(j,k) → 0.

We may suppose then that a(k)
n−l, . . . , a

(k)
M all have a common finite

limit point a. If there were more than one such common limit point,
we would repeat the following argument.

Choose a circle CR of radius R centered at a. Then

lim
ε→0

M∑
j=M−l

e(4π[λε−λ̃ε(ak
j ,a0,Ωk)])

≤ lim
ε→0

e(4π[λ(Cε(a0),CR)−λ̃(Cε(a0),CR,Ωk)])

·
M∑

j=M−l

e(4π[λ(CR,Cε(ak
j ))−λ̃(CR,Cε(ak

j ),Ωk)])

by the series rule.

Since M is the first integer for which

sup
CM

M∑
j=1

β2
j > 1,

a rescaling shows that there is a function η(ε) = o(1) as ε→ 0 so that

lim
ε→0

M∑
j=M−l

e(4π[λε−λ̃ε(a,a0,Ωk)])

≤ lim
ε→0

e(4π[λ(Cε(a0),CR)−λ̃(Cε(a0),CR,Ωk)])(1 + η(ε)).(3)

Let η2 > 0. If R is sufficiently small, then we may choose k sufficiently
large so that∣∣∣ lim

ε→0
e(4π[λ(Cε(a0),CR)−λ̃(Cε(a0),CR,Ωk)]) − β2(a, a0,Ω)

∣∣∣ < η2.
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Then we would have

β2(a, a0,Ω) +
M−l−1∑

j=1

β2
j (aj , a0,Ω) > 1.

This contradicts the definition of M so the theorem is proved.

3. A description of extremal domains. Proof of Theorem 2.
To prove Theorem 2 we adapt the second variational argument devised
by Chang, Schiffer and Schober to the beta numbers problem.

The existence of extremals for the problem has been shown in Sec-
tion 1 and a standard application of the Schiffer variation, exactly as
in [7], shows that extremal domains are bounded by the trajectories of
a quadratic differential.

We will assume that b = ∞ and use the fact, also from [7], that in
this situation,

(4) βj(aj , b,Ω) =
2

|f ′′(xj)|
where f is a conformal mapping to the upper half plane H onto Ω,
normalized so that f(z) ∼ z2 at ∞ and where xj ∈ R is the pre-image
of the tip aj ∈ ∂Ω. Our immediate goal is to determine the form of
a first variation for f(z). We shall then use it to obtain a quadratic
differential equation satisfied by f in H.

In some fixed neighborhood of the boundary of the extremal domain
Ω, let vν(w), ν = 1, 2, . . . , be defined, analytic and uniformly bounded.
We vary ∂Ω by

w∗ = w + ε v1(w) + ε2 v2(w) + · · · .
Specific choices of the functions v1 and v2 will be made respectively in
the first and second variation arguments which follow.

For small ε > 0 we obtain a union of analytic arcs ∂Ω∗ which is the
boundary of the new simply connected domain Ω∗. Let f∗(z) = f∗(z, ε)
be univalent and map H onto Ω∗. We may assume that f∗(∞) = ∞,
and we still have

Arg f∗(t) −→ 0, t → ±∞, t ∈ R.
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Composing with a real dilation we may assume that f∗(z) = z2 + c′z+
. . . as z → ∞. Let τδ(z) = z + δ. We suppose for now that the
mappings f∗(z, ε) all have the same fixed normalization, and we will
be free to change f∗(z, ε) by precomposition with τδ(ε) where δ(ε) is
an analytic function of ε in a neighborhood of ε = 0 and is real for real
ε.

We have the Taylor series for f∗ : H → Ω∗ in ε

(5) f∗(z) = f(z) + ε f1(z) + ε2 f2(z) + · · ·
and we define

(6)
z∗(z) ≡ (f∗)−1[f(z) + ε v1(f(z)) + ε2 v2(f(z)) + · · · ]

= z + εψ1(z) + ε2 ψ2(z) + · · · ,
where the ψν are analytic in a neighborhood of R and real on R, the
values of z∗(z) being determined by reflection below the real line.

We can insert (3) and (4) into the Taylor development of f∗(z∗) in ε
as follows

f∗(z∗(z)) = f∗(z) + ε f∗′(z)
∂z∗

∂ε

∣∣∣∣
ε=0

+
1
2
ε2

[
f∗′(z)

∂2z

∂ε2

∣∣∣∣
ε=0

+ f∗′′(z)
(
∂z∗

∂ε

)2∣∣∣∣
ε=0

]
+ o(ε2)(7)

= f(z) + ε[f1(z) + f ′(z)ψ1(z)]

+ ε2
[
f2(z)+f ′

1(z)ψ1(z)+f ′(z)ψ2(z)+f ′′(z)
(ψ1(z))2

2

]
+o(ε2).

Comparing coefficients of powers of ε in (4) and (5), we have

(8) v1(f(z)) = f1(z) + f ′(z)ψ1(z)

and

(9) v2(f(z)) =
[
f2(z) + f ′

1(z)ψ1(z) + f ′(z)ψ2(z) + f ′′(z)
(ψ1(z))2

2

]
.
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Since the ψν are real on R, (8) shows that

(10) Im
[
v1(f(z))
f ′(z)

]
= Im

[
f1(z)
f ′(z)

]

on R.

We know that f1/f
′ is analytic in H. Following the accumulated

experience of Schiffer and his collaborators, and in particular [8], we
make the useful and admissible choice

(11) v1(f(z)) =
x f(z)

[f(z) − f(ξ)]f(ξ)

for some x ∈ C and some ξ ∈ H. Then we have

(12)

f1(z)
f ′(z)

=
xf(z)

f ′(z)[f(z) − f(ξ)]f(ξ)

−
[

x

[f ′(ξ)]2(z − ξ)
+

x̄

[f ′(ξ)]2(z − ξ̄)

]
+ C

where C is some real constant. Equation (12) holds because ψ1(z) is
analytic in a neighborhood of R and because its left and right sides are
analytic in H, bounded as z → ∞, and have the same imaginary parts
on R. Replacing f∗(z, ε) by f∗ ◦ τCε

= f∗∗(z, ε) if necessary, we may
assume that C = 0. It follows from (8) that

(13) ψ1(z) =
[

x

[f ′(ξ)]2 (z − ξ)
+

x̄

[f ′(ξ)]2(z − ξ̄)

]

and

(14) f1(z) =
x f(z)

[f(z) − f(ξ)]f(ξ)
−

[
x f ′(z)

[f ′(ξ)]2(z − ξ)
+

x̄ f ′(z)
[f ′(ξ)]2(z − ξ̄)

]
.

Note that, by the local structure of trajectories, f and f∗ have
derivatives of all orders at xj and at x∗j , and recall that in the present
situation βj(aj , b,Ω) = 2/|f ′′(xj)|. We now want to use the fact that

(15)
n∑

j=1

1
|f ′′(xj)|2 ≥

n∑
j=1

1
|f∗′′(x∗j )|2 ,
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which follows from (4), to obtain a quadratic differential equation (see
(23) below) which is satisfied by an extremal function. Here

(16)
x∗j = f∗−1(f(xj) + ε v1(f(xj)) + ε2 v2(f(xj)) + · · · )

= xj + εψ1(xj) + ε2 ψ2(xj) + · · ·
and

f∗′′(x∗j ) = f ′′(xj + εψ1(xj) + ε2 ψ2(xj) + · · · )
+ ε f ′′

1 (xj + εψ1(xj) + · · · )
+ ε2 f ′′

2 (xj + · · · ) + o(ε2)
= f ′′(xj)(17)

+ ε[ψ1(xj)f (3)(xj) + f ′′
1 (xj)]

+ ε2
[
f ′′
2 (xj) + ψ1(xj)f (3)

1 (xj) +
(ψ(xj))2

2
f (4)(xj)

+ f (3)(xj)ψ2(xj)
]

+ o(ε2).

By correctly choosing v2, we will arrange below that ψ2 ≡ 0. There-
fore, we define

(18) V
(j)
1 =

ψ1(xj)f (3) (xj) + f ′′
1 (xj)

f ′′(xj)

and

(19) V
(j)
2 =

f ′′
2 (xj) + ψ1(xj)f (3)

1(xj) + ([ψ1(xj)]2/2)f (4) (xj)
f ′′(xj)

so that

(20)

1
|f∗′′(x∗j )|2 =

1
|f ′′(xj)|2

(
1 − 2 ε(Re [V (j)

1 ]) − ε2(|V (j)
1 |2

+ 2 Re [V (j)
2 ] − 4(Re [V (j)

1 ])2) + o(ε2)
)
.

By (15), it follows that

(21) Re
n∑

j=1

V
(j)
1

|f ′′(xj)|2 ≥ 0
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which is, after a computation,

(22) Re
[ n∑

j=1

x

|f ′′(xj)|2
(

4
[f ′(ξ)]2(xj−ξ)2 − 1

(f(xi)−f(ξ))2

)]
≥ 0.

The inequality (22) must hold for all x ∈ C, arbitrarily chosen in (11),
and all ξ ∈ H, so the first variation vanishes and we have

(23) [f ′(ξ)]2
n∑

j=1

1
|f ′′(xj)|2(f(xj)−f(ξ))2

=
n∑

j=1

4
|f ′′(xj)|2(xj−ξ)2 .

For the case n = 2, this equation is derived in [7] and used to prove
that β2

1 + β2
2 ≤ 1.

Now we compute a second variation, and we shall use it to complete
the proof of Theorem 2. As mentioned earlier, with a proper choice of
v2, we can assume that ψ2 ≡ 0. In fact, we have

(24) v2(f(z)) = f2(z) + f ′
1(z)ψ1(z) + f ′′(z)

(ψ1(z))2

2
+ f ′(z)ψ2(z)

and we will choose v2 so that v2(f(z)) has the same singularity at z = ξ
in H as

(25) f ′
1(z)ψ1(z) + f ′′(z)

(ψ1(z))2

2
.

Because f2(z) is at most O(z) as z → ∞, ψ2 will be bounded and ana-
lytic in H and real on R, therefore a real constant, say C ′. Replacing
f∗(z, ε) by f∗ ◦ τC′ε2 if necessary, we may assume C ′ = 0.

After a computation we have

(26) v2(f(z)) = f2(z) + x2A(z) + |x|2B(z) + x̄2C(z) + f ′(z)ψ2(z),

where
(27)

A(z) =
f ′(z)

[f ′(ξ)]4(z−ξ)3−
f ′(z)

[f ′(ξ)]2(z−ξ)(f(z)−f(ξ))2
− f ′′(z)

2[f ′(ξ)]4(z−ξ)2 ,
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(28)

B(z) =
f ′(z)

|f ′(ξ)|4(z−ξ)(z−ξ̄)2 − f ′(z)
[f ′(ξ)]2(z−ξ̄)(f(z)−f(ξ))2

+
f ′(z) − f ′′(z)(z−ξ)
|f ′(ξ)|4(z−ξ̄)(z−ξ)2

and

(29) C(z) =
f ′(z)

[f ′(ξ)]4(z−ξ̄)3 − f ′′(z)
2[f ′(ξ)]4(z−ξ̄)2 .

We see that C(z) is analytic in H and, after computation, that A(z)
has the following principal part at ξ:

(30)
f ′′(ξ)

2[f ′(ξ)]4(z−ξ)2 − 1
[f ′(ξ)]2

(
f (3)(ξ)

6[f ′(ξ)]2
− (f ′′(ξ))2

4(f ′(ξ))3

)
1

(z − ξ)

and that the principal part of B(z) at ξ is

(31)
f ′(ξ)

|f ′(ξ)|4(z − ξ)(ξ − ξ̄)2
.

We can therefore achieve the desired matching of singularities by
choosing
(32)

v2(f(z)) = x2

[
f ′′(ξ)

2[f ′(ξ)]2

(
f(z)

f(ξ)(f(z) − f(ξ))

)2

+
1

[f ′(ξ)]2

(
M(ξ) − f ′′(ξ)

f(ξ)

)(
f(z)

f(ξ)(f(z) − f(ξ))

)]

+ |x|2
[

1
[f ′(ξ)]2(ξ − ξ̄)2

(
f(z)

f(ξ)(f(z) − f(ξ))

)]
,

where

M(ξ) ≡ 1
2

[(
f ′′(z)
f ′(z)

)2

− 1
3
{f, ξ}

]
(33)

and

{f, ξ} =
f (3)(ξ)
f ′(ξ)

− 3
2

(
f ′′(ξ)
f ′(ξ)

)2

(34)
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denotes the Schwarzian derivative of f at ξ.

With this choice of v2, we have

(35) f2(z) = v2(f(z)) − f ′
1(z)ψ1(z) − f ′′(z)

(ψ1(z))2

2
.

From (13) and (14) it follows that

(36)
f ′
1(xj)
f ′′(xj)

= −ψ1(xj).

A computation with (19) now gives

(37) V
(j)
2 = v′2(f(xj)) − 2(V (j)

1 ψ′
1(xj)) − (ψ′

1(xj))2.

And, since

(38)
V

(j)
1 = Re

[
4x

[f ′(ξ)]2 (xj − ξ)2

]
− x

(f(xj) − f(ξ))2

= − 2ψ′
1(xj) − x

(f(xj) − f(ξ))2

from (21) and (22), we have, using (11),

V
(j)
2 = v′2(f(xj)) + x2

(
3

(f ′(ξ))4 (xj − ξ)4

− 2
(f(xj) − f(ξ))2 (f ′(ξ))2 (xj − ξ)2

)

+ |x|2
(

6
|f ′(ξ)|4 |xj − ξ|4 − 2

(f(xj) − f(ξ))2 (f ′(ξ))2 (xj − ξ̄)2

)

+ x̄2

(
3

(f ′(ξ))4 (xj − ξ̄)4

)
.

By (32), we have

v′2(f(xj)) = x2

(
− f ′′(ξ) f(xj)

(f ′(ξ))2 f(ξ) (f(xj) − f(ξ))3
− 1

(f ′(ξ))2

·
(
M(ξ) − f ′′(ξ)

f(ξ)

)
1

(f(xj) − f(ξ))2

)

− |x|2
(

1
(f ′(ξ))2 (ξ − ξ̄)2 (f(xj) − f(ξ))2

)
.
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The second variational inequality obtained from (20) by supposing
we have a maximum is

(40)
n∑

j=1

|V (j)
1 |2 + 2 Re [V (j)

2 ] − 4(Re [V (j)
1 ])2

|f ′′(xj)|2 ≥ 0

and we have after some algebra

(41) |V (j)
1 |2 + 2 ReV (j)

2 − 4(Re [V (j)
1 ])2 = ajx

2 + bj |x|2 + cj x̄
2

where

aj = − 6
(f ′(ξ))4 (xj − ξ)4

+
2

(f ′(ξ))2 (xj − ξ)2 (f(xj) − f(ξ))2

− 1
(f(xj) − f(ξ))4

− 2f ′′(ξ) f(xj)
(f ′(ξ))2 f(ξ) (f(xj) − f(ξ))3

(42)

− 2
(f ′(ξ))2

(
M(ξ) − f ′′(ξ)

f(ξ)

)
1

(f(xj) − f(ξ))2

bj = − 12
|f ′(ξ)|4 |xj − ξ|4 − 1

|f(xj) − f(ξ)|4

− 2
(f ′(ξ))2 (ξ − ξ̄)2 (f(xj) − f(ξ))2

+ 12 Re
(

1
(f ′(ξ))2 (xj − ξ̄)2 (f(xj) − f(ξ))2

)

− 4
(

1
(f ′(ξ))2 (xj − ξ̄)2 (f(xj) − f(ξ))2

)

and

cj = − 6
(f ′(ξ))4 (xj − ξ̄)4

− 1
(f(xj) − f(ξ))4

+
6

(f ′(ξ))2 (xj − ξ̄)2 (f(xj) − f(ξ))2
.

(43)

The inequality (40) has the form

(44) Re (ax2 + b|x|2 + cx̄2) ≥ 0,
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where

a =
n∑

j=1

aj

|f ′′(xj)|2 , b =
n∑

j=1

bj
|f ′′(xj)|2

and

c =
n∑

j=1

cj
|f ′′(xj)|2 ,

and it holds for all x ∈ C. Letting x2 = −|a + c̄|/(a+ c̄) gives

(45) −Re b ≤ − |a + c̄|.

Note that, since (44) holds for all x ∈ C, the inequality (45) also holds
if a = −c̄. Writing out (45) gives

Re
n∑

j=1

1
|f ′′(xj)|2

(
12

|f ′(ξ)|4 |xj − ξ|4 +
1

|f(xj) − f(ξ)|4

− 8
(f ′(ξ))2 (xj − ξ̄)2 (f(xj) − f(ξ))2

+
2

(f ′(ξ))2 (ξ − ξ̄)2 (f(xj) − f(ξ))2

)(46)

≤ −
∣∣∣∣

n∑
j=1

1
|f ′′(xj)|2

(
12

(f ′(ξ))4 (xj − ξ)4

− 8
(f ′(ξ))2 (xj − ξ)2 (f(xj) − f(ξ))2

+
2

(f(xj) − f(ξ))4

+
2f ′′(ξ) f(xj)

(f ′(ξ))2 f(ξ) (f(xj) − f(ξ))3
+

2
(f ′(ξ))2

·
(
M(ξ) − f ′′(ξ)

f(ξ)

)
1

(f(xj) − f(ξ))2

)∣∣∣∣.
This inequality must hold for all ξ ∈ H.

Let η be a point on the real line such that f(η) is a zero of order m
of

n∑
j=1

1
|f ′′(xj)|2

1
(f(xj) − w)2

.



1500 M.D. O’NEILL

By (23) such points η are exactly the preimages under f of the points
of ∂Ω at which there are three or more analytic arcs meeting at a
branching point.

Expand f as

f(ξ) = f(η) + τ (ξ − η)α + o(ξ − η)α.

The theory of the local structure of trajectories implies that α =
2/(m+2). (See, for example, [13, Chapter 6].) Writing the asymptotic
expansion of (46) as ξ makes a perpendicular approach to η, we see
that if m ≥ 3 then the only nonvanishing term on the lefthand side is
the strictly positive second term. The only possibilities are therefore
that m = 1 or m = 2, and this finishes the proof of the theorem.
More information can be obtained by expanding the inequality near the
endpoints f(xj) but the relationships obtained this way are complicated
and do not seem to further clarify the geometric picture.

Note added in proof. In independent work but by the same
method, Daniel Bertilsson has ruled out zeros of order two in extremal
trajectories in his 1999 doctoral thesis for RIT Stockholm.
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