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NORMALITY OF COMPLEX CONTACT MANIFOLDS

BELGIN KORKMAZ

ABSTRACT. Complex contact metric manifolds are stud-
ied. Normality is defined for these manifolds and equivalent
conditions are given in terms of ∇G and ∇H. GH-sectional
curvature and H-homothetic deformations are defined. Exam-
ples of normal complex contact metric manifolds with constant
GH-sectional curvature c are given for c ≥ −3.

1. Introduction. The theory of complex contact manifolds started
with the papers of Kobayashi [12] and Boothby [4], [5] in late 1950’s
and early 1960’s, shortly after the celebrated Boothby-Wang fibration
in real contact geometry [6]. It did not receive as much attention as the
theory of real contact geometry. In 1965, Wolf studied homogeneous
complex contact manifolds [17]. Recently, more examples are appear-
ing in the literature, especially twistor spaces over quaternionic Kähler
manifolds (e.g., [13], [14], [15], [16], [18]). Other examples include
the odd dimensional complex projective spaces [9] and the complex
Heisenberg group [1].

In the 1970’s and early 1980’s there was a development of the
Riemannian theory of complex contact manifolds by Ishihara and
Konishi [8], [9], [10]. However, their notion of normality as it appears
in [9] seems too strong since it does not include the complex Heisenberg
group and it forces the structure to be Kähler. In this paper we
introduce a slightly different notion of normality which includes the
complex Heisenberg group.

In Section 2 we give the necessary definitions and some basic facts
about complex contact metric manifolds. In Section 3 we define nor-
mality and give the theorem which states the necessary and sufficient
conditions, in terms of the covariant derivatives of the structure ten-
sors, for a complex contact metric manifold to be normal. We discuss
some curvature properties of normal complex contact metric manifolds
in Section 4.
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In Section 5, following the corresponding theory of real contact geom-
etry, we define the GH-sectional curvature for normal complex contact
metric manifolds and we classify those with constant GH-sectional cur-
vature +1. We give examples of normal complex contact metric man-
ifolds with constant GH-sectional curvature −3 and +1 in Section 6.
Then, in Section 7, we define H-homothetic deformations and show
that they preserve normality. Using H-homothetic deformations, we
get examples of normal complex contact metric manifolds with constant
GH-sectional curvature c for every c > −3. Here we note that Ishihara-
Konishi’s notion of normality is not preserved under H-homothetic de-
formations.

2. Basic definitions.

Definition 2.1. LetM be a complex manifold with dimCM = 2n+1,
and let J denote the complex structure on M . M is a complex contact
manifold if an open covering U = {Oα} of M exists, such that

1) on each Oα there is a holomorphic 1-form ωα with ωα∧(dωα)n �= 0
everywhere, and

2) if Oα∩Oβ �= ∅, then there is a nonvanishing holomorphic function
λαβ in Oα ∩Oβ such that

ωα = λαβωβ in Oα ∩Oβ .

On each Oα we define Hα = {X ∈ TOα | ωα(X) = 0}. Since
λαβ ’s are nonvanishing, Hα = Hβ on Oα ∩ Oβ . So H = ∪Hα is a
well-defined, holomorphic, nonintegrable subbundle on M , called the
horizontal subbundle.

Definition 2.2. LetM be a complex manifold with dimCM = 2n+1,
complex structure J and Hermitian metric g. M is called a complex
almost contact metric manifold if an open covering U = {Oα} of M
exists such that

1) in each Oα there are 1-forms uα and vα = uαJ , (1,1) tensors Gα
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and Hα = GαJ , unit vector fields Uα and Vα = −JUα such that

H2
α = G2

α = −Id + uα ⊗ Uα + vα ⊗ Vα

g(GαX,Y ) = −g(X,GαY )
g(Uα, X) = uα(X)

GαJ = −JGα

GαUα = 0
uα(Uα) = 1,

2) if Oα∩Oβ �= ∅, then there are functions a, b on Oα∩Oβ such that

uβ = auα − bvα

vβ = buα + avα

Gβ = aGα − bHα

Hβ = bGα + aHα

a2 + b2 = 1.

As a result of this definition, on a complex almost contact metric
manifold M , the following identities hold (cf. [9]):

HαGα = −GαHα = J + uα ⊗ Vα − vα ⊗ Uα

JHα = −HαJ = Gα

g(HαX,Y ) = −g(X,HαY )
GαVα = HαUα = HαVα = 0
uαGα = vαGα = uαHα = vαHα = 0

JVα = Uα, g(Uα, Vα) = 0.

From now on, we will suppress the subscripts if Oα is understood.

Let (M, {ω}) be a complex contact manifold. We can find a nonvan-
ishing, complex-valued function multiple π of ω such that on O ∩ O′,
π = hπ′ with

h : O ∩O′ −→ S1.

Let π = u − iv. Then v = uJ since ω is holomorphic. Locally we can
define a vector field U by du(U,X) = 0 for all X in H and u(U) = 1,
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v(U) = 0. Then we have a global subbundle V locally spanned by U
and V = −JU with TM = H ⊕ V . We call V the vertical subbundle
of the contact structure. Here we note that we can find a local (1,1)
tensor G such that (u, v, U, V,G,H = GJ, g) form a complex almost
contact metric structure on M (cf. [10]).

Definition 2.3. Let (M, {ω}) be a complex contact manifold
with the complex structure J and Hermitian metric g. We call
(M,u, v, U, V, g) a complex contact metric manifold if

1) there is a local (1,1) tensor G such that (u, v, U, V,G,H = GJ, g)
is a complex almost contact metric structure on M and

2) g(X,GY ) = du(X,Y ) and g(X,HY ) = dv(X,Y ) for all X,Y in
H.

In his thesis [7], Foreman shows the existence of complex contact
metric structures on complex contact manifolds.

We will assume that the subbundle V is integrable. Since every
known example of a complex contact manifold has an integrable vertical
subbundle, this is a reasonable assumption for our work. From now on,
we will work with a complex contact metric manifold M with structure
tensors (u, v, U, V,G,H, g) and complex structure J .

Define 2-forms Ĝ and Ĥ on M by

Ĝ(X,Y ) = g(X,GY ), Ĥ(X,Y ) = g(X,HY ).

Then for horizontal vector fields X,Y ,

Ĝ(X,Y ) = du(X,Y ), Ĥ(X,Y ) = dv(X,Y ).

In general, we have

Ĝ = du− σ ∧ v,(1)

Ĥ = dv + σ ∧ u,(2)

where σ(X) = g(∇XU, V ) (cf. [7]).

In real contact geometry, there is a symmetric operator h = (1/2)Lξφ,
where ξ is the characteristic vector field and φ is the structure tensor
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of the real contact metric structure. Here L denotes the Lie differenti-
ation. In particular, on a real contact metric manifold, we have

∇Xξ = −φX − φhX,

cf. [3].

Similarly, we define symmetric operators hU , hV : TM → H as
follows:

hU =
1
2

sym (LUG) ◦ p

hV =
1
2

sym (LV H) ◦ p
where ‘sym’ denotes the symmetrization and p : TM → H is the
projection map. Then we have

hUG = −GhU , hV H = −HhV ,

hU (U) = hU (V ) = hV (U) = hV (V ) = 0,

and

∇XU = −GX −GhUX + σ(X)V,(3)
∇XV = −HX −HhV X − σ(X)U,(4)

where ∇ is the Levi-Civita connection of g (cf. [7]). Hence,

(5)
∇UU = σ(U)V, ∇V U = σ(V )V,
∇UV = −σ(U)U, ∇V V = −σ(V )U.

It can easily be seen by a direct computation that

(∇XĜ)(Y, Z) + (∇Y Ĝ)(Z,X) + (∇ZĜ)(X,Y ) = 3dĜ(X,Y, Z),

and

(∇XĤ)(Y, Z) + (∇Y Ĥ)(Z,X) + (∇ZĤ)(X,Y ) = 3dĤ(X,Y, Z).

Then, using equations (1) and (2) we get

(6)
(∇XĜ)(Y, Z) + (∇Y Ĝ)(Z,X) + (∇ZĜ)(X,Y )

= −v(X)Ω(Y, Z) − v(Y )Ω(Z,X) − v(Z)Ω(X,Y )
+ σ(X)g(Y,HZ) + σ(Y )g(Z,HX) + σ(Z)g(X,HY ),
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and

(7)
(∇XĤ)(Y, Z) + (∇Y Ĥ)(Z,X) + (∇ZĤ)(X,Y )

= u(X)Ω(Y, Z) + u(Y )Ω(Z,X) + u(Z)Ω(X,Y )
− σ(X)g(Y,GZ) − σ(Y )g(Z,GX) − σ(Z)g(X,GY ),

where Ω = dσ.

Lemma 2.4. ∇UG = σ(U)H and ∇V H = −σ(V )G.

Proof. By equations (6) and (3) we get

(8) (∇U Ĝ)(X,Y ) = v(X)Ω(U, Y ) + v(Y )Ω(X,U) + σ(U)g(X,HY ).

If X and Y are horizontal, then

(∇U Ĝ)(X,Y ) = σ(U)g(X,HY ).

On the other hand, by (5)

(∇U Ĝ)(U, Y ) = −g(∇UU,GY ) = 0,

and

(∇U Ĝ)(V, Y ) = −g(∇UV,GY ) = 0.

So (∇UG)Y = σ(U)HY for any Y .

Similarly, using (7) and (4), we get

(9) (∇V Ĥ)(X,Y ) = u(X)Ω(Y, V ) + u(Y )Ω(V,X) − σ(V )g(X,GY ).

Again, by (5), (∇V Ĥ)(U, Y ) = (∇V Ĥ)(V, Y ) = 0. So (∇V H)Y =
−σ(V )GY .

Now, if we use Lemma 2.4 in equations (8) and (9), we get

Ω(U,X) = v(X)Ω(U, V ),(10)

and

Ω(V,X) = −u(X)Ω(U, V ).(11)
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3. Normality on complex contact metric manifolds. Let M
be a complex contact metric manifold. Ishihara and Konishi [9] defined
(1,2) tensors S and T on a complex almost contact manifold as follows:

S(X,Y ) = [G,G](X,Y ) + 2v(Y )HX − 2v(X)HY + 2g(X,GY )U
− 2g(X,HY )V − σ(GX)HY + σ(GY )HX + σ(X)GHY
− σ(Y )GHX

T (X,Y ) = [H,H](X,Y ) + 2u(Y )GX − 2u(X)GY + 2g(X,HY )V
− 2g(X,GY )U + σ(HX)GY − σ(HY )GX − σ(X)HGY
+ σ(Y )HGX

where

[G,G](X,Y ) = (∇GXG)Y − (∇GY G)X −G(∇XG)Y +G(∇Y G)X

is the Nijenhuis torsion of G. In [9], they introduced a notion of
normality which is the vanishing of the two tensors S and T . One
of their results is that if M is normal, then it is Kähler. This result
suggests that Ishihara-Konishi’s notion of normality is too strong. Here
we will give a somewhat weaker definition.

Definition 3.1. A complex contact metric manifold M is normal if

1) S(X,Y ) = T (X,Y ) = 0 for all X,Y in H, and

2) S(U,X) = T (V,X) = 0 for all X.

In real contact geometry, normality implies the vanishing of the oper-
ator h. The following proposition is the analogous result for complex
contact geometry.

Proposition 3.2. If M is normal, then hU = hV = 0.

Proof. Since M is normal,

S(GX,U) = 0.

By (5), G(∇V U) = G(∇UV ) = G(∇UU) = 0 and u(∇UGX) =
v(∇UGX) = 0. Also, by (3) u(∇GXU) = 0, and v(∇GXU) = σ(GX).
Hence, by Lemma 2.4, S(GX,U) = 2hUX. Therefore, hU = 0.
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Similarly, using T (HX,V ) = 0 and Lemma 2.4, we get hV = 0.

By the above proposition, on a normal contact metric manifold, we
have

∇XU = −GX + σ(X)V(12)

and

∇XV = −HX − σ(X)U.(13)

In the next proposition, we give necessary and sufficient conditions,
in terms of ∇G and ∇H, for M to be normal. Again, compare with
the condition for a real contact metric manifold to be normal.

Proposition 3.3. Let M be a complex contact metric manifold. M
is normal if and only if

(I)

g((∇XG)Y, Z) = σ(X)g(HY,Z)+v(X)Ω(GZ,GY )−2v(X)g(HGY,Z)

− u(Y )g(X,Z) − v(Y )g(JX,Z) + u(Z)g(X,Y )

− v(Z)g(X, JY )

and

(II)

g((∇XH)Y, Z) =−σ(X)g(GY,Z)+u(X)Ω(HZ,HY )−2u(X)g(HGY,Z)

+ u(Y )g(JX,Z) − v(Y )g(X,Z) + u(Z)g(X, JY )

+ v(Z)g(X,Y ).

Proof. Suppose that M is normal. For arbitrary vector fields X and
Y , we can write

X = X ′ + u(X)U + v(X)V, Y = Y ′ + u(Y )U + v(Y )V
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where X ′ and Y ′ are in H. Then GX = GX ′, GY = GY ′ and

S(X,Y ) = S(X ′, Y ′) + 4v(Y )HX − 4v(X)HY − u(X)G(∇UG)Y
− v(X)G(∇V G)Y + u(Y )G(∇UG)X + v(Y )G(∇V G)X
+ u(X)σ(U)GHY + v(X)σ(V )GHY
− u(Y )σ(U)GHX − v(Y )σ(V )GHX.

From (6) and (11) we get

(14)
(∇V Ĝ)(X,Y ) = 2g(X,GHY ) + 2u ∧ v(X,Y )Ω(U, V )

− Ω(X,Y ) + σ(V )g(X,HY ).

Now, using equation (14), Lemma 2.4 and the fact that S(X ′, Y ′) = 0
for any vector field Z, we have

(15)
g(S(X,Y ), Z) = 2v(Y )g(HX,Z) − 2v(X)g(HY,Z)

− v(X)Ω(GZ, Y ) + v(Y )Ω(GZ,X).

If we take Y = V and GX instead of X in (15), we get

(16) g(S(GX,V ), Z) = 2g(HGX,Z) + Ω(GZ,GX).

On the other hand, by (3) and (4), u(∇V GX) = v(∇V GX) = 0. When
we substitute these in S(GX,V ), we get

S(GX,V ) = 4HGX + (∇V G)X − σ(V )HX.

Hence,

g(S(GX,V ), Z) = 2g(HGX,Z) − 2u ∧ v(X,Z)Ω(U, V ) + Ω(X,Z).

Combining with (16), we get

(17) Ω(GZ,GX) = Ω(X,Z) − 2u ∧ v(X,Z)Ω(U, V ).

Applying the above process to T (X,Y ), we get

(18)
g(T (X,Y ), Z) = 2u(Y )g(GX,Z) − 2u(X)g(GY,Z)

+ u(X)Ω(HZ, Y ) − u(Y )Ω(HZ,X)
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and

(19) Ω(HZ,HX) = Ω(X,Z) − 2u ∧ v(X,Z)Ω(U, V ).

Combining (17) with (19) gives

(20) Ω(GZ,GX) = Ω(HZ,HX).

Equation (20) implies

Ω(G2Z,G2X) = Ω(HGZ,HGX).

If we compute the lefthand side and the righthand side separately using
(10) and (11), we get

Ω(G2Z,G2X) = Ω(Z,X) + (u(X)v(Z) − v(X)u(Z))Ω(U, V ),

and

Ω(HGZ,HGX) = Ω(JZ, JX) + (u(X)v(Z) − u(Z)v(X))Ω(U, V ).

Therefore,

(21) Ω(Z,X) = Ω(JZ, JX).

Replacing X with GX in (17), we get

Ω(GX,Z) = Ω(GZ,G2X)
= −Ω(GZ,X) + u(X)Ω(GZ,U) + v(X)Ω(GZ, V ).

Equations (10) and (11) imply Ω(GZ,U) = Ω(GZ, V ) = 0. Hence,

(22) Ω(GX,Z) = Ω(X,GZ).

Similarly, replacing X with HX in (19), we get

(23) Ω(HX,Z) = Ω(X,HZ).

Finally, replacing X with JX in (21), we get

(24) Ω(JX,Z) = −Ω(X, JZ).
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We now want to compute S(X,Y ) in a different way. First, we can
rewrite G(∇XG)Y as

(25)
G(∇XG)Y = −u(Y )GX − v(Y )HX − (∇XG)GY

+ g(X,GY )U + g(X,HY )V.

Now let us substitute (25) in S(X,Y ) to get

S(X,Y ) = (∇GXG)Y − (∇GY G)X + (∇XG)GY − (∇Y G)GX
+ u(Y )GX+3v(Y )HX−u(X)GY−3v(X)HY−4g(X,HY )V
− σ(GX)HY + σ(GY )HX + σ(X)GHY − σ(Y )GHX.

Taking the inner product with Z and using equations (6), (22) and (25)
gives

g(S(X,Y ), Z) = 2g((∇ZG)Y,GX) + 2v(Z)Ω(X,GY ) − v(Y )Ω(X,GZ)
+ v(X)Ω(Y,GZ)+2σ(Z)g(Y,HGX)+2u(Y )g(GX,Z)
+ 4v(Y )g(HX,Z)−2v(X)g(HY,Z)−4v(Z)g(X,HY ).

If we combine the above equation with equation (15), we get

2g((∇ZG)Y,GX) + 2v(Z)Ω(X,GY ) + 2σ(Z)g(Y,HGX)
+ 2u(Y )g(GX,Z) + 2v(Y )g(HX,Z) − 4v(Z)g(X,HY ) = 0.

In order to get the equation we want, we replace X with GX which
gives

2g((∇ZG)X,Y ) + 2v(Z)Ω(GX,GY ) + 2σ(Z)g(X,HY )
− 2u(Y )g(X,Z) − 2v(Y )g(X, JZ) − 2v(Y )u(Z)v(X)
+ 4v(Z)g(X,GHY ) + 2u(X)g(Z, Y ) − 2v(X)g(Z, JY )
+ 2v(X)v(Y )u(Z) = 0.

Now equation (I) follows.

Applying the same process to T (X,Y ), we can easily see that equation
(II) also holds.
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Conversely, suppose that formulas (I) and (II) hold. To show that M
is normal, first let us check S(X,U). Since formula (I) holds,

g(S(X,U), Y ) = g((∇UG)GY,X)+g((∇GXG)U, Y )+g((∇XG)U,GY )
− σ(U)g(GHX,Y )

= σ(U)g(HGY,X) − g(GX,Y ) − g(X,GY )
− σ(U)g(GHX,Y )

= 0.

Therefore, S(X,U) = 0. Similarly, T (X,V ) = 0.

Now let X and Y be two vector fields in H. Making use of the fact
that u(X) = v(X) = u(Y ) = v(Y ) = 0 and applying formula (I), we
get

g(S(X,Y ), Z) = g((∇GXG)Y, Z) + g((∇GY G)Z,X) + g((∇XG)Y,GZ)

+ g((∇Y G)GZ,X)+2u(Z)g(X,GY )−2v(Z)g(X,HY )

−σ(GX)g(HY,Z)+σ(GY )g(HX,Z)+σ(X)g(GHY,Z)

− σ(Y )g(GHX,Z)

= σ(GX)g(HY,Z) + u(Z)g(GX,Y ) − v(Z)g(GX, JY )

+ σ(GY )g(HZ,X) − u(Z)g(GY,X) − v(Z)g(JGY,X)

+σ(X)g(HY,GZ)+σ(Y )g(HGZ,X)+2u(Z)g(X,GY )

−2v(Z)g(X,HY )−σ(GX)g(HY,Z)+σ(GY )g(HX,Z)

+ σ(X)g(GHY,Z) − σ(Y )g(GHX,Z)

= 0.

Therefore, S(X,Y ) = 0.

In a similar way, we can also show that T (X,Y ) = 0. Therefore, M
is normal.

At the moment, normality appears to be a local notion since the
tensors S and T were defined locally. Our next step is to show that
normality is, in fact, a global notion. Towards this end, let us define a
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third tensor W as follows:

W (X,Y ) = [G,H](X,Y ) +
1
2

(
σ(GX)GY − σ(HX)HY

− σ(GY )GX + σ(HY )HX
)

− u(Y )HX − V (Y )GX + u(X)HY + v(X)GY
+ 2g(X,GY )V + 2g(X,HY )U

where [G,H](X,Y ) = 1/2([GX,HY ] + [HX,GY ] − G[HX,Y ] −
H[GX,Y ] −G[X,HY ] −H[X,GY ]).

If M is normal, in other words if

S(U,X) = T (V,X) = 0 for all X, and
S(X,Y ) = T (X,Y ) = 0 for all X and Y in H,

then equations (I) and (II) hold. Then, using (I) and (II), we get

g([G,H](X,Y ), Z)

=
1
2

(
σ(HX)g(HY,Z) − σ(GX)g(GY,Z)

− 4u(Z)g(X,HY ) − 4v(Z)g(X,GY ) + σ(GY )g(GX,Z)
− σ(HY )g(HX,Z) + u(X)Ω(GZ, Y ) − v(X)Ω(HZ, Y )
+ v(Y )Ω(HZ,X) − u(Y )Ω(GZ,X)

)
.

Hence, for X,Y in H,

W (X,Y )

=
1
2

(
σ(HX)HY − σ(GX)GY − 4g(X,HY )U − 4g(X,GY )V

+ σ(GY )GX − σ(HY )HX + σ(GX)GY − σ(HX)HY
− σ(GY )GX + σ(HY )HX

)
+ 2g(X,GY )V + 2g(X,HY )U

= 0.

We now check the normality condition on an overlap O∩O′. On the
open set O, we have tensors u, v, G, H, S, T and W . On O′, we have
u′, v′, G′, H ′, S′, T ′. Since M is a contact metric manifold, there are
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functions a and b on O ∩O′ such that

u′ = au− bv

v′ = bu+ av

G′ = aG− bH

H ′ = bG+ aH

a2 + b2 = 1.

Lemma 3.4. S′ = a2S + b2T − 2abW and T ′ = b2S + a2T + 2abW .

Proof. First of all U ′ = aU − bV and V ′ = bU + aV . Using this fact
we see that

σ′(X) = σ(X) + bX(a) − aX(b).

Note that aX(a) + bX(b) = 0 for any X since a2 + b2 = 1. Also
G′H ′ = GH. Now if we compute S′(X,Y ) using what we have so far
and grouping terms under a2, b2 and ab, we get

S′(X,Y ) = a2S(X,Y ) + b2T (X,Y ) − 2abW (X,Y ).

Similarly,

T ′(X,Y ) = b2S(X,Y ) + a2T (X,Y ) + 2abW (X,Y ).

Now assume that S(X,Y ) = T (X,Y ) = 0 for all horizontal X and Y
and S(U,X) = T (V,X) = 0 for all X. Then, as we checked above,
W (X,Y ) = 0 for all horizontal X and Y . Therefore, S′(X,Y ) =
T ′(X,Y ) = 0 by the above lemma.

For an arbitrary vector field X, apply the above lemma to S′(U ′, X)
to get

S′(U ′, X) = a2b[G(∇V G)X + σ(V )HGX +G(∇UH)X +H(∇UG)X]
−ab2[H(∇UH)X+σ(U)HGX+G(∇V H)X+H(∇V G)X].

Now, taking the inner product with Y and using equations (I) and (II)
gives

g(S′(U ′, X), Y ) = 0.
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Therefore, S′(U ′, X) = 0.

Similarly, we can show that T ′(V ′, X) = 0.

Therefore, normality conditions agree on the overlaps. So the notion
of normality is global.

We now give an expression for ∇XJ . Recall that on a complex contact
manifold we have H = GJ = −JG, V = −JU , U = JV . Also, using
Proposition 3.2, we have

(∇XJ)U = HX + σ(X)U − J(−GX + σ(X)V ) = 0

and

(∇XJ)V = −GX + σ(X)V − J(−HX − σ(X)U) = 0.

Then we can write

(∇XH)GY = (∇XJ)Y − J(∇XG)GY.

Taking the inner product with Z and applying equations (I) and (II)
gives

(III)

g((∇XJ)Y, Z) = u(X)(Ω(Z,GY ) − 2g(HY,Z))
+ v(X)(Ω(Z,HY ) + 2g(GY,Z)).

4. Some basic facts on normal complex contact metric
manifolds. In this section we will establish some basic formulas for
a normal complex contact metric manifold M with structure tensors
u, v, U, V,G,H, J, g. First we will consider the curvature of the vertical
plane, g(R(U, V )V, U). Using Proposition 3.2,

R(U, V )V = ∇U (−σ(V )U) −∇V (−σ(U)U) + σ([U, V ])U
= −U(σ(V ))U − σ(V )σ(U)V + V (σ(U))U

+ σ(U)σ(V )V + σ([U, V ])U
= −2Ω(U, V )U.
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Therefore,

(26) g(R(U, V )V, U) = −2Ω(U, V ).

Now let X and Y be two horizontal vector fields. Then, using
Proposition 3.2,

R(X,Y )U = −(∇XG)Y+(∇Y G)X+2Ω(X,Y )V−σ(Y )HX+σ(X)HY.

By equation (I) we know that

(∇XG)Y = σ(X)HY + g(X,Y )U + g(JX, Y )V.

If we substitute this in R(X,Y )U we get

(27) R(X,Y )U = 2(g(X, JY ) + Ω(X,Y ))V.

Similarly, using Proposition 3.2, we have

(28) R(X,Y )V = −2(g(X, JY ) + Ω(X,Y ))U.

Now we can compute R(X,U)U for horizontalX, using Proposition 3.2:

R(X,U)U = 2Ω(X,U)V − σ(U)HX + (∇UG)X +X.

Since X is horizontal, Ω(X,U) = 0 by (10), and (∇UG)X = σ(U)HX
by Lemma 2.4. Therefore

(29) R(X,U)U = X.

Similarly,

(30) R(X,V )V = X.

Again, for a horizontal vector field X we can compute R(X,U)V and
R(X,V )U using Proposition 3.2 to get

R(X,U)V = σ(U)GX + (∇UH)X − JX(31)
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and
R(X,V )U = −σ(V )HX + (∇V G)X + JX.(32)

Now define a new tensor PG by

PG(X,Y, Z,W ) = g(R(X,Y )GZ,W ) + g(R(X,Y )Z,GW )

and similarly define tensors PH and PJ .

Our next step is to get an expression for PG free of the curvature
tensor R. By a direct computation, it is easy to see that we can write

PG(X,Y, Z,W ) = −(∇X∇Y Ĝ−∇Y ∇XĜ−∇[X,Y ]Ĝ)(Z,W ).

For horizontal vector fields X,Y, Z and W , if we compute the right-
hand side of the above equation using (I), we get:

(33)

PG(X,Y, Z,W ) = 2g(HZ,W )Ω(X,Y ) − 2g(HX,Y )Ω(Z,W )

+ 4g(HX,Y )g(JZ,W ) + g(GX,Z)g(Y,W )

+ g(HX,Z)g(JY,W ) − g(GX,W )g(Y, Z)

− g(HX,W )g(JY, Z) − g(GY,Z)g(X,W )

− g(HY,Z)g(JX,W ) + g(GY,W )g(X,Z)

+ g(HY,W )g(JX,Z).

In the same way, we can show that

(34)

PH(X,Y, Z,W ) = −2g(GZ,W )Ω(X,Y ) + 2g(GX,Y )Ω(Z,W )

− 4g(GX,Y )g(JZ,W ) + g(HX,Z)g(Y,W )

− g(GX,Z)g(JY,W )− g(HX,W )g(Y, Z)

+ g(GX,W )g(JY, Z)− g(HY,Z)g(X,W )

+ g(GY,Z)g(JX,W ) + g(HY,W )g(X,Z)

− g(GY,W )g(JX,Z).

Since JX = HGX = −GHX for horizontal X,
(35)
PJ(X,Y, Z,W ) = g(R(X,Y )HGZ,W ) − g(R(X,Y )Z,GHW )

= PH(X,Y,GZ,W ) − PG(X,Y, Z,HW )
= 2g(GX,Y )Ω(GZ,W ) + 2g(HX,Y )Ω(HZ,W )

+ 4g(GX,Y )g(HZ,W ) − 4g(HX,Y )g(GZ,W ).
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Lemma 4.1. For horizontal vector fields X,Y, Z and W , the curva-
ture tensor satisfies the following equations:

(i)

g(R(GX,GY )GZ,GW )
= g(R(X,Y )Z,W ) − 2g(JZ,W )Ω(X,Y ) + 2g(HX,Y )Ω(GZ,W )

+ 2g(JX, Y )Ω(Z,W ) − 2g(HZ,W )Ω(GX,Y ),

(ii)

g(R(HX,HY )HZ,HW )
= g(R(X,Y )Z,W ) − 2g(JZ,W )Ω(X,Y ) − 2g(GX,Y )Ω(HZ,W )

+ 2g(JX, Y )Ω(Z,W ) + 2g(GZ,W )Ω(HX,Y ).

Proof. By the definition of PG, the lefthand side of (i) is equal to

g(R(X,Y )Z,W ) + PG(Z,W,X,GY ) + PG(GX,GY,Z,GW ).

Equation (33) gives

PG(Z,W,X,GY ) + PG(GX,GY,Z,GW )
= 2g(JX, Y )Ω(Z,W ) − 2g(HZ,W )Ω(GX,Y ) − 2g(JZ,W )Ω(X,Y )

+ 2g(HX,Y )Ω(GZ,W ).

Therefore equation (i) holds.

Similarly, using the definition of PH and equation (34) we obtain (ii).

Lemma 4.2. The following equations hold for horizontal vector fields
X,Y, Z and W :

(i)

g(R(X,GX)Y,GY )
= g(R(X,Y )X,Y ) + g(R(X,GY )X,GY ) + 4g(JX, Y )Ω(X,Y )
− 4g(HX,Y )Ω(GX,Y ) − 2g(GX,Y )2 − 4g(HX,Y )2

− 2g(X,Y )2 + 2g(X,X)g(Y, Y ) − 4g(JX, Y )2
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(ii)

g(R(X,HX)Y,HY )
= g(R(X,Y )X,Y ) + g(R(X,HY )X,HY ) + 4g(JX, Y )Ω(X,Y )

+ 4g(GX,Y )Ω(HX,Y ) − 2g(HX,Y )2 − 4g(GX,Y )2

− 2g(X,Y )2 + 2g(X,X)g(Y, Y ) − 4g(JX, Y )2.

Proof. By Bianchi’s first identity,

g(R(X,GX)Y,GY ) = −g(R(GX,Y )X,GY )− g(R(Y,X)GX,GY ).

The definition of PG implies

−g(R(GX,Y )X,GY ) = g(R(X,GY )X,GY )− PG(X,GY,X, Y )

and

−g(R(Y,X)GX,GY ) = g(R(X,Y )X,Y )+ PG(X,Y,X,GY ).

Using equation (33), we get

PG(X,Y,X,GY ) − PG(X,GY,X, Y )
= 4g(JX, Y )Ω(X,Y ) − 4g(HX,Y )Ω(GX,Y ) − 4g(HX,Y )2

− 2g(X,Y )2 − 4g(JX, Y )2 − 2g(GX,Y )2 + 2g(X,X)g(Y, Y )

which gives equation (i) and equation (ii) is obtained in the same way.

Lemma 4.3. If X is a horizontal vector field, then

g(R(X,GX)GX,X)+g(R(X,HX)HX,X)+g(R(X, JX)JX,X)
= −6g(X,X)(Ω(JX,X) + g(X,X)).

Proof. Recall that GX = −HJX. Then, by the definition of PH ,

g(R(X,GX)GX,X) = g(R(X,GX)JX,GJX)−PH(X,GX, JX,X).
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By Lemma 4.2,

g(R(X,GX)JX,GJX)
= −g(R(X, JX)JX,X)− g(R(X,HX)HX,X)
− 4g(X,X)Ω(JX,X)− 2g(X,X)2.

We can compute PH(X,GX, JX,X) using equation (34) to get

PH(X,GX, JX,X) = 2g(X,X)Ω(JX,X) + 4g(X,X)2.

We get the lemma by joining the above equations.

We can use the definition of PG and equation (33) to see that the
following formulas hold for a horizontal vector field X:

(36)
g(R(X,HX)JX,GX) = −g(R(X,HX)HX,X)

− 2g(X,X)Ω(JX,X)− 4g(X,X)2,

(37)
g(R(X, JX)HX,GX) = g(R(X, JX)JX,X)

+ 2g(X,X)Ω(JX,X)− 2g(X,X)2,

g(R(GX,HX)HX,GX) = g(R(X, JX)JX,X),(38)

g(R(GX, JX)JX,GX) = g(R(X,HX)HX,X).(39)

Similarly, using the definition of PJ and equation (35) we get the
following formulas for horizontal vector fields X,Y :

(40) g(R(JX, JY )JY, JX) = g(R(X,Y )Y,X),

(41) g(R(X,Y )JX, JY )
= g(R(X,Y )Y,X) + 2g(X,GY )Ω(X,HY )
− 2g(X,HY )Ω(X,GY )+4g(X,GY )2+4g(X,HY )2,

(42) g(R(Y, JX)JX, Y ) = g(R(X, JY )JY,X),
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(43) g(R(X, JY )JX, Y )
= g(R(X, JY )JY,X) − 2g(X,HY )Ω(X,GY )

+ 2g(X,GY )Ω(X,HY )+4g(X,HY )2+4g(X,GY )2.

By Bianchi’s first identity,

g(R(X, JX)JY, Y ) = −g(R(JX, JY )X,Y )−g(R(JY,X)JX, Y ).

Substituting formulas (41) and (43) in the above equation, we get
(44)
g(R(X, JX)JY, Y )
= g(R(X,Y )Y,X) + g(R(X, JY )JY,X) + 4(g(X,GY )Ω(X,HY )

− g(X,HY )Ω(X,GY ) + 2g(X,GY )2 + 2g(X,HY )2).

5. GH-sectional curvature. Let M be a normal complex con-
tact metric manifold with structure tensors u, v, U, V,G,H, J, g. For
a horizontal vector field X, the plane section generated by X and
Y = aGX + bHX, a2 + b2 = 1, is called a GH-section or an H-
holomorphic section. We define the GH-sectional curvature GHa,b(X)
as the curvature of a GH-section:

GHa,b(X) = K(X, aGX + bHX)

where K(X,Y ) is the curvature of the plane section generated by X
and Y .

Lemma 5.1. GHa,b(X) is independent of the choice of the numbers a
and b if and only if K(X,GX)=K(X,HX) and g(R(X,GX)HX,X)=
0.

Proof. We can write the GH-sectional curvature as

GHa,b(X)

= a2K(X,GX) + b2K(X,HX) +
2ab

g(X,X)2
g(R(X,GX)HX,X).

If GHa,b(X) is independent of the choice of a and b, then taking
a = 1, b = 0 gives GHa,b(X) = K(X,GX) and taking a = 0,
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b = 1 gives GHa,b(X) = K(X,HX). So K(X,GX) = K(X,HX)
and g(R(X,GX)HX,X) = 0.

Conversely, if K(X,GX)=K(X,HX)=K and g(R(X,GX)HX,X)
= 0, then GHa,b(X) = K and hence GHa,b(X) is independent of the
choice of a and b.

From now on, we will assume that GHa,b(X) is independent of the
choice of a and b and denote it by GH(X).

As the next step, we want to write holomorphic curvature in terms
of GH-sectional curvature. In order to do this, we are going to use the
formulas from Section 4.

Proposition 5.2. For a horizontal vector field X,

K(X, JX) =
1
2

(GH(X +GX) + GH(X −GX)) + 3.

Proof. Since GH(X) is independent of the choice of a and b, we can
choose a = 0, b = 1. Then GH(X) = K(X,HX). So GH(X +GX) =
K(X +GX,HX + JX) and GH(X −GX) = K(X −GX,HX − JX).
By direct computation we get

g(R(X+GX,HX + JX)HX + JX,X +GX)

= g(R(X,HX)HX,X) + g(R(X, JX)JX,X)

+ g(R(GX,HX)HX,GX) + g(R(GX, JX)JX,GX)

+ 2[g(R(X,HX)HX,GX) + g(R(X,HX)JX,X)

+ g(R(X,HX)JX,GX) + g(R(X, JX)HX,GX)

+ g(R(X, JX)JX,GX) + g(R(GX,HX)JX,GX)]
and

g(R(X−GX,HX − JX)HX − JX,X −GX)

= g(R(X,HX)HX,X) + g(R(X, JX)JX,X)

+ g(R(GX,HX)HX,GX) + g(R(GX, JX)JX,GX)

+ 2[−g(R(X,HX)HX,GX)− g(R(X,HX)JX,X)

+ g(R(X,HX)JX,GX) + g(R(X, JX)HX,GX)

− g(R(X, JX)JX,GX)− g(R(GX,HX)JX,GX)].
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If we add the two equations above, we get

GH(X +GX) + GH(X −GX)

=
1

2g(X,X)2
[g(R(X,HX)HX,X) + g(R(X, JX)JX,X)

+ g(R(GX,HX)HX,GX) + g(R(GX, JX)JX,GX)

+ 2[g(R(X,HX)JX,GX) + g(R(X, JX)HX,GX)]].

Now, using formulas (36) (39), we have

GH(X +GX) + GH(X −GX) = 2K(X, JX) − 6.

Therefore

K(X, JX) =
1
2

(GH(X +GX) + GH(X −GX)) + 3.

We now want to work with the assumption that the GH-sectional
curvature is independent of the choice of the GH-section at each point.
Let GH(X) = c where c does not depend on X. Then by the previous
proposition

K(X, JX) = c+ 3.

Next we give an expression for the sectional curvature in terms of the
holomorphic curvature.

Lemma 5.3. For horizontal vector fields X and Y , we have

g(R(X,Y )Y,X) =
1
32

[3Q(X + JY ) + 3Q(X − JY ) −Q(X + Y )

−Q(X − Y ) − 4Q(X) − 4Q(Y )]

+
3
2

[g(X,HY )Ω(X,GY ) − g(X,GY )Ω(X,HY )

− 2g(X,GY )2 − 2g(X,HY )2],

where Q(X) = g(R(X, JX)JX,X).
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Proof. By direct computation

Q(X + JY ) = g(R(X, JX)JX,X) + g(R(Y, JY )JY, Y )
+ g(R(JX, JY )JY, JX) + g(R(X,Y )Y,X)
+ 2[g(R(X, JX)JX, JY ) − g(R(X, JX)Y,X)

− g(R(X, JX)Y, JY ) − g(R(X,Y )JX, JY )
+ g(R(X,Y )Y, JY ) − g(R(JY, JX)Y, JY )]

and

Q(X−JY ) = g(R(X, JX)JX,X) + g(R(Y, JY )JY, Y )
+ g(R(JX, JY )JY, JX) + g(R(X,Y )Y,X)
+ 2[−g(R(X, JX)JX, JY ) + g(R(X, JX)Y,X)

− g(R(X, JX)Y, JY ) − g(R(X,Y )JX, JY )
− g(R(X,Y )Y, JY ) + g(R(JY, JX)Y, JY )].

By combining the two equations above, we get

Q(X+JY )+Q(X−JY )
= 2[g(R(X, JX)JX,X) + g(R(Y, JY )JY, Y )

+ g(R(JX, JY )JY, JX) + g(R(X,Y )Y,X)]
− 4[g(R(X, JX)Y, JY ) + g(R(X,Y )JX, JY )].

Using the formulas (40), (41) and (44), we have

Q(X+JY )+Q(X−JY )
= 2[g(R(X, JX)JX,X) + g(R(Y, JY )JY, Y )]

+ 4[3g(R(X,Y )Y,X) + g(R(X, JY )JY,X)]
+ 24[g(X,GY )Ω(X,HY ) − g(X,HY )Ω(X,GY )

+ 2g(X,GY )2 + 2g(X,HY )2].

Doing the same calculations for Q(X + Y ) +Q(X − Y ) and using the
formulas (42), (43) and (44), we get

Q(X+Y )+Q(X−Y )
= 2[g(R(X, JX)JX,X) + g(R(Y, JY )JY, Y )]

+ 4[3g(R(X, JY )JY,X) + g(R(X,Y )Y,X)]
+ 24[g(X,GY )Ω(X,HY ) − g(X,HY )Ω(X,GY )

+ 2g(X,GY )2 + 2g(X,HY )2].
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Finally, combining what we have so far,

3Q(X+JY )+3Q(X−JY )−Q(X+Y )−Q(X−Y )− 4Q(X)− 4Q(Y )
= 32g(R(X,Y )Y,X) + 48[g(X,GY )Ω(X,HY )

− g(X,HY )Ω(X,GY ) + 2g(X,GY )2 + 2g(X,HY )2],

giving us the desired result.

Since K(X, JX) = c + 3 does not depend on X, from the above
lemma we get
(45)

g(R(X,Y )Y,X) =
c+ 3

4
[g(X,X)g(Y, Y ) − g(X,Y )2 + 3g(X, JY )2]

+
3
2

[g(X,HY )Ω(X,GY ) − g(X,GY )Ω(X,HY )

− 2g(X,GY )2 − 2g(X,HY )2],

for horizontal X and Y .

Now let X and Y be two arbitrary vector fields. We can write

X = Z + u(X)U + v(X)V, Y = W + u(Y )U + v(Y )V

where Z and W are in H. Then, using the formulas (26) (32) and (45),
we have

g(R(X,Y )Y,X)
= g(R(Z,W )W,Z) − 2(u(X)u(Y ) + v(X)v(Y ))g(Z,W )

+ (u(Y )2 + v(Y )2)g(Z,Z) + (u(X)2 + v(X)2)g(W,W )
− 12u ∧ v(X,Y )g(Z, JW ) − 12u ∧ v(X,Y )Ω(Z,W )
− 8(u ∧ v(X,Y ))2Ω(U, V )(46)

= g(R(Z,W )W,Z) − 2(u(X)u(Y ) + v(X)v(Y ))g(X,Y )
+ (u(Y )2 + v(Y )2)g(X,X) + (u(X)2 + v(X)2)g(Y, Y )
− 12u ∧ v(X,Y )g(X, JY ) − 12u ∧ v(X,Y )Ω(X,Y )
+ 16(u ∧ v(X,Y ))2(1 + Ω(U, V ))
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=
c−1
2

[u(X)u(Y ) + v(X)v(Y )]g(X,Y )

− c−1
4

[(u(Y )2+v(Y )2)g(X,X)+(u(X)2+v(X)2)g(Y, Y )]

− 3(c+ 7)u ∧ v(X,Y )g(X, JY )

+
c+3
4

[g(X,X)g(Y, Y ) + 3g(X, JY )2 − g(X,Y )2]

+
3
2

[g(X,HY )Ω(X,GY )− g(X,GY )Ω(X,HY )

− 2g(X,GY )2 − 2g(X,HY )2] + 4(c+7)(u ∧ v(X,Y ))2

− 12u ∧ v(X,Y )Ω(X,Y ) + 16(u ∧ v(X,Y ))2Ω(U, V ).(47)

In order to simplify the above equation somewhat, we need to examine
the term Ω(X,Y ). Since GH(X) = c+ 3 does not depend on X,

g(R(X,GX)GX,X) = g(R(X,HX)HX,X) = cg(X,X)2

and
g(R(X, JX)JX,X) = (c+ 3)g(X,X)2.

Substituting these in Lemma 4.3, we get

(48) Ω(JX,X) = −c+ 3
2

g(X,X)

for horizontal X.

In order to compute Ω(JX,X) for an arbitrary vector field X, we can
apply formula (48) to the horizontal component of X to get

(49)
Ω(JX,X) = −c+ 3

2
g(X,X) +

c+ 3
2

(u(X)2 + v(X)2)

+ (u(X)2 + v(X)2)Ω(U, V ).

Replacing X with JX + Y in (49), we have

(50) Ω(X,Y ) =
c+ 3

2
g(JX, Y ) + u ∧ v(X,Y )(c+3+2Ω(U, V )).
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Now if we substitute (50) in (47) we get a somewhat simpler expression
for the sectional curvature as

g(R(X,Y )Y,X)

=
c−1
2

[u(X)u(Y ) + v(X)v(Y )]g(X,Y )

− c−1
4

[(u(Y )2+v(Y )2)g(X,X)+(u(X)2+v(X)2)g(Y, Y )]

+ 3(c−1)u ∧ v(X,Y )g(X, JY )(51)

+
c+3
4

[g(X,X)g(Y, Y ) + 3g(X, JY )2 − g(X,Y )2]

+ 3
c−1
4

[g(X,GY )2 + g(X,HY )2]

− 8(u ∧ v(X,Y ))2(c+ 1 + Ω(U, V ).

Now to get an expression for the curvature tensor, we will use the
following identity of [2]:

6g(R(X,Y )Z,W ) =
∂2

∂s∂t
(B(X + sW, Y + tz)

−B(X + sZ, Y + tW ))|s=0,t=0,

where B(X,Y ) = g(R(X,Y )Y,X).

If we compute the righthand side of the above identity using (51), we
get the following expression for the curvature tensor:

R(X,Y )Z=
c+3
4

[g(Y, Z)X− g(X,Z)Y + g(Z, JY )JX

+ g(X, JZ)JY + 2g(X, JY )JZ]

+
c−1
4

[
(u(X)u(Z)+v(X)v(Z))Y−(u(Y )u(Z)+v(Y )v(Z))X

+ 4u ∧ v(X,Y )JZ + 2u ∧ v(X,Z)JY + 2u ∧ v(Z, Y )JX
+ 2g(X,GY )GZ + g(X,GZ)GY + g(Z,GY )GX
+ 2g(X,HY )HZ + g(X,HZ)HY + g(Z,HY )HX
+ [u(Y )g(X,Z) − u(X)g(Y, Z) + v(X)g(Z, JY )
+ v(Y )g(X, JZ) + 2v(Z)g(X, JY )]U
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+ [v(Y )g(X,Z) − v(X)g(Y, Z) − u(X)g(Z, JY )
− u(Y )G(X, JZ) − 2u(Z)g(X, JY )]V

]
− 4

3
(c+ 1 + Ω(U, V ))[(v(X)u ∧ v(Z, Y ) + v(Y )u ∧ v(X,Z)

+2v(Z)u ∧ v(X,Y ))U−(u(X)u ∧ v(Z, Y )+u(Y )u ∧ v(X,Z)
+ 2u(Z)u ∧ v(X,Y ))V ].(52)

Now we are ready to prove the following proposition.

Proposition 5.4. Let M be a normal complex contact metric
manifold with complex dimension greater than or equal to 5. If the
GH-sectional curvature is independent of the choice of the GH-section
at each point, then it is constant on M .

Proof. Suppose that the complex dimension of M is 2n + 1. If the
GH-sectional curvature is independent of the choice of the GH-section
at each point, then the curvature tensor has the form (52). Let us
choose a local orthonormal basis of the form

{Xi, GXi, HXi, JXi, U, V | 1 ≤ i ≤ n}.

Then the Ricci tensor has the form

ρ(X,Y ) =
n∑

i=1

[g(R(Xi, X)Y,Xi) + g(R(GXi, X)Y,GXi)

+ g(R(HXi, X)Y,HXi) + g(R(JXi, X)Y, JXi)]
+ g(R(U,X)Y, U) + g(R(V,X)Y, V )

= ((n+ 2)c+ 3n+ 2)g(X,Y ) + (−(n+ 2)c+ n− 2
− 2Ω(U, V ))(u(X)u(Y ) + v(X)v(Y )).

The scalar curvature τ has the form

τ =
n∑

i=1

[ρ(Xi, Xi) + ρ(GXi, GXi) + ρ(HXi, HXi)

+ ρ(JXi, JXi)] + ρ(U,U) + ρ(V, V )
= 2(n+ 2)(2n− 1)c+ 4n(3n+ 4) − 4Ω(U, V ).
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Since Ω = dσ, dΩ = 0. In particular, dΩ(U, V,X) = 0, which implies

XΩ(U, V ) = u(X)UΩ(U, V ) + v(X)V Ω(U, V ).

By Bianchi’s identity,

2
[ n∑

i=1

((∇Xi
ρ)(X,Xi) + (∇GXi

ρ)(X,GXi) + (∇HXi
ρ)(X,HXi)

+ (∇JXi
ρ)(X, JXi)) + (∇Uρ)(X,U) + (∇V ρ)(X,V )

]
−∇Xτ = 0.

Substituting the expressions for ρ(X,Y ) and τ , the above equation
gives

2(1 − n)X(c) − (u(X)U(c) + v(X)V (c)) = 0.

If we let X = U , we get U(c) = 0, and if we let X = V , we get
V (c) = 0. Therefore, X(c) = 0 if n is different from 1. So c is constant
on M when n > 1.

Definition 5.5. A normal complex contact metric manifold M
with constant GH-sectional curvature is called a complex contact space
form.

The following theorem is an easy consequence of Proposition 5.2 and
Lemma 5.3.

Theorem 5.6. Let M be a normal complex contact metric manifold.
Then M has constant GH-sectional curvature c if and only if, for hor-
izontal X, the holomorphic sectional curvature of the plane generated
by X and JX is c+ 3.

This theorem gives rise to a natural question: is it possible for a
normal complex contact metric manifold to have constant holomorphic
sectional curvature? We answer this question by the following propo-
sition.

Proposition 5.7. Let M be a normal complex contact metric
manifold. If M has constant holomorphic sectional curvature c, then
c = 4 and M is Kähler.
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Proof. For an arbitrary unit vector field X, let X = Z + u(X)U +
v(X)V , where Z is horizontal. If we take Y = JX, W = JZ in equation
(46), we get

g(R(X, JX)JX,X)
= g(R(Z, JZ)JZ,Z) + 6(u(X)2 + v(X)2)Ω(X, JX)
− 4(u(X)2+ v(X)2) + 4(u(X)2+ v(X)2)2(1+Ω(U, V )).(53)

Since M has constant holomorphic curvature c,

g(R(X, JX)JX,X) = g(R(U, V )V, U) = c,

and

g(R(Z, JZ)JZ,Z) = g(Z,Z)2c.

Theorem 5.6 implies that GH(X) = c− 3. Also, by formula (50)

Ω(X,Y ) =
c

2
g(JX, Y ) + u ∧ v(X,Y )(c+ 2Ω(U, V )).

Since g(R(U, V )V, U) = −2Ω(U, V ), Ω(U, V ) = −(c/2). Therefore,
Ω(X,Y ) = (c/2)g(JX, Y ), and hence Ω(X, JX) = (c/2). Since X is
unit, g(Z,Z) = 1 − u(X)2 − v(X)2. Substituting these back into (53),
we get

(c− 4)(u(X)2 + v(X)2)(1 − u(X)2 − v(X)2) = 0.

We can choose X so that u(X) �= 0, v(X) �= 0 and u(X)2 + v(X)2 �= 1.
Then we must have c = 4. In this case GH(X) = 1 and Ω(U, V ) = −2.

Since M is normal, by equation (III)

g((∇XJ)Y, Z) = u(X)Ω(Z,GY ) + v(X)Ω(Z,HY ) − 2u(X)g(HY,Z)
+ 2v(X)g(GY,Z)

= 2u(X)g(JZ,GY )+2v(X)g(JZ,HY )−2u(X)g(HY,Z)
+ 2v(X)g(GY,Z)

= 0.

Hence, M is Kähler.
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Theorem 5.8. Let M be a normal complex contact metric manifold
with constant GH-sectional curvature 1 and Ω(U, V ) = −2. Then M
has constant holomorphic sectional curvature 4 and it is Kähler. If,
in addition, M is complete and simply connected, then M is isomet-
ric to CP2n+1 with the Fubini-Study metric of constant holomorphic
curvature 4.

Proof. Since GH(X) = 1, g(R(X, JX)JX,X) = 4g(X,X)2 for a
horizontal vector field X by Theorem 5.6. Substituting c = 1 and
Ω(U, V ) = −2 in (50), we get Ω(X,Y ) = 2g(JX, Y ). For an arbitrary
unit vector field X, let X = Z+u(X)U+v(X)V , where Z is horizontal.
Then g(Z,Z) = 1 − u(X)2 − v(X)2. Now, from (53) it follows that

g(R(X, JX)JX,X) = 4(1−u(X)2 − v(X)2)2 − 4(u(X)2 + v(X)2)
+ 12(u(X)2 + v(X)2) − 4(u(X)2 + v(X)2)2

= 4.

Hence M has constant holomorphic curvature 4, and by Proposi-
tion 5.7, M is Kähler.

6. Examples of normal complex contact metric manifolds.
Our first example of a normal complex contact metric manifold is the
complex Heisenberg group. The complex Heisenberg group is the closed
subgroup HC of GL (3,C) given by



 1 b12 b13

0 1 b23
0 0 1


 | b12, b13, b23 ∈ C


 .

Blair defined the following complex contact metric structure on HC

in [1]. See also [11]. Let z1, z2, z3 be the coordinates on HC � C3,
defined by z1(B) = b23, z2(B) = b12, z3(B) = b13 for B in HC. Then
the Hermitian metric (matrix)

g =
1
8




1 + |z2|2 0 −z2
0 0 1 0

−z̄2 0 1
1 + |z2|2 0 −z̄2

0 1 0 0
−z2 0 1
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is a left invariant metric on HC. Define a holomorphic 1-form θ =
(dz3 − z2dz1)/2 and set θ = u− iv and 4(∂/∂z3) = U + iV .

Also define a (1-1) tensor

G =




0 1 0
0 −1 0 0

0 z2 0
0 1 0
−1 0 0 0
0 z̄2 1



.

Then (u, v, U, V,G,H = GJ, g) is a complex contact metric structure
on HC. Blair also computed the covariant derivatives of G and H as

(∇XG)Y = g(X,Y )U − u(Y )X − g(X, JY )V
− v(Y )JX + 2v(X)GHY

and

(∇XH)Y = g(X,Y )V − v(Y )X − g(X, JY )U
+ u(Y )JX − 2u(X)GHY.

In [1], the following are also listed:

g(∇XU, V ) = 0,

∇XU = −GX,
∇XV = −HX.

As a consequence of the first equality, we see that σ is identically zero.
Therefore, by Proposition 3.3 this structure on HC is normal.

The Hermitian connection of g is also given in [1]. So we can establish
the following curvature identities easily:

g(R(X,GX)GX,X) = g(R(X,HX)HX,X)
= −3g(X,X)2,

g(R(X,GX)HX,X) = 0.

Therefore, HC has constant GH-sectional curvature −3.
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Our second example is the odd-dimensional complex projective space
CP2n+1 with the standard Fubini-Study metric g of constant holomor-
phic curvature 4. It is established in [8] that (CP2n+1(4), g) admits a
normal complex contact metric structure via the Hopf fibering

π : S4n+3 −→ CP2n+1.

Since this structure has constant holomorphic curvature 4, (CP2n+1(4),
g) has constant GH-sectional curvature 1 by Theorem 5.6.

7. H-homothetic deformations. The odd-dimensional complex
projective space with the Fubini-Study metric is an example of a nor-
mal complex contact metric manifold with constant GH-sectional cur-
vature 1. To get other examples with constant GH-sectional curvature,
we need to study the H-homothetic deformations.

Let M be a normal complex contact metric manifold with structure
tensors (u, v, U, V,G,H, g). For a positive constant α, we define new
tensors by ũ = αu, ṽ = αv, Ũ = U/α, Ṽ = V/α, G̃ = G, H̃ = H,
g̃ = αg+α(α− 1)(u⊗ u+ v⊗ v). This change of structure is called an
H-homothetic deformation.

Proposition 7.1. If (u, v, U, V,G,H, g) is a normal complex contact
metric structure on (M,J), then (ũ, ṽ, Ũ , Ṽ , G̃, H̃, g̃) is also a normal
complex contact metric structure on (M,J).

Proof. Clearly, ω̃ = αω is a complex contact structure on M . Also,
H̃ = H, dũ(Ũ ,X) = du(U,X) = 0 for all X in H, ũ(Ũ) = u(U) = 1
and ṽ(Ũ) = 0. We can easily check the first condition of Definition 2.2
by noting that

G̃2 = −Id+ ũ⊗ Ũ + ṽ ⊗ Ṽ ,

g̃(G̃X, Y ) = −g̃(X, G̃Y ),

g̃(Ũ ,X) = ũ(X),

G̃J = GJ = −JG = −JG̃,
G̃Ũ = GŨ =

1
α
GU = 0.
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If O∩O′ �= ∅, then there are functions a and b on O∩O′ which satisfy
the second condition of Definition 2.2. Then

ũ′ = αu′ = α(au− bv) = aũ− bṽ

ṽ′ = αv′ = α(bu+ av) = bũ+ aṽ

G̃′ = G′ = aG− bH = aG̃− bH̃

H̃ ′ = H ′ = bG+ aH = bG̃+ aH̃

a2 + b2 = 1.

Therefore the first condition of Definition 2.3 is satisfied.

For horizontal X and Y , dũ(X,Y ) = αdu(X,Y ) = αg(X,GY ) =
g̃(X,GY ) and dṽ(X,Y ) = αdv(X,Y ) = αg(X,HY ) = g̃(X,HY ).
So the second condition of Definition 2.3 is also satisfied, and hence
(ũ, ṽ, Ũ , Ṽ , G̃, H̃, g̃) is a complex contact metric structure on (M,J).

To check for normality, first we need to see how the covariant
derivative changes. By a direct computation, we can see that

(54) ∇̃XY = ∇XY+(1−α)[u(Y )GX+v(Y )HX+u(X)GY+v(X)HY ].

If we take Y = U in (54), we get

∇̃XU = ∇XU + (1 − α)GX.

Hence
σ̃(X) = g̃(∇̃X Ũ , Ṽ )

=
1
α2

g̃(∇̃XU, V )

=
1
α
g(∇̃XU, V ) +

α− 1
α

v(∇̃XU)

=
1
α
g(∇XU, V ) +

α− 1
α

v(∇XU)

= g(∇XU, V ) = σ(X).

Thus, σ = σ̃. Then

S̃(X,Y ) = S(X,Y ) + 2(α− 1)(v(Y )HX − v(X)HY ).

Similarly, we can show that

T̃ (X,Y ) = T (X,Y ) + 2(α− 1)(u(Y )GX − u(X)GY ).
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Thus,

S̃(Ũ ,X) =
1
α
S̃(U,X) =

1
α
S(U,X) = 0,

and

T̃ (Ṽ , X) =
1
α
T̃ (V,X) =

1
α
T (V,X) = 0.

If X and Y are horizontal, then

S̃(X,Y ) = S(X,Y ) = 0,

and

T̃ (X,Y ) = T (X,Y ) = 0.

Therefore, the deformed structure is also normal.

Now we want to see what happens to the GH-sectional curvature
under an H-homothetic deformation. First we check how the sectional
curvature changes.

For horizontal vector fields X and Y ,

R̃(X,Y )Y

= ∇̃X∇̃Y Y − ∇̃Y ∇̃XY − ∇̃[X,Y ]Y

= ∇̃X∇Y Y − ∇̃Y ∇XY −∇[X,Y ]Y

− (1−α)(u([X,Y ])GY + v([X,Y ])HY )
= ∇X∇Y Y + (1−α)(u(∇Y Y )GX + v(∇Y Y )HX) −∇Y ∇XY

− (1−α)(u(∇XY )GY + v(∇XY )HY ) −∇[X,Y ]Y

− (1−α)(u([X,Y ])GY + v([X,Y ])HY ).

Since X and Y are horizontal and M is normal, we have

u(∇XY ) = g(∇XY, U) = −g(∇XU, Y ) = g(GX,Y ),

and

v(∇XY ) = g(∇XY, V ) = −g(∇XV, Y ) = g(HX,Y ).
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Hence, u(∇Y Y ) = v(∇Y Y ) = 0, u([X,Y ]) = 2g(GX,Y ), v([X,Y ]) =
2g(HX,Y ). Therefore,

R̃(X,Y )Y = R(X,Y )Y + 3(1−α)(g(X,GY )GY + g(X,HY )HY )

for X,Y in H. So, for horizontal vector fields X and Y ,

g̃(R̃(X,Y )Y,X) = αg(R(X,Y )Y,X) + 3α(1−α)(g(X,GY )2

+ g(X,HY )2).

Assume that the original structure on M has constant GH-sectional
curvature c. Let X be a unit horizontal vector field with respect to the
new structure on M . Let Y = aG̃X + bH̃X with a2 + b2 = 1. Then
GY = −aX − bJX and HY = aJX − bX. Thus,

g̃(R̃(X,Y )Y,X)
= αg(R(X,Y )Y,X)+3α(1−α)(g(X,−aX−bJX)2+g(X, aJX−bX)2)
= αcg(X,X)2 + 3α(1 − α)(a2g(X,X)2 + b2g(X,X)2)

= αc
1
α2

g̃(X,X)2 + 3α(1 − α)
1
α2

g̃(X,X)2

=
c

α
+

3(1 − α)
α

=
c+ 3
α

− 3.

Hence the new structure has constant GH-sectional curvature (c +
3)/α− 3.

Next we want to see how the curvature of the vertical plane changes
under an H-homothetic deformation. We know that σ = σ̃. So Ω = Ω̃.
Hence

g̃(R̃(Ũ , Ṽ )Ṽ , Ũ) = −2Ω̃(Ũ , Ṽ )

= − 2
α2

Ω(U, V ) =
1
α2

g(R(U, V )V, U).

In particular, if c = 1 and Ω(U, V ) = −2, then the new structure has
constant GH-sectional curvature (4/α) − 3 with Ω̃(Ũ , Ṽ ) = −(2/α2).
This observation gives us the following theorem.
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Theorem 7.2. In addition to its standard structure, complex projec-
tive space CP2n+1 also carries a normal complex contact metric struc-
ture with constant GH-sectional curvature (4/α) − 3 and Ω(U, V ) =
−(2/α2) for every α greater than 0.

With this theorem we get examples of normal complex contact metric
manifolds with constantGH-sectional curvature c̃ > −3. Conversely, as
we state in the following theorem, every such manifold is H-homothetic
to a normal complex contact metric manifold with constant GH-
sectional curvature c = 1.

Theorem 7.3. A normal complex contact metric manifold with
metric g̃ of constant GH-sectional curvature c̃ > −3 is H-homothetic
to a normal complex contact metric manifold with metric g of constant
GH-sectional curvature c = 1. Moreover, if Ω(Ũ , Ṽ ) = −(c̃ + 3)2/8,
then the metric g is Kähler and has constant holomorphic curvature 4.

Proof. Let M be a normal complex contact metric manifold with
metric g̃ of constant GH-sectional curvature c̃ > −3. Apply an H-
homothetic deformation to (M, g̃) with α = (c̃ + 3)/4 > 0. We know
that the new structure is also a normal complex contact metric struc-
ture with constant GH-sectional curvature c = (c̃+3)/α−3 = 1. More-
over, if Ω(Ũ , Ṽ ) = −(c̃ + 3)2/8, then Ω(U, V ) = (1/α2)Ω(Ũ , Ṽ ) = −2.
Then, by Theorem 5.8, (M, g) is Kähler and has constant holomorphic
curvature 4.
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