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CHARACTERIZING A CLASS OF WARFIELD
MODULES BY RELATION ARRAYS

RALF JARISCH, OTTO MUTZBAUER AND ELIAS TOUBASSI

Introduction. In this paper we examine the Warfield modules in a
class H with the property that the torsion submodule is a direct sum of
cyclics and the quotient modulo torsion is divisible of arbitrary rank.
We give necessary and sufficient conditions about when modules in H
are Warfield if their torsion-free rank is countable and the indicators of
torsion-free elements are exclusively of ω-type or exclusively of finite-
type. We give two examples to show that the conditions placed on
such modules cannot be eliminated. Indeed, we explicitly describe
two non-Warfield modules in the class H of torsion-free rank 2 where
the indicators of all torsion-free elements are either of finite-type
or of ω-type, respectively, but yet the modules do not satisfy the
aforementioned conditions. In addition we prove that a Warfield
module is equivalent to a simply presented module if the indicators
of torsion-free elements are all of ω-type or all of finite-type. We show
that this result is in some sense the best possible by giving an example
of a Warfield module in H which is not simply presented whose torsion-
free rank is 2 and contains indicators of both the finite and ω-type.
This example complements one given by Warfield of a mixed module of
torsion-free rank 1. The proofs of our results rely on the description of
these modules by generators and relations, their corresponding relation
arrays, and the results established in [3], [4], [5], [6].

1. Notation. Let N denote the set of natural numbers and
N0 = N ∪ {0}. Let R denote a discrete valuation domain, i.e., a local
principal ideal domain with prime p and quotient field F. All modules
are understood to be R-modules.

We now recall from [5] the definition of a module by generators and
relations. Let G be a module in the class H of torsion-free rank d
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with torsion submodule tG = ⊕i∈N ⊕v∈Ii
Rxv

i of isomorphism type
λ = (si | i ∈ N), where si = |Ii| and annxv

i = piR for i ∈ N, v ∈ Ii.
Then the quotient module G/tG is a vector space over F of dimension
d. Let I be an index set of cardinality d. We call the subset

B = {xv
i , a

k
i−1 | i ∈ N, v ∈ Ii, k ∈ I} ⊂ G

a basic generating system of G if

(1) {xv
i | i ∈ N, v ∈ Ii} is a basis of tG with annxv

i = piR for all
i ∈ N, v ∈ Ii,
(2) G/tG = ⊕k∈IFāk0 ,

where āki−1 = aki−1 + tG and pāki = āki−1 for all i ∈ N, k ∈ I. Note
that G = 〈xv

i , a
k
i−1 | i ∈ N, v ∈ Ii, k ∈ I〉. It follows that for every pair

(i, k) ∈ N× I the equation

(1.1) paki = aki−1 +
∑
j∈N

∑
u∈Ij

αk,u
i−1,j x

u
j

holds true for some elements αk,u
i−1,j , j ∈ N, u ∈ Ij . Moreover, for every

fixed pair (k, i) we have αk,u
i,j ∈ pjR for almost all pairs (j, u). The

latter property is called row finiteness in j and u. A relation array
(αk,u

i−1,j) is called restricted if αk,u
i−1,j ∈ (R \ pR) ∪ {0} for all k ∈ I, all

i, j ∈ N and all u ∈ Ij . The array (αk,u
i−1,j) is called a relation array of

format (λ, d). Note that two relation arrays corresponding to different
basic generating systems may be different but are of the same format.

Let G be an arbitrary R-module with g ∈ G. As in [1, Section 37], let
h∗(g) denote the generalized p-height of g in G. Then the p-indicator
of g is given by

H(g) = (h∗(g), h∗(pg), . . . , h∗(png), . . . ).

We use the terms gap and equivalence of indicators as in [1, Section
103]. If H and K are any indicators then we will write H ∼= K to
express their equivalence. A module G of torsion-free rank 1 has a
unique equivalence class of indicators, denoted by H(G), the indicator
of G.

An indicator is called of finite-type if all the entries are natural
numbers and there are infinitely many gaps; it is called of ω-type if
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there is an entry ω + k, k ∈ N0, with no gaps beyond this entry; and
it is called of ∞-type if there is an ∞ in the indicator.

Given two strictly increasing functions i : N0 → N0 and j : N0 → N
where j(l)− i(l) is monotonically increasing and nonnegative, then we
obtain an array (αi,j) defined by

(1.2) αi(l),j(l) = 1 and αi,j = 0 otherwise.

We will call such an array concave. It is called strictly concave if
j(l)−i(l) is strictly increasing, and diagonal if j(l) = i(l). Using strictly
concave relation arrays one can define an indicator H = (β0, β1, . . . ) of
finite-type with gaps at g0 < g1 < · · · where gl = j(l)− i(l)− 1 and

(1.3) βn =
{
j(l)− 1 for n = gl,
j(l)− 1 + n− gl for gl < n < gl+1.

Note that this indicator inherits the given functions i(l) and j(l). In
this setting we call the function i(l) the height difference function and
j(l) the Ulm-Kaplansky exponent function.

A module is called strictly reduced if it has no elements of infinite
height, i.e., the first Ulm submodule is zero. Let G be a strictly reduced
module in the class H with a basic generating system B = {xv

i , a
k
i−1 |

i ∈ N, v ∈ Ii, k ∈ I} and a corresponding restricted relation array
(αk,u

i−1,j). Observe that for fixed k we may write (αk,u
i−1,j) as an ω × ω-

matrix with |Ij |-tuples as entries in the jth column, i.e.,

(αk,u
i−1,j)=




(αk,u
0,1 | u∈I1) (αk,u

0,2 | u∈I2) · · · (αk,u
0,j | u∈Ij) · · ·

(αk,u
1,1 | u∈I1) (αk,u

1,2 | u∈I2) · · · (αk,u
i,j | u∈Ij) · · ·

...
...

...
...

...
(αk,u

i,1 | u∈I1) (αk,u
i,2 | u∈I2) · · · (αk,u

i,j | u∈Ij) · · ·
...

...
...

...
...



.

Since the relation array (αk,u
i−1,j) is row finite in j and in u, this matrix

is row finite and has row finite tuples as entries.

Let k ∈ I be fixed, and let H(ak0) = Hk = (βk
0 , β

k
1 , β

k
2 , . . . ) be

an indicator with finite entries, where jk(n) = βk
gn

+ 1 is the Ulm-
Kaplansky exponent and ik(n) = βk

gn
−gn the height difference function.
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We define an infinite tuple

Ak(α) = A(α,Hk) = (�kj | j ∈ N)

with entries �kj given by

�kj =
{
(αk,u

ik(n),jk(n) | u ∈ Ijk(n)) if j = jk(n) for some n ∈ N0,
0 otherwise.

Let
A(α) = (Ak(α) | k ∈ I) = (�kj )k,j

be the |I| × ω-matrix with rows Ak(α) = A(α,Hk) = (�kj | j ∈ N),
k ∈ I. We say that A(α) is the gap-matrix of G relative to (αk,u

i−1,j).
The choice of notation here is motivated by the correlation between the
nth gap of the indicator H(ak0) and the nth gap-tuple of H(ak0).

For a fixed j ∈ N, let Ji ⊆ I be the subset consisting of all elements
k such that the entry �kj of A(α) is nonzero, i.e.,

Jj = {k ∈ I | �kj �= 0} = {k ∈ I | j = jk(n) for some n ∈ N0}.

If Jj �= ∅, then for every k ∈ Jj the number n satisfying jk(n) = j is
fixed. For each k ∈ Jj we define a torsion element tkj (α) = tj(α,H

k)
by

tkj (α) =
∑
u∈Ij

αk,u
ik(n),jx

u
j ,

where j = jk(n) as above. We call tkj (α) the gap-element relative to
ak0 . Observe that for every k ∈ Jj the R-module Rtkj (α) is a cyclic
torsion module with annihilator pjR, since the relation array (αk,u

i−1,j)
is restricted. Furthermore, the set {tkj (α) | k ∈ Jj} generates a torsion
module

∑
k∈Jj

Rtkj (α) ⊆ tG such that

(1.4)
∑
j∈N

∑
k∈Jj

R�kj /p
jR�kj

∼=
∑
j∈N

∑
k∈Jj

Rtkj (α).

An independent set X of torsion-free elements in a module M is called
a basis if M/〈X〉 is torsion. A basis X is called a decomposition basis
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if whenever {x1, . . . , xn} is a subset of X and r1, . . . , rn are elements
of R,

h∗(r1x1 + · · ·+ rnxn) = min
i

(
h∗(rixi)

)
.

We now define a generalization of the concept of decomposition bases
to apply to torsion modules. Let G be an R-module, and let X ⊂ G be
an independent subset. We will say the set X is height independent
if, for all linear combinations

∑
x∈X rxx we have h∗(

∑
x∈X rxx) =

minx∈X(h∗(rxx)). Note that independent sets can fail to be height
independent. Let x and y be two independent elements in M of
various heights. Then the set {x, x+ y} is independent but not height
independent.

As in [8], we call a module simply presented if it can be defined in
terms of generators and relations in such a way that the only relations
are of the form px = y or px = 0. Those modules which are direct
summands of simply presented modules are called Warfield modules.

2. Referenced results. This paper references results of the authors
in [3], [4], [5]. To facilitate its readability we state several results from
these papers.

Lemma 2.1 [4, 2.1]. Every module in the class H has a basic
generating system with a corresponding restricted relation array.

Moreover, if a module G in the class H has a basic generating system
B = {xv

i , a
k
i−1 | i ∈ N, v ∈ Ii, k ∈ I} with a corresponding relation

array (αk,u
i−1,j) then there are torsion-free elements b

k
i−1 ∈ aki−1 + tG,

i ∈ N, k ∈ I, such that the set {xv
i , b

k
i−1 | i ∈ N, v ∈ Ii, k ∈ I} is a

basic generating system of G with a corresponding restricted relation
array that is similar to (αk,u

i−1,j).

Lemma 2.2 [4, 2.2]. Let G be a module in the class H with
basic generating system B = {xv

i , a
k
i−1 | i ∈ N, v ∈ Ii, k ∈ I} and

corresponding restricted relation array (αk,u
i−1,j), and let H = (β0 =

0, β1, β2, . . . ) be an indicator of finite-type with gaps at 0 = g0 < g1 <
g2 < · · · . Then H(ak0) = H for a fixed k ∈ I if and only if for every
n ∈ N0 the following hold true.
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(1)
(
αk,u

i,j | u ∈ Ij
)
= 0 whenever i < βgn+1 − gn+1 and j > gn +1+ i;

(2)
(
αk,u

βgn−gn,βgn+1 | u ∈ Iβgn+1

) �= 0.

The above establishes a one-to-one correspondence between the set
of strictly concave relation arrays and the set of indicators of finite-
type. The tuple (αk,u

i(l),j(l) | u ∈ Ij(l)) is called the lth gap-tuple of α
corresponding to H.

Let H1 be the subclass of H consisting of the modules in H of torsion-
free rank one.

Corollary 2.3 [4, 3.6]. A module in the class H is simply presented
if and only if it is isomorphic to a direct sum of modules in the class
H1.

Corollary 2.4 [4, 3.7]. A module in the class H is Warfield if and
only if it is a direct sum of a countably generated Warfield module in
the class H, a direct sum of modules in the class H1 and a direct sum
of cyclics.

Lemma 2.5 [3, 3.6]. Let G be a module in the class H1 with an
indicator of finite-type and {bi−1, x

v
i | i ∈ N, v ∈ Ii} a basic generating

system with relation array β. Then for each l ∈ N0 and all sufficiently
large k we have

h∗(plb0) = h∗
( ∑

j∈N

∑
u∈Ij

k−1∑
s=0

βu
s,jp

s+lxu
j

)
.

Theorem 2.6 [3, 4.4]. For a reduced module G in the class H1 the
following are equivalent :

(1) pωG �= 0.

(2) The indicator of G is of ω-type.

(3) There is an element g ∈ G\{0} with h∗(g) = ω.
(4) pωG �= 0 is cyclic.
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3. Warfield modules.

Lemma 3.1. Let G be a module in the class H having a decomposi-
tion basis X. Then there is a basic generating system B = {xv

i , a
k
i−1 |

i ∈ N, v ∈ Ii, k ∈ I} of G with a corresponding restricted relation array
such that {ak0 | k ∈ I} = X.

Proof. The decomposition basis X = {ak0 | k ∈ I} is a maximal
independent set of torsion-free elements. Hence {xv

i , a
k
i−1 | i ∈ N, v ∈

Ii, k ∈ I} is a basic generating system where aki ∈ p−i(ak0 + tG) is any
representative. By Lemma 2.1 one can choose suitable representatives
modulo tG within the cosets p−i(ak0 + tG) to get a corresponding
relation array that is restricted.

We begin our consideration of the Warfield modules by examining
those whose zeroth Ulm factor is torsion. Recall that a torsion-free
module is called completely decomposable if it is a direct sum of rank
one modules. Furthermore, a submodule G of A is said to be pure,
if an equation nx = g is solvable in G, whenever it is solvable in the
whole module A. If A is a torsion-free module and S a subset, then the
intersection of all pure submodules containing S is the minimal pure
submodule that contains S; this intersection is called the pure hull of
S in A, cf. [1, Section 26].

Proposition 3.2. A module G of countable torsion-free rank, whose
zeroth Ulm factor is torsion and whose torsion submodule is a direct
sum of cyclics, is Warfield if and only if its first Ulm submodule is
completely decomposable. In particular, if G is reduced, it is Warfield
if and only if its first Ulm submodule is free.

Proof. Let G be a module of countable torsion-free rank, whose
zeroth Ulm factor is torsion and whose torsion submodule is a direct
sum of cyclics. Assume that pωG is completely decomposable with
decomposition basis {ak | k ∈ I}. Then by [1, Section 37], we obtain

h∗pωG

( ∑
k∈I

rka
k

)
= min

k∈I

(
h∗pωG(rka

k)
)
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for every linear combination
∑

k∈I rka
k. Since h∗G(g) = h∗pωG(g) + ω

for every g ∈ pωG, cf. [1, Section 79], we obtain

h∗G

( ∑
k∈I

rka
k

)
= h∗pωG

( ∑
k∈I

rka
k

)
+ ω

= min
k∈I

(
h∗pωG(rkak)

)
+ ω

= min
k∈I

(
h∗G(rka

k)
)
.

Furthermore, since G/pωG ∼= (G/〈ak | k ∈ I〉)/(pωG/〈ak | k ∈ I〉)
is torsion by assumption, and since pωG/〈ak | k ∈ I〉 is torsion
because {ak | k ∈ I} is a decomposition basis of pωG, the quotient
G/〈ak | k ∈ I〉 is torsion, too. Hence the set {ak | k ∈ I} is a
decomposition basis of G. Since G has countable torsion-free rank, and
since tG is a direct sum of cyclics, we may write G = G′ ⊕ T , where
T is a direct summand of tG and G′ is a countably generated module
which has the decomposition basis {ak | k ∈ I}. By [7, Theorem 12], it
follows that G′ is Warfield and hence so is G. If G is reduced, and if its
first Ulm submodule pωG is free, then pωG is in particular completely
decomposable. Thus, G is Warfield by the above.

Conversely, let G be Warfield. Then G has a decomposition basis
{ak | k ∈ I}. Since G/pωG is torsion, we may assume that ak ∈ pωG,
k ∈ I. Then we obtain

min
k∈I

(
h∗pωG(rka

k)
)
+ ω = min

k∈I

(
h∗G(rka

k)
)

= h∗G

( ∑
k∈I

rka
k

)

= h∗pωG

( ∑
k∈I

rka
k

)
+ ω

for every linear combination
∑

k∈I rka
k. Since pωG/〈ak | k ∈ I〉 is

torsion, we deduce that the set {ak | k ∈ I} is a decomposition basis
of pωG. Therefore, pωG is completely decomposable by its torsion-
freeness. In particular we have pωG = ⊕k∈I〈ak〉p

ωG
∗ where 〈ak〉pωG

∗ is
the pure hull of ak in pωG. In particular, if G is reduced, all of these
pure hulls are cyclic, and pωG is free.
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Example. As in [1, Section 3], let Zp be the localization of the
integers at p, and let Ẑp be the ring of p-adic integers.

For all indecomposable torsion-free Zp-modules H of rank 2 there is
a non-Warfield Zp-module G such that

(1) G/pωG is torsion,

(2) tG is a direct sum of cyclics,

(3) pωG ∼= H.

It is enough to construct such a local group G where tG ∼= G/pωG ∼=
⊕∞

i=1Zpxi with annxi = piZp. Let π =
∑∞

i=0 πip
i ∈ Ẑp be the

standard expansion of π, i.e., πi ∈ Z, where 0 ≤ πi < p. In particular,
let π be a unit in Ẑp, i.e., π0 �= 0. Let G be a Zp-module in H with a
basic generating system {xi, a

k
i−1 | i ∈ N, k = 1, 2} and corresponding

relation array α = (α1, α2) defined by

a1i−1,j =
{
1 if i− 1 = j

0 otherwise
,

α2
i−1,j =

{
πi−j−2 if i− j − 2 ≥ 0

0 otherwise
, i, j ∈ N.

Recall that in general we have the relations

piai+n − an =
∞∑

j=1

( i+n−1∑
s=n

αs,jp
s−n

)
xj

=
i+n−1∑
s=n

ps−n
∞∑

j=1

αs,jxj , i, n ∈ N0.

These relations yield the following

a1n = pia1i+n −
i+n−1∑

s=n
s≥2

ps−nxs−1,

a2n = pia2i+n −
i+n−1∑

s=n

ps−n
s−1∑
j=1

πs−j−1xj , i, n ∈ N0,

with the understanding that empty sums are 0. In particular, for n = 0,
we obtain ak0 = piaki for k = 1, 2 and all i ∈ N0. Therefore, h∗(ak0) ≥ ω,
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k = 1, 2. Hence 〈a10, a20〉 ⊆ pωG. For every n ∈ N0 consider the element
gn = a2n − ∑n

l=1 πn−la
1
l . First we show that gn ∈ pωG for all n. The

relations above enable us to write

gn = a2n −
n∑

l=1

πn−la
1
l

= pi
(
a2i+n −

n∑
i=1

πn−la
1
i+l

)
−

i+n−1∑
s=n

ps−n
s−1∑
j=1

πs−j−1xj

+
n∑

l=2

πn−l

i+l−1∑
s=l

ps−lxs−1

for all i, n ∈ N0. We will show that for every pair (i, n) ∈ N0 × N0

the sum of the last two terms is in piG. This implies gn ∈ pωG for all
n ∈ N0. Let

∑n
l=2 πn−l

∑i+l−1
s=l ps−lxs−1 =

∑i+n−2
m=1 λmxm. Then

λm =
min{n,m+1}∑

l=2

pm−l+1πn−l

= pm−1πn−2 + pm−2πn−3 + · · ·
+ pm−min{n,m+1}+1πn−min{n,m+1}.

Similarly, let
∑i+n−1

s=n ps−n
∑s−1

j=1 πs−j−1xj =
∑i+n−2

m=1 µmxm, then

µm =
i+n−1∑

s=max{n,m+1}
ps−nπs−m−1

= pi−1πi+n−m−2 + pi−2πi+n−m−3 + · · ·
+ pmax{n,m+1}−nπmax{n,m+1}−m−1.

For i−m ≥ 0 we have (λm − µm)xm = 0. If i < m, then

(λm−µm)xm =
(
pm−1πn−2 + pm−2πn−3 + · · ·+ piπi+n−m−1

)
xm

= pi
(
pm−i−1πn−2 + pm−i−2πn−3 + · · ·+ πi+n−m−1

)
xm.
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Hence
n∑

l=2

πn−l

i+l−1∑
s=l

ps−lxs−1 −
i+n−1∑
s=n

ps−n
s−1∑
j=1

πs−j−1xj

= pi
( n+i−2∑

m=i+1

( m−i−1∑
k=0

pkπn−k−2

)
xm

)
,

as necessary for gn ∈ pωG. Finally, since

pngn = pna2n −
n∑

l=1

πn−lp
na1l = a20 −

n∑
l=1

πn−lp
n−la10

= a20 −
( n−1∑

l=0

πlp
l

)
a10, n ∈ N0,

the pure hull of 〈a10, a20〉 in pωG equals

(3.1) 〈a10, a20〉p
ωG

∗ = 〈a10, a20, p−∞(a20 − πa10)〉Zp
,

cf. [1, Section 88, Example 5]. If π ∈ Ẑp \Zp, then pωG is a local Pon-
tryagin group, i.e., pωG is homogeneous and strongly indecomposable,
and therefore G is reduced. Moreover, G is non-Warfield.

Every indecomposable torsion-free Zp-module H of rank 2, or local
Pontryagin group, can be given in the form (3.1) where π is a p-adic
integer which is not rational, cf. [1, Section 88, Example 5]. Hence all
such H can be realized as pωG.

If π ∈ Zp, thenG is not reduced, and the divisible part ofG equals the
pure hull of a20 −πa10 in pωG. Then pωG = Ra10 ⊕F(a20 −πa10) ∼= R⊕F
is completely decomposable, and G is Warfield.

The proof of the analog of Proposition 3.2 to modules with indicators
of finite-type is much more extensive. We begin with a remark and a
technical lemma on computing heights.

Remark 3.3. Let T be a reduced torsion module, and let X ⊂
T [p] \ {0} be a subset such that for all linear combinations

∑
x∈X rxx

we have

(3.2) h∗
( ∑

x∈X

rxx

)
= min

x∈X

(
h∗(rxx)

)
.
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Then the set X is independent and in particular height independent.
Otherwise there is a nontrivial sum

∑
rxx = 0, contradicting (3.2),

since T is reduced.

For every x ∈ X, let yx ∈ T be such that x ∈ 〈yx〉. Clearly,
{yx | x ∈ X} is independent too.

Lemma 3.4. Let G be a strictly reduced module in the class H with
a basic generating system B = {xv

i , a
k
i−1 | k ∈ I, i ∈ N, v ∈ Ii} and

a corresponding restricted relation array (αk,u
i−1,j). Let ik : N0 → N0

be the height difference and jk : N0 → N the Ulm-Kaplansky exponent
function corresponding to H(ak0), k ∈ I. Then for every finite sum∑

k rka
k
0 there is a sufficiently large i such that

(3.3) h∗
( ∑

k

rka
k
0

)
= h∗

( ∑
k

rk
∑

j>h∗(rkak
0)

∑
u∈Ij

i−1∑
s=ik(nk)

psαk,u
s,j x

u
j

)
,

whenever the number nk satisfies jk(nk − 1) < h∗(rkak0) < jk(nk).

Proof. Let
∑

k rka
k
0 be a finite sum, and for every k let nk satisfy

(3.4) jk(nk − 1) < h∗(rkak0) < jk(nk).

Considering
∑

k rka
k
0 as a torsion-free generator of a modified basic

generating system, we infer by Lemma 2.5 the existence of some i ∈ N
such that

(3.5) h∗
( ∑

k

rka
k
0

)
= h∗

( ∑
j∈N

∑
u∈Ij

i−1∑
s=0

ps
( ∑

k

rkα
k,u
s,j

)
xu

j

)
.

For each k we have rk ∈ pm(k)R \ pm(k)+1R for some m(k) ∈ N0.
Then m(k) satisfies h∗(rkak0) − m(k) = ik(nk) by the definition of
the height difference function ik. Since h∗(rkak0) = h∗(pm(k)ak0) is
an entry in the indicator H(ak0) between h∗(pjk(nk−1)−ik(nk−1)ak0) and
h∗(pjk(nk)−ik(nk)−1ak0) by (3.4) and by (1.3) we conclude that

(3.6) jk(nk−1)− ik(nk−1) ≤ m(k) < jk(nk)− ik(nk).
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It follows that αk,u
s,up

s+m(k)xu
j = 0 if j ≤ jk(nk − 1)− ik(nk − 1) + s by

(3.6) or if s < ik(nk) and j > jk(nk −1)− ik(nk −1)+s by Lemma 2.2.
Since pmk divides rk we have

∑
k

rk
∑

j≤ik(nk)+m(k)

∑
u∈Ij

i−1∑
s=ik(nk)

psαk,u
s,j x

u
j = 0.

Therefore, we may write (3.5) as

h∗
( ∑

k

rka
k
0

)
= h∗

( ∑
k

rk
∑

j>ik(nk)+m(k)

∑
u∈Ij

i−1∑
s=ik(nk)

psαk,u
s,j x

u
j

)
,

and the proof is complete.

We now prove our result on when a module in H with indicators of
finite-type is Warfield.

Proposition 3.5. A strictly reduced module G in the class H of
countable torsion-free rank is Warfield if and only if it has a basic
generating system B = {xv

i , a
k
i−1 | k ∈ I, i ∈ N, v ∈ Ii} with a

corresponding restricted relation array (αk,u
i−1,j) satisfying one of the

following equivalent conditions:

(1) The set {ak0 | k ∈ I} is a decomposition basis of G.
(2) The sequence of the elements pj−1tkj (α), k ∈ Jj, are height
independent for every j ∈ N satisfying Jj �= ∅.

(3) The sequence of gap-elements tkj (α), j ∈ N, k ∈ Jj, are indepen-
dent.

(4) The sequence of tuples �kj , k ∈ Jj, are independent for every
j ∈ N satisfying Jj �= ∅.

Indeed, conditions (1) (4) are equivalent irrespective of the torsion-free
rank.

Proof. We begin by proving that conditions (1) through (4) are
equivalent. For each k ∈ I, let ik : N0 → N0 and jk : N0 → N be the
height difference and Ulm-Kaplansky exponent functions corresponding
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to H(ak0), respectively. Recall that, since G is strictly reduced, all
indicators H(ak0) are of finite type, i.e., gn = j(n)− i(n)− 1 is strictly
increasing.

Properties (3) and (4) are clearly equivalent since the �kj precisely
reflect the coefficients of the elements tkj (α).

(1) =⇒ (2). Let j̃ ∈ N satisfying Jj̃ �= ∅ be fixed. Then the
gap-elements tk

j̃
(α) =

∑
u∈Ij̃

αk,u

ik(nk),j̃
xu

j̃
are uniquely determined for

all k ∈ Jj̃ . Note that j̃ = jk(nk) and that j̃ − ik(nk) − 1 ≥ 0.
From Lemma 2.2 we have αk,u

ik(nk),j = 0, whenever j > j̃. Now let∑
k rk p

j̃−1 tk
j̃
(α), rk ∈ R \ pR be a finite sum, where k ∈ Jj̃ . Then

(3.7)

f =
∑

k

rk p
j̃−ik(nk)−1

∑
j>j̃−1

∑
u∈Ij̃

i−1∑
s=ik(nk)

psαk,u
s,j x

u
j

=
∑

k

rk p
j̃−1 tk

j̃
(α)

+
∑

k

rk p
j̃−ik(nk)−1

∑
j>j̃−1

∑
u∈Ij̃

i−1∑
s=ik(nk)+1

psαk,u
s,j x

u
j .

We have

h∗(p j̃−ik(nk)−1ak0) = βj̃−ik(nk)−1 = βk
gnk

= jk(nk)− 1 = j̃ − 1.

Thus, by Lemma 3.4,

h∗(f) = h∗
( ∑

k

p j̃−ik(nk)−1rka
k
0

)
.

Since {ak0 | k ∈ I} is a decomposition basis, we have h∗(f) = j̃ − 1.
The height of the second sum in (3.7) is bigger than j̃ − 1 because the
relation array α is restricted. Consequently,

h∗
( ∑

k

rk p
j̃−1 tk

j̃
(α)

)
= j̃ − 1,

and by Remark 3.3 property (2) holds.
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(2) =⇒ (3). By Remark 3.3 the tkj (α), k ∈ Jj , are independent for
every fixed j. Since tkj (α) ∈ ⊕u∈Ij

Rxu
j property (3) follows.

(3) =⇒ (1). Since the set {ak0 | k ∈ I} is a maximal independent
set of torsion-free elements, we need to show that h∗(

∑
k rka

k
0) =

mink(h∗(rkak0)). Without loss of generality we may assume that
h∗(rkak0) = σ for all k. For each k we have jk(nk − 1) < σ < jk(nk) for
some nk. By Lemma 3.4 and by (3) we obtain

(3.8)

h∗
( ∑

k

rka
k
0

)
= h∗

( ∑
k

rk
∑

j>h∗(rkak
0)

∑
u∈Ij

i−1∑
s=ik(nk)

psαk,u
s,j x

u
j

)

= h∗
( ∑

k

rk
∑
j>σ

∑
u∈Ij

αk,u
ik(nk),j p

ik(nk)xu
j

)
,

where the last equality follows from the independence of the gap-
elements tkjk(nk)(α) and the omission of elements of bigger height. By

Lemma 2.2 we know that αk,u
ik(nk),j = 0 for all j > jk(nk). Therefore,

we may write (3.8) as

(3.9)

h∗
( ∑

k

rka
k
0

)
= h∗

([ ∑
k

rk p
ik(nk)tkjk(nk)(α)

]

+
[∑

k

rk p
ik(nk)

jk(nk)−1∑
j>σ

∑
u∈Ij

αk,u
ik(nk),jx

u
j

])

= h∗
( ∑

k

rk p
ik(nk)tkjk(nk)(α)

)
,

since the second sum has no bearing on the height by (3) and the fact
that α is restricted. Again, by the independence of the gap-elements,
we have

h∗
( ∑

k

rka
k
0

)
= min

k

(
rk p

ik(nk)tkjk(nk)(α)
)
= min

k

(
h∗(rkak0)

)
,

where the last equation follows from the definition of ik, i.e., h∗(rkak0)−
m(k) = ik(nk) with rk ∈ pm(k)R \ pm(k)+1R. Thus the set {ak0 | k ∈ I}
is a decomposition basis of G.



1308 R. JARISCH, O. MUTZBAUER AND E. TOUBASSI

We now show that these conditions are equivalent to a module
being Warfield. If G is Warfield, then by [7, Theorem 11] it has
a decomposition basis. An application of Lemma 3.1 completes one
direction of the proof. Conversely, assume that one of the conditions
(1) (4) above holds. Without loss of generality it suffices to show that
G is Warfield if the first condition is satisfied. Let B = {xv

i , a
k
i−1 | i ∈

N, v ∈ Ii, k ∈ I} be a basic generating system ofG with a corresponding
restricted relation array (αk,u

i−1,j) such that the set {ak0 | k ∈ I} is
a decomposition basis. Since |I| ≤ ℵ0, and since the relation array
(αk,u

i−1,j) is row finite in j and u, we may write G = G′⊕T , where T is a
direct summand of tG and G′ is a countably generated module which
has the decomposition basis {ak0 | k ∈ I}. By [7, Theorem 12] it follows
that G′ is Warfield and hence so is G.

We now give an example showing the necessity of conditions (1) (4)
in Proposition 3.5. Our example is a torsion-free rank 2 module in H
which is non-Warfield yet all torsion-free elements have indicators of
finite-type.

Example 3.6. Let G be a mixed module in the class H with a basic
generating system B = {xi, a

k
i−1 | i ∈ N, k = 1, 2} and a corresponding

relation array (αk
i−1,j) defined by

α1
i,4i+1 = 1, α2

i,2i+1 = 1 and αk
i,j = 0, k = 1, 2, otherwise.

We show that G is not Warfield in several steps. First we calculate the
indicator of any linear combination ra10 + sa

2
0 �= 0. Then we show that

for a fixed pair of linear combinations of the form above there is a gap
torsion element relative to both. Finally we apply Proposition 3.5 to
deduce that G is not Warfield since the sequence of gap-elements are
not independent.

Let ra10 + sa20 �= 0 be a linear combination. If either r = 0 or s = 0,
then the indicator H(ra10 + sa20) equals either H(sa10) or H(ra20) and
there is a sufficiently large J ∈ N depending on the p-divisibility of
r and s such that for every j ≥ J the torsion generator x4j+1 is a
gap-element relative to H(ra10 + sa20). Now assume that both r and
s are both nonzero. Then integers m(r),m(s) ∈ N0 exist such that
r ∈ pm(r)R\pm(r)+1R and s ∈ pm(s)R\pm(s)+1R. Considering ra10+sa

2
0
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as a torsion-free generator of a modified basic generating system, by
Lemma 2.5 we conclude that for every n ∈ N0 some i(n) ∈ N exists
such that

h∗
(
pn(ra10 + sa

2
0)

)
= h∗

( i(n)−1∑
ν=0

pn+ν
(
(rx4ν+1) + (sx2ν+1)

))
.

From this we infer that for fixed n ∈ N the smallest ν ∈ {0, . . . , i(n)−1}
satisfying at least one of the conditions

(1) m(r) + n+ ν ≤ 4ν ⇐⇒ m(r) + n ≤ 3ν

(2) m(s) + n+ ν ≤ 2ν ⇐⇒ m(s) + n ≤ ν
is relevant for the height of pn(ra10 + sa20). Define two functions
νr : N0 → N0 by νr(n) = min{z ∈ N | 3z ≥ m(r) + n}, and
νs : N0 → N0 by νs(n) = m(s)+n. Then we obtain h∗(pn(ra10+sa

2
0)) =

min{m(r) + n + νr(n),m(s) + n + νs(n)} if m(r) + n + νr(n) �=
m(s)+n+νs(n). Observe that the function νs(n)−νr(n) is increasing.
Hence for all sufficiently large n satisfying m(r) + n ≡ 0 (mod 3) we
obtain n +m(r) = 3νr(n) but νs(n) > νr(n) + m(r) − m(s). By the
above this yields h∗(pn(ra10 + sa

1
0)) = m(r) + n+ νr(n) = 4νr(n). The

definition of the functions νr and νs implies that all elements x4j+1,
where j ≥ νr(n), are gap-elements relative to H(ra10 + sa20).

Altogether, we conclude that for every linear combination ra10+sa20 �=
0 a natural number J exists depending on r and s such that the elements
x4j+1, where j ≥ J , are gap-elements relative to H(ra10 + sa20). Since
every indicator that is realized in G is equivalent to the indicator
of some linear combination of a10 and a20, therefore any two pairs of
indicators of torsion-free elements of G have common gap-elements
and hence are not independent. Thus the module G is not Warfield
by Proposition 3.5.

Our goal is to characterize the Warfield modules inH which are either
strictly reduced or whose zeroth Ulm factor is torsion. These turn out
to be familiar objects, namely, the simply presented modules in H,
or equivalently, the direct sums of modules of torsion-free rank 1, cf.
Corollary 2.3. We begin by recalling some definitions from [2] and [8].

If M is a module with decomposition basis X then, for any equiv-
alence class E of indicators, let gX(E,M) be the number of elements
x ∈ X such that H(x) ∈ E. Warfield proved that the gX(E,M) are
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independent of the decomposition basis X, cf. [8], and we can write
gX(E,M) = g(E,M). As in [2], we will call the invariant g(E,M) the
Warfield invariant of M at E. In [8, Theorem 5.3] it was shown that
two Warfield modules are isomorphic if and only if they have equal
Warfield invariants and equal Ulm-Kaplansky invariants.

Theorem 3.7. For a module G in the class H which is either strictly
reduced or has a torsion zeroth Ulm factor, the following are equivalent :

(1) G is Warfield.

(2) G is simply presented.

(3) G is a direct sum of modules of torsion-free rank 1.

Proof. The statement (2) =⇒ (1) is obvious, while (3) =⇒ (2) follows
from Corollary 2.3. It still remains to prove that (1) =⇒ (3).

Let G be a Warfield module in the class H that either has a torsion
zeroth Ulm factor or is strictly reduced. By Corollary 2.4 we may
assume that G is countably generated. We will construct a module H
such that the following hold true.

(1) H is a direct sum of modules of torsion-free rank 1,

(2) g(E, H) = g(E, G) for every equivalent class E of indicators,

(3) fσ(H) = fσ(G) for every ordinal σ, and f∞(H) = f∞(G).

If this is done an application of Warfield’s theorem [8, Theorem 5.3] to
G and H will conclude the proof.

Since G is Warfield, by [7, Theorem 11] and Lemma 3.1 we may
assume that there is a basic generating system B = {xv

i , a
k
i−1 | i ∈

N, v ∈ Ii, k ∈ I} of G with a corresponding restricted relation array
(αk,u

i−1,j) such that the set {ak0 | k ∈ I} is a decomposition basis of G.
We distinguish two cases, when G has a torsion zeroth Ulm factor or
when G is strictly reduced.

First assume that G has a torsion zeroth Ulm factor. We may assume
that G is reduced. Since G/pωG is torsion and since G is reduced, the
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indicators H(ak0), k ∈ I, are all of ω-type. Hence, we obtain

(3.10) g(E, G) =




|I| if E is the equivalence class of the
indicators of ω-type

0 otherwise.

Let J = {j ∈ N | Ij �= ∅}. Since G/tG is divisible and since G
is assumed to be reduced, we infer that |J | = ℵ0. Hence we have
|I ×N| = |I| · |N| = ℵ0 = |J |, and there is an injection j : I × N → J .
By the definition of the set J and since j(k, l) ∈ J for every pair
(k, l) ∈ I×N, there is some u(k, l) ∈ Ij(k,l) for every pair (k, l) ∈ I×N.
Now let (βk,u

i−1,j) be a relation array defined by

β
k,u(k,l)
j(k,l),j(k,l) = 1 and βk,u

i−1,j = 0 otherwise.

Furthermore, let H be a module in the class H with a basic generating
system C = {xv

i , b
k
i−1 | i ∈ N, v ∈ Ii, k ∈ I} and a corresponding

relation array (βk,u
i−1,j). Since, for every k ∈ I the relation array (βk,u

i−1,j)
is diagonal, by Theorem 2.6 the indicator H(bk0), k ∈ I, is of ω-type.
Moreover, for every k ∈ I we obtain a submodule Hk ⊂ H of torsion-
free rank 1 defined by 〈bki−1 | i ∈ N〉. The submodules Hk have the
torsion submodule tHk = ⊕l∈NRx

u(k,l)
j(k,l) , k ∈ I, while the intersection

∩k∈ItHk is zero, as j : I × N → J is injective.

Now assume that G is strictly reduced. For every k ∈ I, let jk(n)
be the Ulm-Kaplansky exponent of H(ak0), and define Nk := {jk(n) |
n ∈ N0}, i.e., Nk is the image of N0 under jk, k ∈ I. Then by
Proposition 3.5, we infer that

T ⊕
⊕
j∈N

⊕
k∈Jj

Rtkj (α) = T ⊕
⊕
k∈I

⊕
j∈Nk

Rtkj (α) ∼= tG

for some direct sum of cyclic torsion modules T . Now for fixed k ∈ I,
let Hk be a module in the class H of torsion-free rank 1 with a basic
generating system

C = {tkj (α), bki−1 | i ∈ N, j ∈ Nk} = {tkjk(n)(α), b
k
i−1 | i ∈ N, n ∈ N0}

and a corresponding relation array (γk
i−1,j) defined by

γk
ik(n),jk(n) = 1 and γk

i,j = 0 otherwise,
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where ik(n) is the height difference of H(ak0), k ∈ I. Then, for every
k ∈ I the relation array (γk

i−1,j) is strictly concave relative to the
indicator H(ak0) and by Lemma 2.2 we have

(3.11) H(bk0) ∼= H(ak0), k ∈ I.

In both cases we obtain a moduleH given byH = T = ⊕⊕
k∈I H

k that
is a direct sum of modules of torsion-free rank 1 with a decomposition
basis {bk0 | k ∈ I} such that tH ∼= tG. Therefore, we have fσ(G) =
fσ(H) for every ordinal σ and f∞(G) = f∞(H). Since the sets
{ak0 | k ∈ I} and {bk0 | k ∈ I} are decomposition bases of the modules
G and H, respectively, we have g(E, G) = g(E, H) by (3.10) if G has a
torsion zeroth Ulm factor and by (3.11) if G is strictly reduced. Thus,
the modules G and H satisfy all the hypotheses of [8, Theorem 5.3]
and hence are isomorphic. Therefore, G is the direct sum of modules
of torsion-free rank 1.

Now we show that there are Warfield modules in the class H that
are not simply presented. We construct a module of torsion-free rank 2
which contains torsion-free elements whose indicators are of finite and
ω-type. This points out the necessity of the hypothesis on the indicators
in Theorem 3.7. This example complements the one in [8] of a Warfield
module which is not simply presented whose torsion-free rank is 1.

Example 3.8. Let G be a module in the class H with a basic
generating system B = {x2i, a

k
i−1 | i ∈ N, k = 1, 2} and a corresponding

restricted relation array (αk
i−1,j) defined by α1

i,2i = 1 and α1
i,j = 0 if

j �= 2i, α2
2i,2i = 1 and α2

i,j = 0 otherwise. Hence we have the relations

pa1i+1 = a1i + x2i, i ∈ N, pa11 = a10,
pa22i+1 = a22i + x2i, i ∈ N, pa2i+1 = a2i , otherwise.

First we show that G is Warfield by finding a decomposition basis
of G. Consider the relation arrays (α1

i−1,j) and (α2
i−1,j). Since the

relation array (α2
i−1,j) is diagonal, and by Theorem 2.6, we infer

that H(a20) is of ω-type. Hence there exists a torsion-free element
b ∈ Ra20 ⊂ G such that h∗(b) ≥ ω. As the relation array (α1

i−1,j)
is strictly concave, Lemma 2.2 implies that H(a10) is of finite-type.
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Hence we have h∗(pna10) < ω ≤ h∗(b) for all n ∈ N0. Thus we
obtain h∗(ra10 + sb) = min{h∗(ra10), h∗(sb)}, r, s ∈ R, i.e., {a10, b} is
a decomposition basis of G. By [7, Theorem 12] the module G is
Warfield.

We now show that G is not simply presented. Since tG = ⊕i∈NRx2i,
the defining relations corresponding to B imply that G is generated
by {aki−1 | i ∈ N, k = 1, 2}. If G was simply presented then, by [8,
Lemma 2.2], it would be a direct sum of modules of at most torsion-
free rank 1. This implies that there is a 2 × 2-matrix D = (dkh)
with entries in R and two natural numbers i(1), i(2) such that the sets
{dk1a

1
i−1 + dk2a

2
i−1 | i ≥ i(k)}, k = 1, 2, generate submodules Gk ⊂ G,

k = 1, 2, where Gk �= 0 for k = 1, 2, and G1 ∩ G2 = 0. The Gk �= 0,
k = 1, 2, implies that D has no zero rows, and G1 ∩ G2 = 0 implies
that D has no zero columns. However, we show the nonexistence of
such a matrix D thus contradicting our assumption that G is simply
presented.

Let D = (dkh) be a 2 × 2-matrix with entries in R such that D has
no zero rows or zero columns. For i ≥ 2 and k ∈ {1, 2}, we obtain

(3.12) dk1(a1i−a1i−1)+dk2(a2i−a2i−1) =
{
dk1x2i−2 i ∈ 2N
dk1x2i−2 + dk2xi−1 i /∈ 2N.

Since D has no zero rows or zero columns, we must distinguish two
cases, when dk1 �= 0, k = 1, 2, or dk1 = 0 for exactly one k ∈ {1, 2}.
Let i(k) ∈ N, k = 1, 2. First assume that dk1 �= 0 for k = 1, 2. Then
h∗R(dk1) < ∞, k = 1, 2. Choose an even natural number n such that
n > max{h∗R(dk1) + 1, i(k) | k = 1, 2}. Then h∗R(d11, d21) < 2n− 2 and
therefore d11d21x2n−2 �= 0. Furthermore, since n ∈ 2N, and by (3.12)
we obtain

dk1(a1n − a1n−1) + dk2(a2n − a2n−1) = dk1x2n−2, k = 1, 2.

Hence we have 0 �= d11d21x2n−2 ∈ ∩k=1,2〈dk1a
1
i−1 + dk2a

2
i−1 | i ≥ i(k)〉

and G is not a direct sum of modules of torsion-free rank 1.

Now assume that d11 �= 0 and d21 = 0. Since D has no zero rows or
zero columns, we infer that d22 �= 0. Thus we have h∗R(dkk) < ∞
for k = 1, 2. Choose an even natural number n such that n >
max{h∗R(dkk) + 1, i(k) | k = 1, 2}. Then h∗R(d11d22) < 2n − 2, and
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therefore d11d22x2n−2 �= 0. Furthermore, since n ∈ 2N, and by (3.12),
we obtain

d11(a1n − a1n−1) + d12(a
2
n − a2n−1) = d11x2n−2

and

d21(a12n−1 − a12n−2) + d22(a
2
2n−1 − a22n−2) =

d21=0
d22x2n−2.

Altogether we have 0 �= d11d22x2n−2 ∈ ∩k=1,2〈dk1a
1
i−1 + dk2a

2
i−1 | i ≥

i(k)〉, and again G is not a direct sum of modules of torsion-free rank 1.
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