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NORMALITY OF COMPLEX CONTACT MANIFOLDS

BELGIN KORKMAZ

ABSTRACT. Complex contact metric manifolds are stud-
ied. Normality is defined for these manifolds and equivalent
conditions are given in terms of VG and VH. GH-sectional
curvature and H-homothetic deformations are defined. Exam-
ples of normal complex contact metric manifolds with constant
G H-sectional curvature c¢ are given for ¢ > —3.

1. Introduction. The theory of complex contact manifolds started
with the papers of Kobayashi [12] and Boothby [4], [5] in late 1950’s
and early 1960’s, shortly after the celebrated Boothby-Wang fibration
in real contact geometry [6]. It did not receive as much attention as the
theory of real contact geometry. In 1965, Wolf studied homogeneous
complex contact manifolds [17]. Recently, more examples are appear-
ing in the literature, especially twistor spaces over quaternionic Kéhler
manifolds (e.g., [13], [14], [15], [16], [18]). Other examples include
the odd dimensional complex projective spaces [9] and the complex
Heisenberg group [1].

In the 1970’s and early 1980’s there was a development of the
Riemannian theory of complex contact manifolds by Ishihara and
Konishi [8], [9], [10]. However, their notion of normality as it appears
in [9] seems too strong since it does not include the complex Heisenberg
group and it forces the structure to be Kahler. In this paper we
introduce a slightly different notion of normality which includes the
complex Heisenberg group.

In Section 2 we give the necessary definitions and some basic facts
about complex contact metric manifolds. In Section 3 we define nor-
mality and give the theorem which states the necessary and sufficient
conditions, in terms of the covariant derivatives of the structure ten-
sors, for a complex contact metric manifold to be normal. We discuss
some curvature properties of normal complex contact metric manifolds
in Section 4.
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In Section 5, following the corresponding theory of real contact geom-
etry, we define the GH-sectional curvature for normal complex contact
metric manifolds and we classify those with constant G H-sectional cur-
vature +1. We give examples of normal complex contact metric man-
ifolds with constant G H-sectional curvature —3 and +1 in Section 6.
Then, in Section 7, we define H-homothetic deformations and show
that they preserve normality. Using H-homothetic deformations, we
get examples of normal complex contact metric manifolds with constant
G H-sectional curvature c for every ¢ > —3. Here we note that Ishihara-
Konishi’s notion of normality is not preserved under H-homothetic de-
formations.

2. Basic definitions.

Definition 2.1. Let M be a complex manifold with dimcM = 2n+1,
and let J denote the complex structure on M. M is a complex contact
manifold if an open covering U = {O,} of M exists, such that

1) on each O,, there is a holomorphic 1-form w, with wy A (dwas)™ # 0
everywhere, and

2) it O,NOp # @, then there is a nonvanishing holomorphic function
Aap in On N Og such that

Wa = Aapwg  in Oy NOg.

On each O, we define H, = {X € TO, | wa(X) = 0}. Since
Aag’s are nonvanishing, Ho, = Hg on O, N Og. So H = UH, is a
well-defined, holomorphic, nonintegrable subbundle on M, called the
horizontal subbundle.

Definition 2.2. Let M be a complex manifold with dimcM = 2n+1,
complex structure J and Hermitian metric g. M is called a complex
almost contact metric manifold if an open covering Y = {O,} of M
exists such that

1) in each O, there are 1-forms u, and v, = uqJ, (1,1) tensors G,
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and H, = G,J, unit vector fields U, and V,, = —JU, such that

H2=G?% = -1d+uy®@Uy +1, @V,
9(GoX,Y) = —g(X,G,Y)
9(Ua, X) = ua(X)

GoJ = —JG,
G,Uy=0
U (Uy) = 1,

2) it 0, NOp # @, then there are functions a, b on O, NOg such that

Ug = Ay — bv,
vg = buqg + av,
Gﬁ = aGa — bHa
Hg =bG, +aH,
a?+bp?=1.

As a result of this definition, on a complex almost contact metric
manifold M, the following identities hold (cf. [9]):

H,Go=-GHy=J+uq @Vy — v, @ U,
JH, = —-H,J =G,
g(H X, Y)=—g(X,H,Y)
Gy Vo =H,U,=H,V,=0
UeGo = VaGo = UogHy = voHy =0
JVo =Ua, g(Uy, Vo) = 0.

From now on, we will suppress the subscripts if O, is understood.

Let (M, {w}) be a complex contact manifold. We can find a nonvan-
ishing, complex-valued function multiple 7 of w such that on O N O,
7w = hr' with

h:0N0 — S

Let m = u — iv. Then v = u.J since w is holomorphic. Locally we can
define a vector field U by du(U, X) = 0 for all X in H and w(U) =1,
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v(U) = 0. Then we have a global subbundle V locally spanned by U
and V = —JU with TM = H ® V. We call V the vertical subbundle
of the contact structure. Here we note that we can find a local (1,1)
tensor G such that (u,v,U,V,G,H = GJ,g) form a complex almost
contact metric structure on M (cf. [10]).

Definition 2.3. Let (M,{w}) be a complex contact manifold
with the complex structure J and Hermitian metric g. We call
(M,u,v,U,V,g) a complex contact metric manifold if

1) there is a local (1,1) tensor G such that (u,v,U,V,G,H = GJ, g)
is a complex almost contact metric structure on M and

2) g(X,GY) = du(X,Y) and g(X,HY) = dv(X,Y) for all X,Y in
H.

In his thesis [7], Foreman shows the existence of complex contact
metric structures on complex contact manifolds.

We will assume that the subbundle V is integrable. Since every
known example of a complex contact manifold has an integrable vertical
subbundle, this is a reasonable assumption for our work. From now on,
we will work with a complex contact metric manifold M with structure
tensors (u,v,U,V,G, H,g) and complex structure .J.

Define 2-forms G and H on M by

G(X.Y)=g(X,GY),H(X,Y) = g(X,HY).

Then for horizontal vector fields X,Y,

GX,)Y)=du(X,Y), H(X)Y)=dv(X,)Y).
In general, we have

(1) G=du—oAnv,
(2) H=dv+oAu,

where 0(X) = g(VxU,V) (ct. [7]).

In real contact geometry, there is a symmetric operator h = (1/2)L¢¢,
where ¢ is the characteristic vector field and ¢ is the structure tensor
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of the real contact metric structure. Here £ denotes the Lie differenti-
ation. In particular, on a real contact metric manifold, we have

Vx§=—¢X — ¢ohX,
cf. [3].

Similarly, we define symmetric operators hy,hy : TM — H as

follows: )
hy = 5 sym (LuG)op

1
hy = gsym(l:VH) op

where ‘sym’ denotes the symmetrization and p : TM — H is the
projection map. Then we have

huG = —Ghy,  hyH = —Hhy,
ho(U) = hy (V) = hy (U) = hy (V) = 0,

and
(3) VxU=-GX — GhyX + o(X)V,
(4) VxV=-HX — Hhy X — o(X)U,

where V is the Levi-Civita connection of g (cf. [7]). Hence,
VU =oa(U)V, VyU =o(V)V,

(5) VyV = —a(U), VvV = —a(V)U.

It can easily be seen by a direct computation that
(VxO) (Y, Z) + (VyG)(Z, X)) + (V2G)(X,Y) = 3dG(X,Y, Z),
and

(VxH)(Y, 2) + (Vy H)(Z,X) + (V2H)(X,Y) = 3dH (X, Y, Z).



1348 B. KORKMAZ

and

(VxH)Y,Z)+ (VyH)(Z,X)+ (VzH)(X,Y)
(7) = w(X)UY, Z) + u(Y)QZ, X) + u(2)Q(X,Y)
- O'(X)g(Y, GZ) - O'(Y)g(Z, GX) - U(Z)Q(Xa GY),

where Q = do.
Lemma 2.4. VyG =0(U)H and VyH = —o(V)G.

Proof. By equations (6) and (3) we get
(8) (VuG)(X,Y)=v(X)QU,Y) +v(Y)QUX,U) +o(U)g(X, HY).
If X and Y are horizontal, then
(Vo) (X,Y) =o(U)g(X,HY).

On the other hand, by (5)

(Vu@)(U,Y) = —g(VyU,GY) =0,
and

(Vu@)(V,Y) = —g(VuV,GY) = 0.

So (VyG@)Y =o(U)HY for any Y.

Similarly, using (7) and (4), we get
9) (VvH)(X,Y) = u(X)QY, V) +u(Y)V, X) = o(V)g(X,GY).
Again, by (5), (VvH)(U,Y) = (VyH)(V,Y) = 0. So (VyH)Y =
—o(V)GY. O

Now, if we use Lemma 2.4 in equations (8) and (9), we get

(10) AU, X) =v(X)QU, V),
and

(11) QV, X) = —u(X)QU, V).
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3. Normality on complex contact metric manifolds. Let M
be a complex contact metric manifold. Ishihara and Konishi [9] defined
(1,2) tensors S and T on a complex almost contact manifold as follows:

S(X,Y) = [G,G(X,Y) + 20(Y)HX — 20(X)HY + 2g(X,GY)U
—29(X,HY)V —o(GX)HY +0o(GY)HX + o(X)GHY
—o(Y)GHX

T(X,Y) = [H, H|(X,Y) + 2u(Y)GX — 2u(X)GY + 2¢(X, HY)V
—29(X,GY)U + o(HX)GY — o(HY)GX — o(X)HGY

o(YVHGX
where

[G,G](X,Y) = (VaxG)Y — (VayG)X — G(VxG)Y + G(VyG)X

is the Nijenhuis torsion of G. In [9], they introduced a notion of
normality which is the vanishing of the two tensors S and 7. One
of their results is that if M is normal, then it is Kahler. This result
suggests that Ishihara-Konishi’s notion of normality is too strong. Here
we will give a somewhat weaker definition.

Definition 3.1. A complex contact metric manifold M is normal if
1) S(X,Y)=T(X,Y) =0 for all X,Y in H, and
2) S(U,X)=T(V,X) =0 for all X.

In real contact geometry, normality implies the vanishing of the oper-
ator h. The following proposition is the analogous result for complex
contact geometry.

Proposition 3.2. If M is normal, then hy = hy = 0.

Proof. Since M is normal,
S(GX,U)=0

By ( ), G(VvU) = ( U ) = G(VUU) = 0 and ’U,(VUGX) =
v(VyGX) = 0. Also, by (3) u(VexU) =0, and v(VexU) = 0(GX).
Hence, by Lemma 2.4, S(GX,U) = 2hy X. Therefore, hy = 0.
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Similarly, using T(HX,V) = 0 and Lemma 2.4, we get hy = 0. i

By the above proposition, on a normal contact metric manifold, we
have

(12) VxU=-GX +o(X)V
and
(13) VxV=-HX —o(X)U.

In the next proposition, we give necessary and sufficient conditions,
in terms of VG and VH, for M to be normal. Again, compare with
the condition for a real contact metric manifold to be normal.

Proposition 3.3. Let M be a complex contact metric manifold. M
is normal if and only if

(D)
J((VxG)Y, Z) = o(X)g(HY, 2)+v(X)0(GZ, GY) ~2(X)g(HGY, 2)
(Y)g(Xv Z) - U(Y)Q(JXa Z) + U(Z)g(Xa Y)
—v(2)g(X,JY)

—Uu

and
ey
g(VxH)Y,Z) =—0(X)g(GY, Z)+u(X)QUHZ HY)—2u(X)g(HGY, Z)
+u(V)g(JX,Z) —v(Y)g(X,Z) +u(Z)g(X,JY)
+v(2)g(X,Y).

Proof. Suppose that M is normal. For arbitrary vector fields X and
Y, we can write

X =X"+u(X)U +v(X)V, Y=Y +ulY)U +v(Y)V
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where X’ and Y’ are in H. Then GX = GX’, GY = GY’ and

S(X,Y) = S(X,Y') + w(Y)HX — 4(X)HY — u(X)G(VyG)Y
—(X)G(Vy Q)Y +u(Y)G(Ve@)X +v(Y)G(VyG) X
+u(X)o(U)GHY +v(X)o(V)GHY
—u(Y)o(U)GHX —v(Y)o(V)GHX.

o
From (6) and (11) we get

(VvG)(X,Y) =2¢(X,GHY) 4 2u A v(X,Y)QU,V)

(14) —Q(X,Y) +0(V)g(X,HY).

Now, using equation (14), Lemma 2.4 and the fact that S(X’,Y’) =0
for any vector field Z, we have

(15) g(S(X,Y),Z)=20Y)g(HX,Z) — 2v(X)g(HY, Z)
—v(X)QGZ,Y)+v(Y)UGZ, X).

If we take Y =V and GX instead of X in (15), we get

(16) 9(S(GX,V),Z2) =29(HGX,Z) + QGZ,GX).

On the other hand, by (3) and (4), u(VyGX) = v(VyGX) = 0. When
we substitute these in S(GX,V), we get

S(GX,V)=4HGX + (VvG)X —o(V)HX.
Hence,
g(S(GX,V),Z) =29(HGX,Z) —2u ANv(X, Z2)QU, V) + QX, Z2).
Combining with (16), we get

(17) QGZ,GX) =X, Z) — 2u Av(X, Z)QU, V).

Applying the above process to T'(X,Y"), we get

9(T(X,Y), Z2) = 2u(Y)g(GX, Z) — 2u(X)g(GY, Z)

(18) +u(X)QHZ,Y) —u(Y)QHZ, X)
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and

(19) QHZ HX) =X, Z) — 2u Av(X, Z)QU, V).

Combining (17) with (19) gives

(20) QGZ,GX) = QHZ, HX).

Equation (20) implies
QG*Z,G*X) = QHGZ, HGX).

If we compute the lefthand side and the righthand side separately using
(10) and (11), we get

QUG*Z,G*X) = QZ, X) + (uw(X)v(Z) — v(X)u(2)QU, V),
and
QHGZ,HGX)=UJZ,JX) + (w(X)v(Z) — uw(Z)v(X)QU, V).
Therefore,

(21) (2, X) = Q(JZ,IX).

Replacing X with GX in (17), we get

QUGX,Z)=QGZ,G*X)
= —QGZ,X)+u(X)QGZ,U) +v(X)QGZ,V).

Equations (10) and (11) imply Q(GZ,U) = Q(GZ,V) = 0. Hence,

(22) QUGX,Z)=Q(X,GZ).
Similarly, replacing X with HX in (19), we get

(23) QHX,Z) = Q(X,HZ).
Finally, replacing X with JX in (21), we get

(24) QJX,Z) =X, JZ).



COMPLEX CONTACT MANIFOLDS 1353

We now want to compute S(X,Y) in a different way. First, we can
rewrite G(VxG)Y as

G(VxG)Y = —u(Y)GX —v(Y)HX — (VxG)GY

(25) +9(X,GY)U + g(X, HY)V.

Now let us substitute (25) in S(X,Y) to get

S(X, Y) = (VG)(G)Y - (VGyG)X + (VXG)GY — (VyG)GX
4 u(Y)GX+30(Y)HX —u(X)GY—30(X)HY —4g(X, HY )V
— O’(GX)HY-F O'(GY)HX + O'(X)GHY — O’(Y)GHX

Taking the inner product with Z and using equations (6), (22) and (25)
gives

9(8(X,Y),2) =29((V2zG)Y,GX) + 20(Z)QX,GY) —v(Y)QUX,GZ)
+o(X)QUY,GZ2)+20(2)g(Y, HGX)+2u(Y)g(GX, Z)
+4v(Y)g(HX,Z)—2v(X)g(HY, Z)—4v(Z)g9(X, HY).

If we combine the above equation with equation (15), we get

29((VzG)Y,GX) 4+ 20(2)QX,GY) + 20(Z)g(Y, HGX)
+2u(Y)9(GX,Z)+20(Y)g(HX,Z) — 4v(Z)g(X,HY ) = 0.

In order to get the equation we want, we replace X with GX which
gives

29((VzG)X,Y) 4+ 20(Z2)QUGX,GY) 4+ 20(Z)g(X,HY)
—2u(Y)g(X,Z) —2v(Y)g(X,JZ) — 20(Y)u(Z)v(X)
+4v(2)g(X,GHY) + 2u(X)g9(Z,Y) — 20(X)g(Z,JY)
+ 2v(X)v(Y)u(Z) = 0.

Now equation (I) follows.

Applying the same process to T(X,Y"), we can easily see that equation
(IT) also holds.
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Conversely, suppose that formulas (I) and (II) hold. To show that M
is normal, first let us check S(X,U). Since formula (I) holds,

9(S(X,U),Y) =g((VuG)GY, X)+9((VexG)U,Y)+g((VxG)U,GY)
—o(U)g(GHX,Y)
=o(U)g(HGY,X) — g(GX,Y) — g(X,GY)
—o(U)g(GHX,Y)
=0.

Therefore, S(X,U) = 0. Similarly, T(X,V) = 0.

Now let X and Y be two vector fields in H. Making use of the fact
that u(X) = v(X) = u(Y) = v(Y) = 0 and applying formula (I), we
get

9(S(X,Y), 2) = g(Vax @)Y, Z) + 9(Vay G) 2, X) + g(Vx G)Y, GZ)
+9(VyG)GZ, X)+2u(Z2)g9(X,GY)—2v(Z)g(X,HY)
—o(GX)g(HY,Z)+0(GY)g(HX,Z)+0(X)g(GHY, Z)
—o(Y)g(GHX, Z)
=0(GX)g(HY,Z)+u(Z)g(GX,Y) —v(Z)g(GX,JY)
+0(GY)g(HZ,X) —u(2)g9(GY, X) —v(2)g(JGY, X)
+0(X)g(HY,GZ)+0(Y)g(HGZ, X)+2u(Z)g(X,GY)
—20(2)9(X,HY)—o(GX)g(HY, Z)+0(GY)g(HX, Z)
+ o(X)g(GHY, Z) — o(Y)g(GHX, Z)
= 0.

Therefore, S(X,Y) = 0.

In a similar way, we can also show that T(X,Y) = 0. Therefore, M
is normal. o

At the moment, normality appears to be a local notion since the
tensors S and T were defined locally. Our next step is to show that
normality is, in fact, a global notion. Towards this end, let us define a
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third tensor W as follows:

W(X,Y) =[G, H(X,Y) + = 5 (0(GX)GY — o(HX)HY
— o(QY)GX + J(HY)HX)
—w(Y)HX — V(Y)GX +u(X)HY +v(X)GY
+29(X, GY)V + 2¢(X, HY)U
where [G, H|(X,Y) = 1/2(GX,HY] + [HX,GY] — G[HX,Y] —
H[GX,Y] - G|X, HY]| — H|X,GY)).
If M is normal, in other words if

S(U,X)=T(V,X)=0 forall X, and
S(X,)Y)=T(X,Y)=0 forall X and Y in H,

then equations (I) and (IT) hold. Then, using (I) and (II), we get

9([G, H|(X,Y), Z)

= L (o(HX)g(HY. 2) - o(GX)g(GY. 2)

—4u(Z)g(X HY) —4v(Z2)g(X,GY) + o(GY)g(GX, Z)
(HY)g(HX 2) + w(X)UGZ,Y) — o(X)QHZ,Y)
+o(V)UHZ, X) —u(Y)UGZ, X)).

Hence, for X,Y in H,

(GY)GX —a(HY)HX + o(GX)GY — o(HX)HY
(GY)GX +o(HY)HX) +29(X,GY)V +29(X, HY)U

We now check the normality condition on an overlap O N O’. On the
open set @, we have tensors u, v, G, H, S, T and W. On O’, we have
o', v, G H', S, T'. Since M is a contact metric manifold, there are
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functions @ and b on O N O’ such that
u = au — bv

v =bu+ av

G =aG —bH
H =bG +aH
a?+ v =1.

Lemma 3.4. S’ = a2S + b*T — 2abW and T' = b%S + a*T + 2abW.

Proof. First of all U’ = aU — bV and V’ = bU + aV. Using this fact
we see that
o'(X)=0(X)+bX(a) —aX(b).

Note that aX(a) + bX(b) = 0 for any X since a® +b? = 1. Also
G'H’' = GH. Now if we compute S’(X,Y") using what we have so far
and grouping terms under a2, b*> and ab, we get

S'(X,Y) =a*S(X,Y)+b*T(X,Y) — 2abW (X,Y).
Similarly,

T'(X,Y) =0*S(X,Y) + a*T(X,Y) + 2aW(X,Y). O

Now assume that S(X,Y) =T(X,Y) = 0 for all horizontal X and ¥
and S(U,X) = T(V,X) = 0 for all X. Then, as we checked above,
W(X,Y) = 0 for all horizontal X and Y. Therefore, S'(X,Y) =
T'(X,Y) =0 by the above lemma.

For an arbitrary vector field X, apply the above lemma to S"(U’, X)
to get

S'(U', X) = a®*b[G(VyG)X +o(V)HGX + G(VyH)X + H(VyG)X]
—ab?[H(VyH)X +0(U)HGX +G(Vy H)X +H(VvG)X].
Now, taking the inner product with ¥ and using equations (I) and (II)

gives
g(S'(U", X),Y) = 0.
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Therefore, S'(U', X) = 0.
Similarly, we can show that 7"(V', X) = 0.

Therefore, normality conditions agree on the overlaps. So the notion
of normality is global.

We now give an expression for VxJ. Recall that on a complex contact
manifold we have H = GJ = —JG, V = —JU, U = JV. Also, using
Proposition 3.2, we have

(VxJ)U=HX +0(X)U—-J(-GX +o(X)V)=0
and

(VxJ)V=-GX+oX)V-J-HX —o(X)U)=0.
Then we can write
(VxH)GY = (VxJ)Y — J(VxG)GY.

Taking the inner product with Z and applying equations (I) and (II)
gives

(I11)

9(Vx )Y, Z) = w(X)(UZ,GY) — 29(HY, Z))
+v(X)(QUZ,HY) + 2¢9(GY, Z)).

4. Some basic facts on normal complex contact metric
manifolds. In this section we will establish some basic formulas for
a normal complex contact metric manifold M with structure tensors
u,v,U,V,G, H,J, g. First we will consider the curvature of the vertical
plane, g(R(U,V)V,U). Using Proposition 3.2,

R(U, V)V = Vy(=o(V)U) = Vy(—o(U)U) + o([U, VU
=-U(ec(V)U —-c(V)o(U)V +V(c(U))U
+o(U)o(V)V +o([U,V]))U
— _20(U, V)U.
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Therefore,

(26) g(R(U, VIV, U) = —2Q(U, V).

Now let X and Y be two horizontal vector fields. Then, using
Proposition 3.2,

R(X,Y)U = —(Vx@)Y+(VyG) X +2Q(X,Y)V—0o(Y)HX +0(X)HY.
By equation (I) we know that

(VxG)Y =o(X)HY + g(X,Y)U + g(JX,Y)V.
If we substitute this in R(X,Y)U we get

(27) R(X,Y)U =2(g9(X, JY) + Q(X,Y))V.

Similarly, using Proposition 3.2, we have
(28) R(X,Y)V = -2(9(X,JY) + Q(X,Y))U.
Now we can compute R(X, U)U for horizontal X, using Proposition 3.2:
R(X,U)U =2Q(X,U)V —o(U)HX + (VyG)X + X.

Since X is horizontal, Q(X,U) = 0 by (10), and (VyG)X = o(U)HX
by Lemma 2.4. Therefore

(29) R(X,U)U = X.
Similarly,
(30) R(X, V)V =X.

Again, for a horizontal vector field X we can compute R(X,U)V and
R(X,V)U using Proposition 3.2 to get

(31) R(X,U)V = o(U)GX + (Vo H)X — JX
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and
(32) RX, VU =—-c(V)HX + (VvG)X + JX.
Now define a new tensor Pg by
Po(X,Y,Z,W) = g(R(X,Y)GZ,W) + g(R(X,Y)Z,GW)
and similarly define tensors Py and Pj.

Our next step is to get an expression for Pg free of the curvature
tensor R. By a direct computation, it is easy to see that we can write

Pe(X,Y,Z,W) = —(VxVyG - VyVxG - Vixy1G)(Z,WV).
For horizontal vector fields X,Y, Z and W, if we compute the right-
hand side of the above equation using (I), we get:

Po(X,)Y, Z, W) =29(HZ W)QUX,Y) —29(HX,Y)QZ, W)
+49(HX, Y)g(JZ, W)+ g(GX, Z)g(Y, W)
+9(HX, Z)g(JY, W) — g(GX,W)g(Y, Z)
—g(HX,W)g(JY,Z) — g(GY, Z)g(X, W)
—g(HY, Z)g(JX, W) + g(GY, W)g(X, Z)
+g9(HY,W)g(JX, Z).

In the same way, we can show that

Py(X,)Y,ZW)==29(GZ,W)QX,Y) 4+ 29(GX,Y)Q(Z, W)
—49(GX,Y)g(JZ, W) + g(HX, Z)g(Y, W)
— 9(GX, Z)g(JY, W) — g(HX, W)g(Y, Z)
+ 9(GX, W)g(JY, Z) — g(HY, Z)g(X, W)
+9(GY, 2)g(JX, W)+ g(HY,W)g(X, Z)
—g9(GY,W)g(JX, Z).

Since JX = HGX = —GHX for horizontal X,

(35)

P;(X,Y,Z,W)=g(R(X,Y)HGZ, W) — g(R(X,Y)Z,GHW)
=Py(X,Y,GZ,W) — Po(X,Y,Z,HW)
=29(GX, Y)QUGZ,W)+29(HX,Y)QUHZ, W)
+49(GX,Y)g(HZ, W) —49(HX,Y)g(GZ,W).
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Lemma 4.1. For horizontal vector fields X,Y,Z and W, the curva-
ture tensor satisfies the following equations:

(i)
g(R(GX,GY)GZ,GW)
= g(R(X,Y)Z, W) — 29(JZ, W)QUX,Y) + 29(HX,Y)QUGCZ, W)
+29(JX,Y)UZ,W) — 29(HZ, W)QUGX,Y),

(i)
g(R(HX,HY)HZ, HW)
= g(R(X,Y)Z,W) = 29(JZ,W)QX,Y) — 29(GX,Y)QUHZ, W)
+29(JX, Y)QUZ, W) + 29(GZ, W)QUHX,Y).

Proof. By the definition of Pg, the lefthand side of (i) is equal to
9(R(X,Y)Z,W) + Po(Z,W,X,GY) + Pe(GX,GY, Z,GW).
Equation (33) gives

Pa(Z,W,X,GY) + Pa(GX,GY, Z,GW)
= 2(JX,Y)QUZ, W) — 2g(HZ, W)QGX,Y) — 29(JZ,W)Q(X,Y)
+29(HX,Y)QUGZ,W).

Therefore equation (i) holds.

Similarly, using the definition of Py and equation (34) we obtain (ii).
]

Lemma 4.2. The following equations hold for horizontal vector fields
XY, Z and W:

(i)
g(R(X,GX)Y,GY)
=g(R(X,Y)X,Y) + g(R(X,GY)X,GY) + 49(JX,Y)QX,Y)
—4g(HX,Y)QUGX,Y) —29(GX,Y)? —4g(HX,Y)?
—29(X,Y)? +29(X, X)g(Y,Y) — 49(JX,Y)?
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(ii)
g(R(X,HX)Y, HY)
= g(R(X,Y)X,Y) +g(R(X,HY)X, HY) + 49(JX,Y)Q(X,Y)
+49(GX, Y)QUHX,Y) - 29(HX,Y)? — 49(GX,Y)?
= 29(X,Y)? +29(X, X)g(Y,Y) — 4g(JX,Y)*.

Proof. By Bianchi’s first identity,
g(R(X,GX)Y,GY) = —g(R(GX,Y)X,GY)— g(R(Y, X)GX,GY).
The definition of Py implies
—g(R(GX,Y)X,GY) = g(R(X,GY)X,GY)— Ps(X,GY, X,Y)
and
—g9(R(Y,X)GX,GY) = g(R(X,Y)X,Y)+ Po(X,Y, X, GY).
Using equation (33), we get

Pe(X,Y, X,GY) — Ps(X,GY, X,Y)
= 49(JX,V)QUX,Y) — 4g(HX,V)QGX,Y) — 4g(HX,Y)?

which gives equation (i) and equation (ii) is obtained in the same way.
o

Lemma 4.3. If X is a horizontal vector field, then

g(R(X,GX)GX, X)+g(R(X, HX)HX, X)+g(R(X, JX)JX, X)

Proof. Recall that GX = —HJX. Then, by the definition of Py,

g(R(X,GX)GX,X) = g(R(X,GX)JX,GJX)—Py(X,GX,JX, X).
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By Lemma 4.2,

g(R(X,GX)JX,GJX)
= —g(R(X,JX)JX,X) - g(R(X,HX)HX, X)
—4g(X, X)Q(JX, X) — 29(X, X)2.

We can compute Py (X,GX, JX, X) using equation (34) to get
Py(X,GX,JX,X) =29(X, X)QJX, X) + 49(X, X)2.

We get the lemma by joining the above equations. a

We can use the definition of Pg and equation (33) to see that the
following formulas hold for a horizontal vector field X:

g(R(X,HX)JX,GX) = —g(R(X, HX)HX, X)

(36) —29(X, X)QJX,X) —49(X, X)?
. g(R(X,JX)HX,GX) = g(R(X,JX)JX, X)

(37) T 29(X, X)Q(IX, X) — 29(X, X)2,
(38) g(R(GX,HX)HX,GX) = g(R(X,JX)JX, X),

(39) g(R(GX,JX)JX,GX) = g(R(X,HX)HX, X).

Similarly, using the definition of P; and equation (35) we get the
following formulas for horizontal vector fields X, Y":

(40) g(R(JX,JY)JY,JX) = g(R(X,Y)Y, X),

(41) g(R(X,Y)JX,JY)
= g(R(X,Y)Y, X) +29(X,GY)QUX, HY)
—29(X, HY)QX,GY)+49(X,GY)*+49(X, HY)?,

(42) g(R(Y,JX)JX,Y) = g(R(X,JY)JY, X),
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(43) g(R(X,JY)JX,Y)
= g(R(X,JY)JY, X) — 29(X, HY)Q(X,GY)
+2¢(X, GY)QUX, HY ) +49(X, HY)? +4g(X,GY)?.

By Bianchi’s first identity,
g(R(X, JX)JY,Y) = —g(R(JX, JY)X,Y)—g(R(JY, X)JX,Y).

Substituting formulas (41) and (43) in the above equation, we get
(44)
9(R(X, JX)JY,Y)
=g(R(X, Y)Y, X)+ g(R(X,JY)JY, X) + 4(9(X,GY)Q(X, HY)
— g9(X, HY)Q(X,GY) + 29(X,GY)* + 29(X, HY)?).

5. GH-sectional curvature. Let M be a normal complex con-
tact metric manifold with structure tensors w,v,U,V,G, H, J,g. For
a horizontal vector field X, the plane section generated by X and
Y = aGX + bHX, a®> +b%> = 1, is called a GH-section or an H-
holomorphic section. We define the GH-sectional curvature GH, p(X)
as the curvature of a G H-section:

GHap(X) = K(X,aGX +bHX)
where K (X,Y) is the curvature of the plane section generated by X
and Y.

Lemma 5.1. GH, (X)) is independent of the choice of the numbers a
and b if and only if K(X,GX)=K(X,HX) and g(R(X,GX)HX, X )=
0.

Proof. We can write the G H-sectional curvature as

gHa,b(X)
2ab

— 2 2 -
= a®K(X,GX) + 0K (X, HX) + XX g(R(X,GX)HX, X).

If GH,p(X) is independent of the choice of a and b, then taking
a =1, b = 0 gives GHup(X) = K(X,GX) and taking a = 0,
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b = 1 gives GHay(X) = K(X,HX). So K(X,GX) = K(X,HX)
and g(R(X,GX)HX,X)=0.

Conversely, if K(X,GX)=K(X,HX)=K and g(R(X,GX)HX, X)
= 0, then GH,(X) = K and hence GH, (X)) is independent of the
choice of a and b. o

From now on, we will assume that GH,,(X) is independent of the
choice of @ and b and denote it by GH(X).

As the next step, we want to write holomorphic curvature in terms
of G H-sectional curvature. In order to do this, we are going to use the
formulas from Section 4.

Proposition 5.2. For a horizontal vector field X,
1
KX, JX)= 3 (GH(X +GX)+GH(X —GX)) + 3.

Proof. Since GH(X) is independent of the choice of a and b, we can
choose a =0, b =1. Then gH(X) = K(X,HX). So GH(X + GX) =
K(X+GX,HX +JX)and GH(X —GX)=K(X -GX,HX — JX).
By direct computation we get

g(RIX+GX,HX + JX)HX + JX, X + GX)
=g(R(X,HX)HX,X)+ g(R(X,JX)JX, X)
+9(R(GX,HX)HX,GX)+ g(R(GX,JX)JX,GX)
+2[g(R(X,HX)HX,GX) + g(R(X,HX)JX, X)
+9(R(X,HX)JX,GX)+ g(R(X,JX)HX,GX)
+9(R(X,JX)JX,GX)+g(R(GX,HX)JX,GX)]
and
gR(X-GX,HX —JX)HX — JX, X — GX)
=g(R(X,HX)HX, X))+ g(R(X,JX)JX, X)
+9(R(GX,HX)HX,GX)+ g(R(GX,JX)JX,GX)
+2[—g(R(X,HX)HX,GX) — g(R(X,HX)J X, X)
+9(R(X,HX)JX,GX)+ g(R(X,JX)HX,GX)
—g(R(X,JX)JX,GX) - g(R(GX,HX)JX,GX)].
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If we add the two equations above, we get

GH(X +GX)+ GH(X — GX)
1

~ 29(X, X)2

+9(R(GX,HX)HX,GX) + g(R(GX,JX)JX,GX)

+2[g(R(X,HX)JX,GX) + g(R(X, JX)HX,GX)]].

GRX,HX)HX, X))+ g(R(X,JX)JX, X)

Now, using formulas (36)—(39), we have
GH(X+GX)+GH(X —GX) =2K(X,JX) —
Therefore

K(X,JX)= % (GH(X + GX)+ GH(X —GX))+3. O

We now want to work with the assumption that the G H-sectional
curvature is independent of the choice of the G H-section at each point.
Let GH(X) = ¢ where ¢ does not depend on X. Then by the previous
proposition

K(X,JX)=c+3.

Next we give an expression for the sectional curvature in terms of the
holomorphic curvature.

Lemma 5.3. For horizontal vector fields X and Y, we have

g(R(X,Y)Y,X) = [SQ(X +JY)+3Q(X —JY)-Q(X +Y)
QX —Y) —4Q(X) —4Q(Y)]
+ g [9(X, HY)QX,GY) — g(X,GY)Q(X,HY)
—29(X,GY)* —29(X, HY)?],

where Q(X) = g(R(X,JX)JX, X).
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Proof. By direct computation
QX +JY)=gR(X,JX)JX,X)+ g(R(Y,JY)JY,Y)
+g(R(JX,JY)JY,JX)+ g(R(X,Y)Y, X)
+2[g(R(X,JX)JX,JY) — g(R(X,JX)Y, X)
—g(R(X,JX)Y,JY) —g(R(X,Y)JX,JY)
+g(R(X,Y)Y,JY) = g(R(JY, JX)Y, JY)]
and
QX-JY)=g(R(X,JX)JX,X)+ g(R(Y,JY)JY,Y)
+g(R(JX,JY)JY,JX)+ g(R(X,Y)Y, X)
+2[—g(R(X,JX)JX,JY)+ g(R(X,JX)Y, X)
—g(R(X,JX)Y,JY) — g(R(X,Y)JX,JY)
—g(R(X, Y)Y, JY) + g(R(JY,JX)Y, JY)].
By combining the two equations above, we get
QUX+JY)+Q(X —JY)
=2[g(R(X,JX)JX,X)+ g(R(Y,JY)JY,Y)
+g9(R(JX,JY)JY,JX) + g(R(X,Y)Y, X)]
—4[g(R(X,JX)Y,JY) + g(R(X,Y)J X, JY)].

Using the formulas (40), (41) and (44), we have

QX +JY)+Q(X-JY)
=2[g(R(X,JX)JX,X)+ g(R(Y,JY)JY,Y)]
+A[3g(R(X, Y)Y, X) + g(R(X, JY)JY, X)]
+24[g(X, GY)QUX, HY) — (X, HY)Q(X, GY)
+29(X,GY)? +29(X, HY)?].
Doing the same calculations for Q(X +Y) + Q(X —Y) and using the
formulas (42), (43) and (44), we get
QIX+Y)+Q(X-Y)
=2[g(R(X, JX)JX,X)+ g(R(Y,JY)JY,Y)]
+4[8g(R(X,JY)JY, X) + g(R(X, Y)Y, X)]
+ 24[g(X,GY)QX,HY) — g(X, HY )Q(X,GY)
+29(X, GY)? + 29(X, HY )?.
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Finally, combining what we have so far,

3Q(X+HJY)+3Q(X—JY) - Q(X+Y) - Q(X-Y) —4Q(X) —4Q(Y)
= 329(R(X, Y)Y, X) + 48[g(X,GY)Q(X, HY)
—g(X, HY)Q(X,GY) +29(X,GY)? + 2¢(X, HY)?],

giving us the desired result. o

Since K(X,JX) = ¢+ 3 does not depend on X, from the above
lemma we get

(45)

G(R(X, Y)Y, X) = <53

[9(X, X)g(Y,Y) — g(X,Y)? + 39(X, JY)?]

+

N o

[9(X, HY)QX,GY) — g(X,GY)QX,HY)
- 29(X7 GY)2 - 29(Xa HY)2]7

for horizontal X and Y.

Now let X and Y be two arbitrary vector fields. We can write
X =Z+u(X)U +v(X)V, Y=W+u¥)U +v)V

where Z and W are in ‘H. Then, using the formulas (26)—(32) and (45),
we have

9(R(X,Y)Y, X)
=g(R(Z, W)W, Z) = 2(u(X)u(Y) + v(X)v(Y))g(Z, W)
+ (u(Y)? +0(Y)*)g(Z, Z) + (w(X)? +0(X)*)g(W, W)
—12unv(X,Y)g(Z,JW) —12u ANv(X,Y)QZ, W)
(46) —8(u Av(X,Y))*QU, V)
=g(R(Z, W)W, Z) = 2(u(X)u(Y) + v(X)v(Y))g(X,Y)
+ (u(Y)? +0(Y)*)g(X, X) + (u(X)* +v(X)?)g(Y,Y)
—12unv(X,Y)g(X,JY) - 12u A v(X,Y)QX,Y)
+16(u A v(X,Y)2(1 4+ QU,V))
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= L (Xu(Y) + o(X)o(V)lg(X,Y)

2
c—1

1 (@) +0(¥))g(X, X)+(w(X)* +u(X)*)g(V,Y)]

—3(c+Nurv(X,Y)g(X,JY)
+ 2 10X, X)g (v, ) + 89(X, IY)? — g(X, YV

+ g [9(X, HY)QX,GY)— g(X,GY)Q(X,HY)

—29(X,GY)? = 29(X, HY)?] + 4(c+7)(u Av(X,Y))?
(47) —12u A (X, Y)QUX,Y) + 16(u A v(X,Y))*QU, V).

In order to simplify the above equation somewhat, we need to examine
the term Q(X,Y"). Since GH(X) = ¢+ 3 does not depend on X,

g(R(X,GX)GX,X)=g(R(X,HX)HX, X) = cg(X, X)?

and
g(R(X,JX)JX,X) = (c+3)g(X, X)2

Substituting these in Lemma 4.3, we get

(48) Q(JX, X) = 513

9(X, X)

for horizontal X.

In order to compute Q(JX, X) for an arbitrary vector field X, we can
apply formula (48) to the horizontal component of X to get

QX X) = -3 00x, x) + 53 (u(x)2 4 w(X)2)

+ (w(X)? +o(X)HQU, V).

(49)

Replacing X with JX +Y in (49), we have

(50)  Q(X,Y)= ? GIX,Y) +uAvo(X,Y)(c+3420(U,V)).
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Now if we substitute (50) in (47) we get a somewhat simpler expression
for the sectional curvature as

g(R(X, Y)Y, X)
L (X u(Y) + o(X)e(V)lg(X, ¥)

1

1 (@) +0(¥))g(X, X)+(u(X)* +u(X)*)g(V,Y)]

(51) +3(c—Dunv(X,Y)g(X,JY)
c+3

4

+35 [9(X,GY)? 4 g(X, HY )]
—8(uAv(X,Y)*(c+1+QU, V).

+ [9(X, X)g(V.Y) +3g(X,JY)* - g(X,Y)?]

Now to get an expression for the curvature tensor, we will use the
following identity of [2]:

82
69(R(X,Y)Z, W) = 5o (B(X + sW,Y + t2)

= B(X +sZ,Y +tW))[s=0,t=0,

where B(X,Y) = g(R(X,Y)Y, X).

If we compute the righthand side of the above identity using (51), we
get the following expression for the curvature tensor:

R, Y)Z="22 gV, 2)X— g(X, 2)Y + 9(Z,7Y) IX

+9(X,JZ)JY +29(X,JY)JZ]

+%[(U(X)U(Z)+U(X)U(Z))Y—(U(Y)U(Z)+U(Y)U(Z))X
+AuNv( X, Y)IZ +2unNv(X,Z2)TY +2uAv(Z,Y)JX
+29(X,GY)GZ + ¢(X,GZ)GY + g(Z,GY)GX

v 29(X,HY)HZ + ¢(X, HZ)HY + g(Z, HY)HX

+ u(Y)g(X, 2) —u(X)g(Y, Z) + v(X)g(Z, JY)
+o(Y)9(X,JZ) + 20(Z)g(X, JY)]U
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+ (Y)g(X, Z) —v(X)g(Y, Z) — u(X)g(Z, JY)

—u(Y)G(X,JZ) — 2u(Z)g(X, JY)]V]

- g (c+ 14 QU V)[W(X)uAvo(Z,Y) + oY )u A v(X, Z)
+20(2)u Av(X,Y)) U= (u(X)u Av(Z,Y)+u(Y)uAv(X, Z)

(52) +2u(Z)u Ao(X,Y)V].

Now we are ready to prove the following proposition.

Proposition 5.4. Let M be a normal complex contact metric
manifold with complex dimension greater than or equal to 5. If the
G H -sectional curvature is independent of the choice of the GH -section
at each point, then it is constant on M.

Proof. Suppose that the complex dimension of M is 2n + 1. If the
G H-sectional curvature is independent of the choice of the G H-section
at each point, then the curvature tensor has the form (52). Let us
choose a local orthonormal basis of the form

(X,,GX; HX;,JX;,U,V |1<i<n}.

Then the Ricci tensor has the form

p(X,)Y) =) [g(R(X;, X)Y,X;) + g(R(GX;, X)Y,GX;)

-

Il
—

+9(R(HX;, X)Y, HX;) + g(R(JX;, X)Y, JX;)]
+9(R(U, X)Y,U) + g(R(V, X)Y, V)

=((n+2)c+3n+2)9(X,)Y)+(-(n+2)c+n—2
=2Q(U, V) (u(X)u(Y) + v(X)v(Y)).

<

The scalar curvature 7 has the form

T 0(Xs, Xi) + p(GX;, GX;) + p(HX;, HX;)
=1

-ZFP(JXZ-, JXi)l + p(U,U) + p(V, V)
=2(n+2)(2n —1)c+4n(3n+4) — 4QU, V).
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Since Q = do, dQ? = 0. In particular, dQ(U, V, X) = 0, which implies
XQU, V) =u(X)UQUU, V) +v(X)VQU,V).
By Bianchi’s identity,

2 [Z((m D)X, X0) + (Voxp) (X, GX0) + (Vi p) (X, HX,)

+ (Vix,p) (X, JX;) + (Vup)(X,U) + (Vyp)(X, V)| = Vx7 =0.

Substituting the expressions for p(X,Y) and 7, the above equation
gives
21 =n)X(c) — (wW(X)U(c)+v(X)V(c)) =0.

If we let X = U, we get U(c) = 0, and if we let X = V| we get
V(c) = 0. Therefore, X(c) = 0 if n is different from 1. So ¢ is constant
on M when n > 1. ]

Definition 5.5. A normal complex contact metric manifold M
with constant G H-sectional curvature is called a complex contact space
form.

The following theorem is an easy consequence of Proposition 5.2 and
Lemma 5.3.

Theorem 5.6. Let M be a normal complex contact metric manifold.
Then M has constant GH -sectional curvature c if and only if, for hor-
izontal X, the holomorphic sectional curvature of the plane generated
by X and JX is c+ 3.

This theorem gives rise to a natural question: is it possible for a
normal complex contact metric manifold to have constant holomorphic
sectional curvature? We answer this question by the following propo-
sition.

Proposition 5.7. Let M be a normal complex contact metric
manifold. If M has constant holomorphic sectional curvature c, then
c=4 and M is Kdihler.
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Proof. For an arbitrary unit vector field X, let X = Z + u(X)U +
v(X)V, where Z is horizontal. If we take Y = JX, W = JZ in equation
(46), we get

g(R(X,JX)JX, X)

=g(R(Z,J2)JZ,Z) + 6(u(X)* + v(X)HQ(X, JX)
(53) — 4(u(X)*+ v(X)?) + 4(u(X)*+ v(X)*)?(1+QU, V).

Since M has constant holomorphic curvature c,
g(R(X,JX)JX,X)=g(R(UV)V,U) =,
and
9(R(Z,J2)JZ,7) = g(Z,Z)*c

Theorem 5.6 implies that GH(X) = ¢ — 3. Also, by formula (50)

QX,Y) =2 g(JX,Y) +uAv(X,Y)(c+ 22U, V)).

¢
2
= 20U, V), QU,V) = —(¢/2). Therefore,
), and hence Q(X,JX) = (¢/2). Since X is
2 — v(X)?2. Substituting these back into (53),

( U)

QX,Y) = (¢/2)9(J X,

unit, g(Z, 1—u(X)*—
we get

Since g(R(U,V)V,
g /2

(c—4)(u(X)* +v(X)?)(1 —u(X)* —v(X)?) =0.
We can choose X so that u(X) # 0, v(X) # 0 and u(X)? +v(X)? # 1.
Then we must have ¢ = 4. In this case GH(X) =1 and Q(U,V) = —2.
Since M is normal, by equation (I1I)

9g(Vx )Y, Z) =u(X)UZ,GY) +v(X)QZ,HY) — 2u(X)g(HY, Z)
+20(X)g(GY, Z)
=2u(X)g(JZ,GY)+2v(X)g(JZ,HY ) —2u(X)g(HY, Z)
+20(X)g(GY, Z)
=0.

Hence, M is Kahler. ]
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Theorem 5.8. Let M be a normal complex contact metric manifold
with constant G H -sectional curvature 1 and Q(U,V) = —2. Then M
has constant holomorphic sectional curvature 4 and it is Kdhler. If,
in addition, M 1is complete and simply connected, then M is isomet-
ric to CP? L with the Fubini-Study metric of constant holomorphic
curvature 4.

Proof. Since GH(X) = 1, g(R(X,JX)JX,X) = 4g(X, X)? for a
horizontal vector field X by Theorem 5.6. Substituting ¢ = 1 and
QU,V) = =2 in (50), we get Q(X,Y) = 2¢g(JX,Y). For an arbitrary
unit vector field X, let X = Z+u(X)U+v(X)V, where Z is horizontal.
Then g(Z,Z) =1 — u(X)? — v(X)2. Now, from (53) it follows that

g(R(X, JX)JX, X) = 4(1-u(X)? = v(X)?)? = 4(u(X)* + v(X)?)
+12(u(X)? +0(X)?) — 4(u(X)? + v(X)?)?
=4.

Hence M has constant holomorphic curvature 4, and by Proposi-
tion 5.7, M is Kahler. O

6. Examples of normal complex contact metric manifolds.
Our first example of a normal complex contact metric manifold is the
complex Heisenberg group. The complex Heisenberg group is the closed
subgroup H¢ of GL (3, C) given by

1 bz bis
0 1  bog | |bi2,b13,b23 € C
0 O 1

Blair defined the following complex contact metric structure on Hg
in [1]. See also [11]. Let 21,22, 23 be the coordinates on Hg ~ C3,
defined by z1(B) = bas, 22(B) = b1a, 23(B) = b3 for B in He. Then
the Hermitian metric (matrix)

1+|22‘2 0 —Z9
0 0 1 0
_1 —Z 0 1
I=8 | 1+ =P 0 -2
0 1 0 0
—Z2 0 1
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is a left invariant metric on He. Define a holomorphic 1-form 6 =
(dz3 — z2dz1)/2 and set § = u — iv and 4(9/0z3) = U +iV.

Also define a (1-1) tensor

0 1 0
0 -1 0 0
_ 0 z9 0
G= 0 1 0
-1 0 0 0
0 2z 1

Then (u,v,U,V,G, H=GJ,g) is a complex contact metric structure
on He. Blair also computed the covariant derivatives of G and H as

(Vx@)Y =g(X,Y)U —u(Y)X —g(X,JY)V
—o(Y)JX + 20(X)GHY

and

(VxH)Y = g(X,Y)V —o(Y)X — g(X, JY)U
+u(Y)JX — 2u(X)GHY.

In [1], the following are also listed:

g(VxU,V) =0,
ViU = —GX,
VyV = —HX.

As a consequence of the first equality, we see that o is identically zero.
Therefore, by Proposition 3.3 this structure on H¢ is normal.

The Hermitian connection of g is also given in [1]. So we can establish
the following curvature identities easily:

g(R(X,GX)GX,X) = g(R(X, HX)HX, X)
= _3g(X7 X)27

g(R(X,GX)HX,X) =0.

Therefore, Hc has constant G H-sectional curvature —3.
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Our second example is the odd-dimensional complex projective space
CP2"*! with the standard Fubini-Study metric ¢ of constant holomor-
phic curvature 4. It is established in [8] that (CP?"*1(4), g) admits a
normal complex contact metric structure via the Hopf fibering

T S4n+3 P2n+1.

—C

Since this structure has constant holomorphic curvature 4, (CP2"+1(4),
g) has constant G H-sectional curvature 1 by Theorem 5.6.

7. H-homothetic deformations. The odd-dimensional complex
projective space with the Fubini-Study metric is an example of a nor-
mal complex contact metric manifold with constant G H-sectional cur-
vature 1. To get other examples with constant G H-sectional curvature,
we need to study the H-homothetic deformations.

Let M be a normal complex contact metric manifold with structure
tensors (u,v,U,V,G, H,g). For a posfmve constant «, we define new
tensors by @ = au, © = av, U = Ula, V. = V/a, G = G, H = H,
g=agt+ala—1)(u®u+v® v). This change of structure is called an
H-homothetic deformation.

Proposition 7.1. If (u,v,U,V,G, H g) is a normal complex contact

is
metric structure on (M,J), then (4,9,U,V,G, H,§) is also a normal
complex contact metric structure on ( ,J).

Proof. Clearly, @ = aw is a complex contact structure on M. Also,
H=H, du(U,X) = du(U,X) = 0 for all X in H, w(U) = uw(U) =1
and #(U) = 0. We can easily check the first condition of Definition 2.2
by noting that

G’=-Ild+uoU+taV,
§(GX,Y) = —§(X,GY),
f](U,X) :ﬂ(X)v
GJ=GJ=-JG=—-JG,

éﬁ:GU:éGU:Q



1376 B. KORKMAZ

If ONO' # &, then there are functions a and b on O N O’ which satisfy
the second condition of Definition 2.2. Then

@ = au’ = alau — bv) = at — bo

' = av' = albu + av) = b + ab

G' =G =aG —bH = aG — bH

H' = H' =bG +aH = bG + aH

a®+b*=1.

Therefore the first condition of Definition 2.3 is satisfied.

For horizontal X and Y, du(X,Y) = adu(X,Y) = ag(X,GY) =
J(X,GY) and do(X,Y) = adv(X,Y) = ag(X,HY) = §(X,HY).
So the second condition of Definition 2.3 is also satisfied, and hence
(@,9,U,V,G, H, J) is a complex contact metric structure on (M, J).

To check for normality, first we need to see how the covariant
derivative changes. By a direct computation, we can see that

(54) VxY = VxYV+(1—a)[u(Y)GX+0(Y)HX+u(X)GY +u(X)HY].
If we take Y = U in (54), we get
VxU =VxU+ (1 —-a)GX.

Hence o

1 _ -~

1 ~ -1 .

= ~9(VxU,V) + = v(VxU)
1 —1

= —g(VxU.V) + = o(VxU)

Q@
=g(VxU,V)=0(X).
Thus, 0 = 6. Then

S(X,Y) = S(X,Y) +2(a — 1)(v(Y)HX — v(X)HY).

Similarly, we can show that

T(X,Y)=T(X,Y) +2(a — 1)(u(Y)GX — u(X)GY).
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Thus,

and

If X and Y are horizontal, then

S(X,Y)=S(X,Y) =0,

and

T(X,Y)=T(X,Y) =0.

Therefore, the deformed structure is also normal. O

Now we want to see what happens to the GH-sectional curvature
under an H-homothetic deformation. First we check how the sectional
curvature changes.

For horizontal vector fields X and Y,

R(XY)Y
=VxVyY = VyVxY = VixyY
=VxVyY—VyVxY — Vixy)V
— (1-a)(u([X,Y])GY +v([X,Y]))HY)
=VxVyY+ (1-a)(w(VyY)GX +v(VyY)HX) - VyVxY
— (1-a)(u(VxY)GY + v(VxY)HY) - Vx y|Y
— (1-a)(u([X,Y])GY +v([X,Y])HY).

Since X and Y are horizontal and M is normal, we have

uw(VxY)=g(VxY,U) = —g(VxU,Y) = g(GX,Y),
and

v(VxY) =g(VxY, V) = —g(VxVY) = g(HX,Y).



1378 B. KORKMAZ

Hence, u(VyY) = v(VyY) =0, u([X,Y]) = 29(GX,Y), v([X,Y]) =
2g(HX,Y). Therefore,

R(X,Y)Y = R(X, Y)Y +3(1—-a)(9(X,GY)GY + g(X,HY)HY)
for X,Y in H. So, for horizontal vector fields X and Y,

G(R(X,Y)Y,X) = ag(R(X,Y)Y, X) + 3a(1—a)(g(X,GY)?
+g(X, HY)?).

Assume that the original structure on M has constant G H-sectional
curvature c. Let X be a unit horizontal vector field with respect to the
new structure on M. Let Y = aGX + bHX with a2 + b2 = 1. Then
GY = —aX —bJX and HY = aJX — bX. Thus,

J(R(X,Y)Y, X)
= ag(R(X,Y)Y, X)+3a(1—a)(g(X,~aX—bJX)*+g(X,aJ X—bX)?)
= acg(X, X)? 4+ 3a(1 — a)(a’g(X, X)* + b?g(X, X)?)
1

S IX.X)

1 .
ac— (X, X)* +3a(l —a)

c 3(1-—
¢, 30-q)
(0% (0%

3
_cts g
(07

Hence the new structure has constant GH-sectional curvature (c +
3)/a— 3.

Next we want to see how the curvature of the vertical plane changes
under an H-homothetic deformation. We know that o = &. So 2 = Q.
Hence

= 20U V) = 5 g(RUV)V,U).

In particular, if ¢ = 1 and Q(U, V) = —2, then the new structure has
constant G H-sectional curvature (4/a) — 3 with Q(U,V) = —(2/a?).
This observation gives us the following theorem.
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Theorem 7.2. In addition to its standard structure, complex projec-
tive space CP2" 1 also carries a normal complex contact metric struc-
ture with constant G H-sectional curvature (4/a) — 3 and Q(U,V) =
—(2/a?) for every a greater than 0.

With this theorem we get examples of normal complex contact metric
manifolds with constant G H-sectional curvature ¢ > —3. Conversely, as
we state in the following theorem, every such manifold is H-homothetic
to a normal complex contact metric manifold with constant GH-
sectional curvature ¢ = 1.

Theorem 7.3. A normal complex contact metric manifold with
metric g of constant GH -sectional curvature ¢ > —3 is H-homothetic
to a normal complex contact metric manifold with metric g of constant
G H -sectional curvature ¢ = 1. Moreover, if Q(U,V) = —(¢ + 3)?/8,
then the metric g is Kdhler and has constant holomorphic curvature 4.

Proof. Let M be a normal complex contact metric manifold with
metric § of constant G H-sectional curvature ¢ > —3. Apply an H-
homothetic deformation to (M, §) with a = (¢ + 3)/4 > 0. We know
that the new structure is also a normal complex contact metric struc-
ture with constant G H-sectional curvature ¢ = (¢+3)/a—3 = 1. More-
over, if Q(U,V) = —(¢ + 3)2/8, then Q(U,V) = (1/a*)QU,V) = —2.
Then, by Theorem 5.8, (M, g) is Kéhler and has constant holomorphic
curvature 4. ]
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