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WEAK UNITS IN EPICOMPLETIONS OF
ARCHIMEDEAN LATTICE-ORDERED GROUPS

ANN KIZANIS

ABSTRACT. Let κ denote an infinite cardinal number
or the symbol ∞. In [14] it is shown that in the category
of archimedean lattice-ordered groups with l-group homo-
morphisms, each G has an epicompletion, βκ

A(G), in which
G is κ-completely embedded and which lifts all κ-complete
morphisms out of G to epicomplete objects. Since, in gen-
eral, these epicomplete objects have no concrete realization
and since epicomplete objects in the category of archimedean
lattice-ordered groups with distinguished weak order unit and
unit preserving l-group homomorphisms do have concrete re-
alizations [4], it is natural to ask when βκ

A(G) has a weak unit.
In this paper we show that βκ

A(G) has a weak unit precisely
when there is countable A ⊆ G so that the κ-ideal generated
by A in G is all of G. Moreover, we show that βω0

A (G) has
weak unit precisely when every epicompletion of G has weak
unit, and we construct an archimedean l-group G with weak
unit for which βκ

A(G) has a weak unit for each κ, ω1 ≤ κ ≤ ∞,

but βω0
A (G) has no weak unit.

1. Introduction. Let Arch denote the category of archimedean
lattice-ordered groups (l-groups) with l-homomorphisms (that is, ho-
momorphisms which preserve both the group and lattice structure).
We note that Arch is closed under products and subobjects. All terms
regarding l-groups are standard and can be found in [8]. Moreover,
some general references for l-groups are [8], [18], [2] and [12].

Let A be a subset of an l-group G. The l-ideal generated by A
in G is the smallest l-ideal of G which contains A and is denoted
by (A) or (A)G, and ({a}) is abbreviated to (a) or (a)G. The set
{g ∈ G : |g| ∧ |a| = 0 for all a ∈ A} is denoted by A⊥G or A⊥, if
the context is clear, and is called the polar of A. If A consists of
one element a, then one writes a⊥G or a⊥ for {a}⊥. Furthermore, an
element 0 ≤ u ∈ G is called a weak unit if u⊥G = (0).
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In a concrete category C, a morphism ε : G → H is an epimorphism
(epic) if whenever α, β : H → K have α ◦ ε = β ◦ ε, then α = β. An
object G is epicomplete if ε : G → H epic and one-to-one implies ε is
an isomorphism (i.e., onto). An epicompletion of G is a one-to-one epic
ε : G→ H with H epicomplete.

A one-to-one morphism i : G → H in Arch is called extremal monic
if whenever i = τ ◦ ν with ν epic, then ν is an isomorphism. We also
say that G is an extremal subobject of H.

In Arch, and the related category W , of archimedean l-groups with
distinguished weak order unit and unit preserving l-homomorphisms,
Ball and Hager have characterized the epimorphisms and the epi-
complete objects [3], [4], [5]. Moreover, they have studied W-
epicompletions and have shown that these objects can be realized as
D(X) for some basically disconnected, compact, Hausdorff space X,
where D(X) denotes the set of continuous, extended real-valued func-
tions (with point-wise order) whose domain of reality is dense in X, or
as a quotient of real-valued Baire measurable functions modulo some
σ-ideal of null functions [5]. We build upon their work by focusing on
epicomplete objects in Arch and proving precisely when these objects
have weak order unit.

There are three motivating or background results which we now state.

Theorem 1.0 [4, 4.9]. The following are equivalent for G in Arch:

(1) G is Arch epicomplete.

(2) G is an extremal subobject of D(Y ) for some basically discon-
nected, compact, Hausdorff space Y .

(3) G is divisible and both conditionally and laterally σ-complete.
(An l-group G is conditionally σ-complete (respectively, laterally σ-
complete) if each countable set in G (respectively, countable set in
G+) which is bounded above (respectively, pairwise disjoint) has a
supremum.)

Throughout this paper we shall let κ denote an infinite cardinal
number or the symbol ∞. By |A| < κ, for k = ∞, we mean that
there is no restriction on the cardinality of A.
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Definition 1.1. An l-homomorphism φ : G → H is called κ-
complete if whenever A ⊆ G, |A| < κ, and ∨A exists in G, then
φ(∨GA) = ∨Hφ(A).

An ∞-complete (respectively, ω1-complete) l-homomorphism is usu-
ally called complete (respectively, σ-complete).

Theorem 1.2 [14, 1.4, 2.5]. In Arch, given an object G, there is an
epicompletion βκ

A(G) of G and a κ-complete embedding ε : G→ βκ
A(G)

with this universal mapping property: If θ : G → H is a κ-complete
morphism with H epicomplete, then a unique morphism τ : βκ

A(G) → H
exists with τ ◦ ε = θ. If θ is epic, then τ is a surjection. Moreover,
βκ
A(G) is unique up to isomorphism over G; that is, if (ε′,K) is another
epicompletion of G, in which G is κ-completely embedded and which
has the aforementioned universal mapping property, then there is an
isomorphism h : βκ

A(G) → K with h ◦ ε = ε′.

The construction provided of βκ
A(G) in [14, 1.4], however, does not

give a concrete realization of this epicomplete object. Since Arch
epicomplete objects with a weak unit are epicomplete in W and W-
epicomplete objects have concrete realizations [4, 3.9, 4.9], which make
them easier to work with, it is natural to ask when any epicompletion
H of an archimedean l-group G has a weak unit.

We provide a general answer to this question in Section 3, but
the result is not very useful for it depends on the epicompletion H.
However, if we restrict to epicompletions of the form βκ

A(G), we have
a nice answer to this question which can be stated completely in terms
of G. The analysis relies heavily on archimedean kernels and κ-ideals.

Before we discuss archimedean kernels, we first present the main
result of [6] which gives a partial answer to our main question.

Theorem 1.3 [6, 2.1]. In the category of archimedean l-groups, the
following are equivalent about G:

(1) There is H with a weak unit and an epic embedding G ≤ H.

(2) There is H with a weak unit and a coessential embedding G ≤ H.
(In Arch, an embedding G ≤ H is called coessential if whenever a
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morphism α : H → K has α|G identically 0, then α is identically 0.)

(3) There is countable A ⊆ G with A⊥G = (0).

(4) There is epicomplete H with a weak unit and an epic and essential
embedding G ≤ H. (An embedding G ≤ H is called essential if every
nontrivial l-ideal of H intersects G nontrivially.)

We note that the “H” in statement (4) of Theorem 1.3 is β∞
A (G), by

the uniqueness of this object [14, 7.4]. Hence, β∞
A (G) has a weak unit

precisely when there is a countable subset A ⊆ G with A⊥G = (0) or,
equivalently, when A⊥⊥G = G.

Definition 1.4. An l-ideal I in an archimedean l-group H is called
an archimedean kernel if H/I is archimedean or, equivalently, if I is
the kernel of an l-homomorphism in Arch.

The following discussion of archimedean kernels comes from [6].

Given a subset A of an archimedean l-group H, there is a smallest
archimedean kernel containing A, denoted akH(A), because Arch is
closed under the formation of products and sub-l-groups. However,
since this “outside-in” construction is not very useful in understanding
archimedean kernels, we present an “inside-out” construction due to
[17]. (See [17, 3.3].)

In an l-group H, a sequence of elements {hn : n ∈ N} converges
relatively uniformly to h, denoted hn → h r.u., if there is u, called the
regulator, for which: if k ∈ N , there is n0 such that n ≥ n0 implies
k|hn − h| ≤ u. For A ⊆ H, let A′ = {h ∈ H | there is {hn : n ∈
N} in A with hn → h relatively uniformly}.

Then A = akH(A) if and only if A is an l-ideal with A = A′. (This
appears in [18, pp. 85, 427] for vector lattices, and the proof appears
to use just divisibility of H, but even that is easily eliminated.) It then
follows that for general A ⊆ H, akH(A) = ∪α<ω1Aα, where A0 is the
l-ideal generated by A in H, Aα+1 = A′

α, and for a limit ordinal β,
Aβ = ∪α<βAα.

We now note that an embedding G ≤ H is coessential if akH(G) = H.

Definition 1.5. A κ-ideal K in an archimedean l-group G is an
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archimedean kernel with the property that whenever A ⊆ K, |A| < κ,
and ∨A exists in G, then ∨A belongs to K.

An ∞-ideal (respectively, ω1-ideal) is usually called a closed ideal
or complete ideal (respectively, σ-ideal), in the literature. In an
archimedean l-group, the complete ideals are precisely the polars.
Actually this condition characterizes the archimedean l-groups [8,
11.1.10].

We note that if K is an ω1-ideal in an archimedean l-group G, then
G/K is archimedean [8, 11.1.9]. Hence, every κ-ideal is an archimedean
kernel.

Proposition 1.6. [7, 3.2] In Arch, κ-ideals are precisely the kernels
of κ-complete l-homomorphisms. (This actually holds in the more
general context of l-groups.)

Definition 1.7. An embedding G ≤ H in Arch is called κ-coessential
if whenever α : H → K is κ-complete and α|G = 0, then α = 0.

Now since Arch is closed under products and sub-l-groups, given any
subset A of an object H in Arch and any κ, there is a smallest κ-ideal
in H containing A, which we shall denote by κH(A), or also by akH(A)
if κ = ω0 and A⊥⊥H if κ = ∞.

Then note that G ≤ H is κ-coessential if and only if κH(G) = H. For
κ = ω0, ω0-coessential is what we have been calling coessential (since
an ω0-complete l-homomorphism is simply an l-homomorphism).

Definition 1.8. An l-group G is called conditionally κ-complete if
whenever A ⊆ G, |A| < κ, and A is bounded above in G, then ∨A
exists in G.

A conditionally ∞-complete (respectively, conditionally ω1-complete)
l-group is usually called conditionally complete (respectively, condition-
ally σ-complete).

2. Morphisms which preserve weak order unit. This section is
preliminary to the main results in Section 3. Throughout this section,
G is an archimedean l-group and A is a subset of G.
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Proposition 2.0. Let φ : G → H be κ-complete, and let A ⊆ G.
Then φ(κG(A)) ⊆ κH(φ(A)).

Proof. Since κH(φ(A)) is a κ-ideal in H, κH(φ(A)) = ker (ψ)
for some κ-complete morphism ψ out of H in Arch (Proposition
1.6). Then ker (ψ ◦ φ) is a κ-ideal of G which contains A. Hence,
κG(A) ⊆ ker (ψ ◦ φ); that is, φ(κG(A)) ⊆ ker (ψ) = κH(φ(A)).

Corollary 2.1. Let φ : G → H be a κ-complete surjection. If there
is A ⊆ G with κG(A) = G, then κH(φ(A)) = H.

Proof. By Proposition 2.0, we have that φ(κG(A)) ⊆ κH(φ(A)). The
hypothesis then gives that H = φ(G) = φ(κG(A)) ⊆ κH(φ(A)) ⊆ H.

Proposition 2.2. Let ω1 ≤ κ ≤ ∞. If A ⊆ G and |A| < κ, then
κG(A) = A⊥⊥G.

Proof. Let A ⊆ G, |A| < κ, and suppose 0 ≤ g ∈ A⊥⊥G. Then by [8,
11.1.6], we have that g = ∨{g ∧ n|a| : n ∈ N, a ∈ A}. It then follows
that g ∈ κG(A) since κG(A) is a κ-ideal which contains g∧n|a| for each
n ∈ N , a ∈ A.

This improves [18, 24.7] which has |A| = 1, κ = ω1 and also [7, 3.3]
for any κ.

Corollary 2.3. Let φ : G → H be a κ-complete surjection for
any κ > ω0. If there is A ⊆ G, |A| < κ with A⊥⊥G = G, then
φ(A)⊥⊥H = H.

Proof. By Proposition 2.2, we have that κG(A) = A⊥⊥G and
κH(φ(A)) = φ(A)⊥⊥H . Now apply Corollary 2.1.

In particular, Corollary 2.3 shows that surjective σ-complete mor-
phisms preserve weak order units. Moreover, σ-complete cannot be
dropped in this hypothesis.

Example. Consider φ : C[0, 1] → R defined by φ(f) = f(0) for



ARCHIMEDEAN LATTICE-ORDERED GROUPS 1329

every f ∈ C[0, 1]. Let e(x) = x for each x ∈ [0, 1]. Then e is a weak
unit in C[0, 1] and φ is a surjection, but φ(e) = e(0) = 0 is not a weak
unit in R.

Definition 2.4. An l-group G has the principal projection property,
denoted ppp, if for every u ∈ G, G = u⊥⊥ ⊕ u⊥. (One also says, “G is
projectable.”) Here ⊕ denotes internal direct sum.

We note that every conditionally σ-complete l-group has ppp and is
archimedean [8, 11.2.3].

We now consider κ-coessential embeddings and the role of weak order
units.

Proposition 2.5. For any κ, suppose G ≤ H is a κ-coessential κ-
complete embedding and H is laterally σ-complete and has ppp. If there
is countable A ⊆ G with κG(A) = G, then κH(A) = H so that H has
a weak unit.

Lemma 2.6 [6, 2.3(c)]. If an l-group H has ppp and A is a
countable subset of H, then there is countable, pairwise disjoint B with
B⊥H = A⊥H .

Proof of Proposition 2.5. Since κG(A) = G, we have G ⊆ κH(A) by
Proposition 2.0. Now, since G ≤ H is κ-coessential, the only κ-ideal in
H that contains G is H itself, so that κH(A) = H. Hence, A⊥⊥H = H,
and thus A⊥H = (0). Since H has ppp, there is countable pairwise
disjoint B with B⊥H = (0) by Lemma 2.6. Then since H is laterally
σ-complete, (∨B) exists and is a weak unit in H.

Corollary 2.7. Suppose G ≤ H is a coessential embedding and H
is laterally σ-complete with ppp. If there is countable A ⊆ G with
akG(A) = G, then akH(A) = H, so that H has a weak unit.

Proof. Take κ = ω0 in Proposition 2.5.

Corollary 2.8. Let G ≤ H be a coessential embedding. If there is
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u ∈ G with akG(u) = G, then akH(u) = H, so that u is a weak unit in
H.

Proof. Since akG(u) = G, we have G ⊆ akH(u) by Proposition 2.0.
Now G ≤ H is coessential, so the only archimedean kernel in H that
contains G is H. Hence, akH(u) = H, and thus, u⊥⊥ = H.

Corollary 2.8 shows that, in particular, if u is a strong unit in G
(an element u in G with the property that (u)G = G) and G ≤ H is
coessential, then u is a weak unit in H.

3. When βκ
A(G) has weak order unit. In this section, we work

in the category Arch. Let G ≤ H be a coessential embedding, and let
H be laterally σ-complete with ppp. The next proposition provides an
answer to the general question: When does H have a weak unit?

Proposition 3.0. Let G ≤ H be a coessential embedding, and
let H be laterally σ-complete with ppp. The following statements are
equivalent:

(1) H has a weak unit.

(2) There is countable A ⊆ G with κH(A) = H for any uncountable
cardinal number κ.

(3) There is countable A ⊆ G with A⊥⊥ = H.

If H is actually an epicompletion of G, then the following statement
is equivalent to those above:

(4) There is countable A ⊆ G with akH(A) = H.

Proof. To show that (1) implies (2) and (1) implies (4), we first prove
the following lemma.

Lemma 3.1. In Arch, G ≤ H is coessential if and only if for every
h ∈ H, there is countable A ⊆ G with h ∈ akH(A).

Proof. Suppose G ≤ H is coessential. Then H = akH(G) =
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∪α<ω1Gα. We proceed by induction on α.

If h ∈ G0, then there is a ∈ G with |h| ≤ a and clearly h ∈ akH(a).

Let h ∈ Gα and suppose the conclusion holds for all elements of
Gβ, for each β < α. If α is a limit ordinal, then there is nothing to
prove. If α = β + 1, then there is {hn : n ∈ N} ⊆ Gβ and v ∈ H
with hn → h r.u. with regulator v. Since hn ∈ Gβ for each n, there
is countable An ⊆ G with hn ∈ akH(An). Let A = ∪nAn. Then A is
countable and hn ∈ akH(An) ⊆ akH(A) for all n. Since hn → h r.u.,
then h ∈ {hn : n ∈ N}′H ⊆ akH(∪nhn), and since ∪nhn ⊆ akH(A),
then akH(∪nhn) ⊆ akH(A). Hence, h ∈ akH(A). Invoking induction
concludes the proof.

The converse is trivial.

(1) implies (2). Suppose u is a weak unit in H. Since G ≤ H is
coessential, there is countable A ⊆ G with u ∈ akH(A) ⊆ κH(A) by
Lemma 3.1. Then κH(u) = u⊥⊥H = H, by Proposition 2.2, since u is
a weak unit; whence, κH(A) = H.

(2) implies (3) and (4) implies (2) since akH(A) ⊆ κH(A) ⊆ A⊥⊥H

for any uncountable cardinal κ.

To show that (3) implies (1), take countable A ⊆ G with A⊥⊥H = H.
Since H has ppp, disjointify A, by Lemma 2.6. Then there is countable,
pairwise disjoint B ⊆ H with A⊥H = B⊥H = (0). Since H is laterally
σ-complete, ∨B exists in H and is a weak unit.

Now suppose H is actually an epicompletion of G.

Then (1) implies (4). Let H be an Arch epicompletion of G with weak
unit u. By Lemma 3.1, there is countable A ⊆ G with u ∈ akH(A)
since the embedding of G in H is coessential. Since H has weak unit
u, H is W-epicomplete and, hence, H ∼= D(X) for some basically
disconnected, compact, Hausdorff space X, with u �→ 1 [4, 3.9]. Hence
H is an f -ring [8, 9.1.2], with identity a weak unit. By [3, 8.5.5], [10,
p. 62], if H is an archimedean f -ring with identity u a weak unit, then
(u)′H = akH(u) = H. It then follows that akH(A) = H.

One cannot conclude that statement (4) is equivalent to the others if
H is not epicomplete, since akH(u) need not be all of H.

Upon replacing the generic epicompletion H in Proposition 3.0 by the
specific one, βκ

A(G), the criteria for having a weak unit can be refined
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considerably to involve only G.

Theorem 3.2. Let G and κ be given. The following statements are
equivalent:

(1) βκ
A(G) has a weak unit.

(2) There is countable A ⊆ G with κG(A) = G.

(3) If G ≤ H is a κ-coessential, κ-complete embedding and H is
laterally σ-complete, with ppp, then H has a weak unit.

(4) If G ≤ H is a κ-coessential, κ-complete embedding and H is
epicomplete, then H has a weak unit.

(5) If H is an epicompletion of G in which G is κ-completely embed-
ded, then H has a weak unit.

(6) If φ : G→ H is a κ-complete, epic morphism with H epicomplete,
then H has a weak unit.

Proof. (2) implies (3) follows from Proposition 2.5.

(3) implies (4) is clear, since epicomplete H is always laterally σ-
complete and has ppp, by Theorem 1.0 and [8, 11.2.3].

(4) implies (5) is obvious; (5) implies (1) and (6) implies (1) are also
clear, since βκ

A(G) is an epicompletion of G in which G is κ-completely
embedded.

(1) implies (6). Suppose φ : G → H is a κ-complete, epic morphism
with H epicomplete. Then by the properties of βκ

A(G), there is a
surjection τ : βκ

A(G) → H (Theorem 1.2) and since all morphisms
out of epicomplete objects are σ-complete [14, 5.1], τ is σ-complete.
Now, if e is a weak unit in βκ

A(G), it follows by Corollary 2.3 that τ (e)
is a weak unit in H.

It remains now only to show that (1) implies (2).

Suppose βκ
A(G) has weak unit. Then, by Proposition 3.0, there is

countable A ⊆ G with akβκ
A(G)(A) = βκ

A(G). Now let 〈A〉 denote the
sub-l-group of G generated by A. We shall show that κG(〈A〉) = G
(i.e., 〈A〉 ≤ G is κ-coessential) from which it follows that κG(A) = G.
Toward that end, let α : G → H be a κ-complete morphism in Arch
with α|〈A〉 = 0, and let ε : H ↪→ β∞

A (H) be the embedding of H into
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the epicompletion β∞
A (H). Then ε ◦ α : G → β∞

A (H) is a κ-complete
morphism out of G to epicomplete β∞

A (H). By the universal mapping
property of βκ

A(G), there is τ : βκ
A(G) → β∞

A (H) so that τ |G = ε ◦ α.
Now 〈A〉 ≤ βκ

A(G) is coessential (i.e., akβκ
A(G)(〈A〉) = βκ

A(G) since
akβκ

A(G)(A) = βκ
A(G) ) and τ |〈A〉 = (ε ◦ α)|〈A〉 = 0, so that τ = 0.

Hence, τ |G = ε ◦ α = 0 and since ε is one-to-one, we have that α = 0.
Therefore, κG(〈A〉) = G; whence, κG(A) = G.

The proof of Theorem 3.2 is now complete. For the interested reader,
we provide a proof of (1) implies (4).

(1) implies (4). Suppose G ≤ H is a κ-coessential, κ-complete
embedding and H is epicomplete. Factor G ≤ H into G ≤ K ≤ H,
so that G ≤ K is epic and K ≤ H is extremal monic [14, 2.1].
Since K is an extremal subobject of epicomplete H, K is epicomplete
(Theorem 1.0) and sinceG ≤ H is κ-complete andK ≤ H is one-to-one,
G ≤ K is κ-complete [13]. Hence, there is surjective τ : βκ

A(G) → K
by the mapping properties of βκ

A(G). Since βκ
A(G) has weak unit, say

e, then τ (e) is a weak unit in K by [14, 5.1] and the remark after
Corollary 2.3. Now K ≤ H is κ-coessential (as the second factor
of the κ-coessential embedding G ≤ H) and is σ-complete, since K
is epicomplete [14, 5.1]. It then follows that τ (e) is a weak unit in
H. First, since K is epicomplete, K is an archimedean f -ring, so
by [3, 8.5.5], [10, p. 62] and by Proposition 2.0, K = akK(τ (e)) ⊆
akH(τ (e)) ⊆ κH(τ (e)). Moreover, K ≤ H κ-coessential implies that
κH(τ (e)) = H; whence, τ (e) is a weak unit in H.

Corollary 3.3. The following statements are equivalent about G:

(1) βω0
A (G) has a weak unit.

(2) There is countable A ⊆ G with akG(A) = G.

(3) If H is an epicompletion of G, then H has a weak unit.

Proof. Take κ = ω0 in Theorem 3.2.

Corollary 3.4. Let κ > ω0. The following statements are equivalent
about G.

(1) β∞
A (G) has a weak unit.
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(2) βκ
A(G) has a weak unit for every κ.

(3) There is countable A ⊆ G with A⊥⊥ = G.

Proof. By Theorem 3.2, for κ = ∞, β∞
A (G) has a weak unit precisely

when there is countable A ⊆ G with A⊥⊥ = G. Now this is precisely
the condition that βκ

A(G) has a weak unit for every κ > ω0, since any
A ⊆ G with |A| < κ has A⊥⊥ = κG(A) by Proposition 2.2.

However, for the case κ = ω0, this condition is necessary but not
sufficient. We give an example of such a G in the next section.

Proposition 3.5. Let κ be an infinite cardinal number or the symbol
∞, and let e be a weak unit in G. Then e is a weak unit in βκ

A(G)
precisely when κG(e) = G.

Proof. If κG(e) = G, then κBκ
A(G)(e) = βκ

A(G), by Proposition 2.5;
whence, e is a weak unit in βκ

A(G).

Conversely, if e is a weak unit in βκ
A(G), then akβκ

A(G)(e) = βκ
A(G)

by [3, 8.5.5], [10, p. 62], since βκ
A(G) is an archimedean f -ring. It

then follows from the proof of (1) implies (2) in Theorem 3.2 that
κG(e) = G.

In [14] it is shown that the construction of βκ
A(G) in Arch may also be

applied to any G in the category W to yield canonical epicompletions,
which we shall denote βκ

W(G) for each κ. These W-epicompletions
have properties analogous to properties of their corresponding Arch
epicompletions. In order to distinguish which category we are in, we
shall write βκ

W(G) for the W-epicompletion of any G in W .

Corollary 3.6. Let G be an archimedean l-group with a weak unit
e and let ω1 ≤ κ ≤ ∞. Then e is also a weak unit in βκ

A(G) so that
βκ
A(G) ∼= βκ

W(G) over G.

Proof. Since e⊥⊥G = κG(e) = G (Proposition 2.2), we have that e is
a weak unit in βκ

A(G) by Proposition 3.5. The result now follows by
the uniqueness of these objects.
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Corollary 3.6 need not hold for κ = ω0, however, as is illustrated in
the next section.

4. G with weak unit for which βω0
A (G) has no weak unit. We

now present an example of an archimedean l-group with a weak unit
for which βω0

A (G) has no weak unit. Hence, while the condition that
there is countable A ⊆ G such that A⊥⊥ = G is necessary in ensuring
that βω0

A (G) has a weak unit, it is not sufficient. As a consequence, we
have a G ∈ W for which βω0

A (G) is not isomorphic to βω0
W (G) over G.

Example. For every r ∈ [0, 1], let sr(x) = 1/|x − r|. Let G
be the archimedean l-group in D[0, 1] generated by {sr : r ∈ [0, 1]}
and all the constant functions. Let the constant function 1 be the
distinguished weak order unit in G. Note, for each r ∈ [0, 1], sr is a
continuous [−∞,∞]-valued function on [0, 1] which attains a maximum
and minimum.

We note that, while D[0, 1] is not an l-group, it is a lattice. In
generating the l-group G in D[0, 1], one need only be concerned with
adding two functions g, h ∈ G. The sum of two functions is not difficult
to compute when one notes that any function g ∈ G is simply a finite
expression, in all the operations, of the form

g =
∧

i

∨

j

∑

k

(αijksrijk
+ βijk).

By Corollary 3.3, we show that βω0
A (G) has no weak unit by showing

that whenever A is a countable subset of G, then akG(A) �= G.

We first notice the following:

(1) For every g ∈ G, g−1(∞) is finite since s−1
r (∞) is finite, for any

r ∈ [0, 1].

(2) For every g ∈ G, there is a neighborhood Ur of r and k ∈ N+

such that |g| ≤ ksr on Ur.

(3) If g ∈ G and g(r) ∈ R, then there is a neighborhood Vr of r with
|g| ≤ sr on Vr.

Let A be a countable subset of G. Let I be the l-ideal generated by
all st, where t ∈ ∪{a−1(∞) : a ∈ A} ≡ A−1(∞). (If A consists only
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of constant functions, so that A−1(∞) is empty, let I be the l-ideal
generated by the constant function 1.)

Now A−1(∞) is countable, since A is countable, and a−1(∞) is finite
for each a ∈ A. Then clearly A ⊆ I. For, each a ∈ A is a finite
combination of sr’s and constant functions. So if a(r) = ∞, for some
r ∈ [0, 1], then sr must appear in the expression of a and sr(r) = ∞.
All constant functions also belong to I, since each sr is bound away
from 0 and ksr ≥ 1 for some k ∈ N . If A consists only of constant
functions, so that A−1(∞) is empty, then I is generated by the constant
function 1 and therefore contains A.

We show that if r /∈ A−1(∞), then sr /∈ akG(I); whence, sr /∈ akG(A),
so that akG(A) �= G.

Write akG(I) = ∪α<ω1Iα. We proceed by transfinite induction on α
to show that r /∈ A−1(∞) implies that sr /∈ Iα. We use the following
fact that is not difficult to show: sr ∈ Iα if and only if there is some
g ∈ Iα with r ∈ g−1(∞).

Clearly, sr /∈ I. Suppose sr /∈ Iα for all α < β. If β is a limit ordinal,
then sr /∈ Iβ = ∪α<βIα. If β = α + 1 and sr ∈ Iα+1 \ Iα, then there is
{fn : n ∈ N} ⊆ Iα and u ∈ G so that fn → sr r.u. with regulator u.
Since sr /∈ Iα, then for all g ∈ Iα, r /∈ g−1(∞). Hence, r /∈ f−1

n (∞) for
all n. Assume fn > 0 for each n ∈ N . Now there is a neighborhood Ur

of r and k ∈ N+ with u ≤ ksr on Ur by remark (2).

Let ε = 1/2k and choose n so that |fn − sr| ≤ 1/2k · u. Now on Ur,
|fn − sr| ≤ 1/2k · u ≤ 1/2k · ksr = 1/2sr. There is a neighborhood Vr

of r so that fn ≤ sr on Vr by remark (3). Thus, on T = Ur ∩ Vr, we
have sr − fn ≤ 1/2sr; or 1/2sr = sr − 1/2sr ≤ fn on T . However, this
cannot occur, since sr(r) = ∞ while fn(r) ∈ R.

The proof then follows by invoking induction.

5. The partially ordered set A(G)/ ∼ of arch epicompletions
of G. In this section we fix an archimedean l-group G and continue
our study of Arch epicompletions of G. We first consider the class of
all Arch epicompletions of G, equipped with a quasi-order. Then we
define an equivalence relation on this class and consider the resulting
partially ordered set. We then give results about maximal and minimal
elements in this poset. Among other things, we show that this poset
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has a maximum element but no minimum element.

The material presented here closely models the work done by Ball
and Hager in the category W in [5, Sections 8, 9].

The following result is used in what follows and is the reason that τ
is a surjection if θ is epic in Theorem 1.2.

Proposition 5.0 [11, 1.14]. In Arch, the homomorphic image
of an epicomplete object is epicomplete. That is, the class of Arch
epicomplete objects is closed under Arch surjections.

LetG be a fixed archimedean l-group, and let A(G) denote the class of
all Arch epicompletions φ : G→ E of G. We shall write (φ,E) ∈ A(G).
If (φ1, E1) and (φ2, E2) ∈ A(G), we write (φ1, E1) ≥ (φ2, E2) if there
is h : E1 → E2 with h ◦ φ1 = φ2. We note that such an h is unique
(respectively, surjective) since φ1 (respectively, φ2) is an epimorphism.
Since ≥ is both reflexive and transitive, ≥ is a quasi-order on A(G).

Define a relation ∼ on A(G) by declaring that (φ1, E1) ∼ (φ2, E2) if
(φ1, E1) ≥ (φ2, E2) and (φ2, E2) ≥ (φ1, E1). Then (φ1, E1) ∼ (φ2, E2)
means there is h : E1 → E2 and k : E2 → E1 with h ◦ φ1 = φ2 and
k ◦φ2 = φ1, respectively. It then follows that h is an isomorphism over
G. Now ∼ is an equivalence relation on A(G) and A(G)/ ∼ is a set,
since Arch is co-well-powered [14, 2.1], which is partially ordered by
[(φ1, E1)] ≥ [(φ2, E2)] if (φ1, E1) ≥ (φ2, E2).

Henceforth, we will focus on the poset A(G)/ ∼ but shall suppress
mention of the equivalence classes. Instead, we will think of the
representatives of the equivalence classes as the elements of this poset.

An element in a partially ordered set is called maximal (respectively,
minimal) if it is not strictly bounded above (respectively, below) by
any other member of the set. An element which is larger (respectively,
smaller) than all other elements in the partially ordered set is called
the maximum (respectively, minimum) element of the poset.

Let (ε, βκ
A(G)) denote the unique (up to isomorphism over G) epi-

completion of G in which G is κ-completely embedded and which lifts
all κ-complete morphisms out of G to epicomplete objects in Arch.

Proposition 5.1. (ε, βω0
A (G)) is the maximum element in A(G)/ ∼.
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Proof. Let (φ,E) ∈ A(G). Then there is τ : βω0
A (G) → E so

that τ ◦ ε = φ, by the universal mapping property of βω0
A (G). Thus,

(ε, βω0
A (G)) ≥ (φ,E) for any (φ,E) ∈ A(G).

Proposition 5.2. (1) (ε, βκ
A(G)) is the minimum element in

A(G)/ ∼ with the property of lifting κ-complete morphisms out of G to
epicomplete objects.

(2) (ε, βκ
A(G)) is the maximum element in A(G)/ ∼ in which G is

κ-completely embedded.

Proof. (1) Let (φ,E) ∈ A(G) have the property that it lifts κ-
complete morphisms out of G to epicomplete objects. Then since G
is κ-completely embedded in βκ

A(G), there is τ : E → βκ
A(G) with

τ ◦ φ = ε. Hence, (φ,E) ≥ (ε, βκ
A(G)) for all (φ,E) ∈ A(G) with this

property.

(2) Let (φ,E) ∈ A(G) with φ κ-complete. Then there is τ : βκ
A(G) →

E with τ ◦ ε = φ, by the universal mapping property of βκ
A(G). Hence,

(ε, βκ
A(G)) ≥ (φ,E) for all (φ,E) ∈ A(G) with φ κ-complete.

Let G be a sub-l-group of an archimedean l-group H. Then the
embedding G ≤ H is called essential (or one says that G is large in H)
if every nontrivial l-ideal of H intersects G nontrivially or, equivalently,
if every l-homomorphism of H which is one-to-one on G is one-to-one
on H.

In [14, 7.4] it is shown that, up to isomorphism over G, β∞
A (G) is the

unique essential epicompletion of G.

Proposition 5.3. (ε, β∞
A (G)) is, up to isomorphism over G, the

unique epicompletion of G in which G is completely embedded.

Proof. Suppose (φ,E) ∈ A(G) with φ complete. Then, by the
universal mapping property of β∞

A (G), there is τ : β∞
A (G) → E with

τ ◦ ε = φ. Since φ is epic, τ is onto, and since τ ◦ ε = φ is one-to-one
and ε is essential, τ is one-to-one. Hence, τ is an isomorphism over G.

Proposition 5.4. Let (φ,E) be an Arch epicompletion of G. φ is
essential if and only if (φ,E) is minimal in A(G)/ ∼.
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Proof. Let φ be essential and suppose (φ,E) ≥ (δ,D) for some
(δ,D) ∈ A(G). Then there is τ : E → D so that τ ◦ φ = δ. Since δ is
epic, τ is onto, and since τ ◦ φ = δ is one-to-one and φ is essential, τ is
one-to-one. Hence, τ is an isomorphism over G, so that (φ,E) ∼ (δ,D).

Conversely, suppose ψ : E → H in Arch has ψ◦φ one-to-one. Let ψ′ :
E → ψ(E) be the range restriction of ψ. Then (ψ′ ◦ φ, ψ(E)) ∈ A(G),
by [11, 1.14] and (φ,E) ≥ (ψ′ ◦ φ, ψ(E)), by definition. Since (φ,E) is
minimal, we must have (ψ′ ◦φ, ψ(E)) ∼ (φ,E) which implies that ψ′ is
an isomorphism over G since φ is epic. Hence, ψ is one-to-one.

Proposition 5.5. Let (φ,E) ∈ A(G). The following statements are
equivalent:

(1) (φ,E) is minimal in A(G)/ ∼.
(2) φ is essential.

(3) φ is complete.

(4) There is an isomorphism h : β∞
A (G) → E so that h ◦ ε = φ.

Proof. (1) and (2) are equivalent by Proposition 5.4. (2) implies (3)
since all essential embeddings are complete [8, 12.1.12]. (3) implies
(4) since (ε, β∞

A (G)) is the unique epicompletion of G in which G is
completely embedded (Proposition 5.3). Finally, (4) implies (2) since
ε and h are both essential.

While Proposition 5.5 shows that (ε, β∞
A (G)) is minimal in A(G)/ ∼,

it is usually not minimum. In [5, 9.11], Ball and Hager use results in W
to show that if G = C[0, 1] with weak unit 1, then β∞

W(G) is not least
in the poset of W-epicompletions of G, equipped with the equivalence
relation ∼. Now since 1 is a strong unit in C[0, 1], 1 is a weak unit in
all Arch epicompletions of C[0, 1] by the remark after Corollary 2.8, so
all Arch epicompletions of C[0, 1] are W-epicompletions. The converse
is also true, since every W-epic morphism into an “algebra” is Arch
epic [3, 8.5.2]. Hence, β∞

A (G) is isomorphic to β∞
W(G) over G, and it is

not least in A(G)/ ∼.

6. Remarks. An element u in an l-group G is a strong unit if
(u)G = G. For an element u ∈ G, the property akG(u) = G is stronger
than u being a weak unit and weaker than u being a strong unit, since
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(u)G ⊆ akG(u) ⊆ u⊥⊥G. We note that while it is always the case,
by Proposition 2.2, that κG(u) = u⊥⊥G (for any uncountable cardinal
number κ), it is possible to have (u)G ⊂ akG(u) and akG(u) ⊂ u⊥⊥G.

Now κ-ideals have been studied to some degree (see [7]). For κ = ∞,
there is a very nice description of κG(A) [8, 11.1.6]. That is, if G
is an archimedean l-group and A ⊆ G, then for 0 ≤ b ∈ A⊥⊥,
b = ∨a∈A,n∈N (b∧n|a|). When κ = ω0, κG(A) refers to the archimedean
kernel generated by A in G, and in this case and all cases κ < ∞, we
have no such useful description involving suprema of elements of (A).
Recall that the description we do have of akG(A) (see page 4) involves
transfinite induction, and calculation is difficult because it requires
having a good understanding of relative uniform convergence. Hence,
having an alternative description of akG(A) or κG(A) for uncountable κ,
which is easier to work with, would be useful. In particular, it would be
helpful in studying elements u ∈ G with the property that akG(u) = G.
These are called near units in [15]. We note that Arch surjections
preserve near units by Corollary 2.1 for κ = ω0. Exploring what
importance, if any, such elements hold in the theory of archimedean
l-groups seems interesting.
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