CHARACTERIZING A CLASS OF WARFIELD MODULES BY RELATION ARRAYS

RALF JARISCH, OTTO MUTZBAUER AND ELIAS TOUBASSI

Introduction. In this paper we examine the Warfield modules in a class \mathcal{H} with the property that the torsion submodule is a direct sum of cyclics and the quotient modulo torsion is divisible of arbitrary rank. We give necessary and sufficient conditions about when modules in \mathcal{H} are Warfield if their torsion-free rank is countable and the indicators of torsion-free elements are exclusively of ω-type or exclusively of finitetype. We give two examples to show that the conditions placed on such modules cannot be eliminated. Indeed, we explicitly describe two non-Warfield modules in the class \mathcal{H} of torsion-free rank 2 where the indicators of all torsion-free elements are either of finite-type or of ω-type, respectively, but yet the modules do not satisfy the aforementioned conditions. In addition we prove that a Warfield module is equivalent to a simply presented module if the indicators of torsion-free elements are all of ω-type or all of finite-type. We show that this result is in some sense the best possible by giving an example of a Warfield module in \mathcal{H} which is not simply presented whose torsionfree rank is 2 and contains indicators of both the finite and ω-type. This example complements one given by Warfield of a mixed module of torsion-free rank 1. The proofs of our results rely on the description of these modules by generators and relations, their corresponding relation arrays, and the results established in $[\mathbf{3}],[\mathbf{4}],[\mathbf{5}],[\mathbf{6}]$.

1. Notation. Let \mathbf{N} denote the set of natural numbers and $\mathbf{N}_{0}=\mathbf{N} \cup\{0\}$. Let R denote a discrete valuation domain, i.e., a local principal ideal domain with prime p and quotient field \mathbf{F}. All modules are understood to be R-modules.
We now recall from [5] the definition of a module by generators and relations. Let G be a module in the class \mathcal{H} of torsion-free rank d

[^0]with torsion submodule $\mathbf{t} G=\oplus_{i \in \mathbf{N}} \oplus_{v \in I_{i}} R x_{i}^{v}$ of isomorphism type $\lambda=\left(s_{i} \mid i \in \mathbf{N}\right)$, where $s_{i}=\left|I_{i}\right|$ and ann $x_{i}^{v}=p^{i} R$ for $i \in \mathbf{N}, v \in I_{i}$. Then the quotient module $G / \mathbf{t} G$ is a vector space over \mathbf{F} of dimension d. Let I be an index set of cardinality d. We call the subset
$$
B=\left\{x_{i}^{v}, a_{i-1}^{k} \mid i \in \mathbf{N}, v \in I_{i}, k \in I\right\} \subset G
$$
a basic generating system of G if
(1) $\left\{x_{i}^{v} \mid i \in \mathbf{N}, v \in I_{i}\right\}$ is a basis of $\mathbf{t} G$ with ann $x_{i}^{v}=p^{i} R$ for all $i \in \mathbf{N}, v \in I_{i}$,
$$
\text { (2) } G / \mathbf{t} G=\oplus_{k \in I} \mathbf{F} \bar{a}_{0}^{k}
$$
where $\bar{a}_{i-1}^{k}=a_{i-1}^{k}+\mathbf{t} G$ and $p \bar{a}_{i}^{k}=\bar{a}_{i-1}^{k}$ for all $i \in \mathbf{N}, k \in I$. Note that $G=\left\langle x_{i}^{v}, a_{i-1}^{k} \mid i \in \mathbf{N}, v \in I_{i}, k \in I\right\rangle$. It follows that for every pair $(i, k) \in \mathbf{N} \times I$ the equation
\[

$$
\begin{equation*}
p a_{i}^{k}=a_{i-1}^{k}+\sum_{j \in \mathbf{N}} \sum_{u \in I_{j}} \alpha_{i-1, j}^{k, u} x_{j}^{u} \tag{1.1}
\end{equation*}
$$

\]

holds true for some elements $\alpha_{i-1, j}^{k, u}, j \in \mathbf{N}, u \in I_{j}$. Moreover, for every fixed pair (k, i) we have $\alpha_{i, j}^{k, u} \in p^{j} R$ for almost all pairs (j, u). The latter property is called row finiteness in j and u. A relation array $\left(\alpha_{i-1, j}^{k, u}\right)$ is called restricted if $\alpha_{i-1, j}^{k, u} \in(R \backslash p R) \cup\{0\}$ for all $k \in I$, all $i, j \in \mathbf{N}$ and all $u \in I_{j}$. The array $\left(\alpha_{i-1, j}^{k, u}\right)$ is called a relation array of format (λ, d). Note that two relation arrays corresponding to different basic generating systems may be different but are of the same format.

Let G be an arbitrary R-module with $g \in G$. As in [1, Section 37], let $h^{*}(g)$ denote the generalized p-height of g in G. Then the p-indicator of g is given by

$$
\mathbf{H}(g)=\left(h^{*}(g), h^{*}(p g), \ldots, h^{*}\left(p^{n} g\right), \ldots\right)
$$

We use the terms gap and equivalence of indicators as in $[\mathbf{1}$, Section 103]. If \mathbf{H} and \mathbf{K} are any indicators then we will write $\mathbf{H} \cong \mathbf{K}$ to express their equivalence. A module G of torsion-free rank 1 has a unique equivalence class of indicators, denoted by $\mathbf{H}(G)$, the indicator of G.

An indicator is called of finite-type if all the entries are natural numbers and there are infinitely many gaps; it is called of ω-type if
there is an entry $\omega+k, k \in \mathbf{N}_{0}$, with no gaps beyond this entry; and it is called of ∞-type if there is an ∞ in the indicator.

Given two strictly increasing functions $i: \mathbf{N}_{0} \rightarrow \mathbf{N}_{0}$ and $j: \mathbf{N}_{0} \rightarrow \mathbf{N}$ where $j(l)-i(l)$ is monotonically increasing and nonnegative, then we obtain an array $\left(\alpha_{i, j}\right)$ defined by

$$
\begin{equation*}
\alpha_{i(l), j(l)}=1 \quad \text { and } \quad \alpha_{i, j}=0 \quad \text { otherwise } . \tag{1.2}
\end{equation*}
$$

We will call such an array concave. It is called strictly concave if $j(l)-i(l)$ is strictly increasing, and diagonal if $j(l)=i(l)$. Using strictly concave relation arrays one can define an indicator $\mathbf{H}=\left(\beta_{0}, \beta_{1}, \ldots\right)$ of finite-type with gaps at $g_{0}<g_{1}<\cdots$ where $g_{l}=j(l)-i(l)-1$ and

$$
\beta_{n}= \begin{cases}j(l)-1 & \text { for } n=g_{l} \tag{1.3}\\ j(l)-1+n-g_{l} & \text { for } g_{l}<n<g_{l+1}\end{cases}
$$

Note that this indicator inherits the given functions $i(l)$ and $j(l)$. In this setting we call the function $i(l)$ the height difference function and $j(l)$ the Ulm-Kaplansky exponent function.

A module is called strictly reduced if it has no elements of infinite height, i.e., the first Ulm submodule is zero. Let G be a strictly reduced module in the class \mathcal{H} with a basic generating system $B=\left\{x_{i}^{v}, a_{i-1}^{k} \mid\right.$ $\left.i \in \mathbf{N}, v \in I_{i}, k \in I\right\}$ and a corresponding restricted relation array $\left(\alpha_{i-1, j}^{k, u}\right)$. Observe that for fixed k we may write $\left(\alpha_{i-1, j}^{k, u}\right)$ as an $\omega \times \omega$ matrix with $\left|I_{j}\right|$-tuples as entries in the j th column, i.e.,

$$
\left(\alpha_{i-1, j}^{k, u}\right)=\left(\begin{array}{ccccc}
\left(\alpha_{0,1}^{k, u} \mid u \in I_{1}\right) & \left(\alpha_{0,2}^{k, u} \mid u \in I_{2}\right) & \cdots & \left(\alpha_{0, j}^{k, u} \mid u \in I_{j}\right) & \cdots \\
\left(\alpha_{1,1}^{k, u} \mid u \in I_{1}\right) & \left(\alpha_{1,2}^{k, u} \mid u \in I_{2}\right) & \cdots & \left(\alpha_{i, j}^{k, u} \mid u \in I_{j}\right) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\left(\alpha_{i, 1}^{k, u} \mid u \in I_{1}\right) & \left(\alpha_{i, 2}^{k, u} \mid u \in I_{2}\right) & \cdots & \left(\alpha_{i, j}^{k, u} \mid u \in I_{j}\right) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right) .
$$

Since the relation array $\left(\alpha_{i-1, j}^{k, u}\right)$ is row finite in j and in u, this matrix is row finite and has row finite tuples as entries.

Let $k \in I$ be fixed, and let $\mathbf{H}\left(a_{0}^{k}\right)=\mathbf{H}^{k}=\left(\beta_{0}^{k}, \beta_{1}^{k}, \beta_{2}^{k}, \ldots\right)$ be an indicator with finite entries, where $j_{k}(n)=\beta_{g_{n}}^{k}+1$ is the UlmKaplansky exponent and $i_{k}(n)=\beta_{g_{n}}^{k}-g_{n}$ the height difference function.

We define an infinite tuple

$$
A^{k}(\alpha)=A\left(\alpha, \mathbf{H}^{k}\right)=\left(\varrho_{j}^{k} \mid j \in \mathbf{N}\right)
$$

with entries ϱ_{j}^{k} given by

$$
\varrho_{j}^{k}= \begin{cases}\left(\alpha_{i_{k}(n), j_{k}(n)}^{k, u} \mid u \in I_{j_{k}(n)}\right) & \text { if } j=j_{k}(n) \text { for some } n \in \mathbf{N}_{0} \\ 0 & \text { otherwise }\end{cases}
$$

Let

$$
A(\alpha)=\left(A^{k}(\alpha) \mid k \in I\right)=\left(\varrho_{j}^{k}\right)_{k, j}
$$

be the $|I| \times \omega$-matrix with rows $A^{k}(\alpha)=A\left(\alpha, \mathbf{H}^{k}\right)=\left(\varrho_{j}^{k} \mid j \in \mathbf{N}\right)$, $k \in I$. We say that $A(\alpha)$ is the gap-matrix of G relative to $\left(\alpha_{i-1, j}^{k, u}\right)$. The choice of notation here is motivated by the correlation between the nth gap of the indicator $\mathbf{H}\left(a_{0}^{k}\right)$ and the nth gap-tuple of $\mathbf{H}\left(a_{0}^{k}\right)$.

For a fixed $j \in \mathbf{N}$, let $J_{i} \subseteq I$ be the subset consisting of all elements k such that the entry ϱ_{j}^{k} of $A(\alpha)$ is nonzero, i.e.,

$$
J_{j}=\left\{k \in I \mid \varrho_{j}^{k} \neq 0\right\}=\left\{k \in I \mid j=j_{k}(n) \text { for some } n \in \mathbf{N}_{0}\right\}
$$

If $J_{j} \neq \varnothing$, then for every $k \in J_{j}$ the number n satisfying $j_{k}(n)=j$ is fixed. For each $k \in J_{j}$ we define a torsion element $t_{j}^{k}(\alpha)=t_{j}\left(\alpha, \mathbf{H}^{k}\right)$ by

$$
t_{j}^{k}(\alpha)=\sum_{u \in I_{j}} \alpha_{i_{k}(n), j}^{k, u} x_{j}^{u}
$$

where $j=j_{k}(n)$ as above. We call $t_{j}^{k}(\alpha)$ the gap-element relative to a_{0}^{k}. Observe that for every $k \in J_{j}$ the R-module $R t_{j}^{k}(\alpha)$ is a cyclic torsion module with annihilator $p^{j} R$, since the relation array ($\alpha_{i-1, j}^{k, u}$) is restricted. Furthermore, the set $\left\{t_{j}^{k}(\alpha) \mid k \in J_{j}\right\}$ generates a torsion module $\sum_{k \in J_{j}} R t_{j}^{k}(\alpha) \subseteq \mathbf{t} G$ such that

$$
\begin{equation*}
\sum_{j \in \mathbf{N}} \sum_{k \in J_{j}} R \varrho_{j}^{k} / p^{j} R \varrho_{j}^{k} \cong \sum_{j \in \mathbf{N}} \sum_{k \in J_{j}} R t_{j}^{k}(\alpha) \tag{1.4}
\end{equation*}
$$

An independent set X of torsion-free elements in a module M is called a basis if $M /\langle X\rangle$ is torsion. A basis X is called a decomposition basis
if whenever $\left\{x_{1}, \ldots, x_{n}\right\}$ is a subset of X and r_{1}, \ldots, r_{n} are elements of R,

$$
h^{*}\left(r_{1} x_{1}+\cdots+r_{n} x_{n}\right)=\min _{i}\left(h^{*}\left(r_{i} x_{i}\right)\right)
$$

We now define a generalization of the concept of decomposition bases to apply to torsion modules. Let G be an R-module, and let $X \subset G$ be an independent subset. We will say the set X is height independent if, for all linear combinations $\sum_{x \in X} r_{x} x$ we have $h^{*}\left(\sum_{x \in X} r_{x} x\right)=$ $\min _{x \in X}\left(h^{*}\left(r_{x} x\right)\right)$. Note that independent sets can fail to be height independent. Let x and y be two independent elements in M of various heights. Then the set $\{x, x+y\}$ is independent but not height independent.

As in [8], we call a module simply presented if it can be defined in terms of generators and relations in such a way that the only relations are of the form $p x=y$ or $p x=0$. Those modules which are direct summands of simply presented modules are called Warfield modules.
2. Referenced results. This paper references results of the authors in $[\mathbf{3}],[\mathbf{4}],[\mathbf{5}]$. To facilitate its readability we state several results from these papers.

Lemma 2.1 [4, 2.1]. Every module in the class \mathcal{H} has a basic generating system with a corresponding restricted relation array.

Moreover, if a module G in the class \mathcal{H} has a basic generating system $B=\left\{x_{i}^{v}, a_{i-1}^{k} \mid i \in \mathbf{N}, v \in I_{i}, k \in I\right\}$ with a corresponding relation array $\left(\alpha_{i-1, j}^{k, u}\right)$ then there are torsion-free elements $b_{i-1}^{k} \in a_{i-1}^{k}+\mathbf{t} G$, $i \in \mathbf{N}, k \in I$, such that the set $\left\{x_{i}^{v}, b_{i-1}^{k} \mid i \in \mathbf{N}, v \in I_{i}, k \in I\right\}$ is a basic generating system of G with a corresponding restricted relation array that is similar to $\left(\alpha_{i-1, j}^{k, u}\right)$.

Lemma 2.2 [4, 2.2]. Let G be a module in the class \mathcal{H} with basic generating system $B=\left\{x_{i}^{v}, a_{i-1}^{k} \mid i \in \mathbf{N}, v \in I_{i}, k \in I\right\}$ and corresponding restricted relation array $\left(\alpha_{i-1, j}^{k, u}\right)$, and let $\mathbf{H}=\left(\beta_{0}=\right.$ $\left.0, \beta_{1}, \beta_{2}, \ldots\right)$ be an indicator of finite-type with gaps at $0=g_{0}<g_{1}<$ $g_{2}<\cdots$. Then $\mathbf{H}\left(a_{0}^{k}\right)=\mathbf{H}$ for a fixed $k \in I$ if and only if for every $n \in \mathbf{N}_{0}$ the following hold true.
(1) $\left(\alpha_{i, j}^{k, u} \mid u \in I_{j}\right)=0$ whenever $i<\beta_{g_{n+1}}-g_{n+1}$ and $j>g_{n}+1+i$; (2) $\left(\alpha_{\beta_{g_{n}}-g_{n}, \beta_{g_{n}}+1}^{k, u} \mid u \in I_{\beta_{g_{n}}+1}\right) \neq 0$.

The above establishes a one-to-one correspondence between the set of strictly concave relation arrays and the set of indicators of finitetype. The tuple $\left(\alpha_{i(l), j(l)}^{k, u} \mid u \in I_{j(l)}\right)$ is called the lth gap-tuple of α corresponding to \mathbf{H}.
Let \mathcal{H}^{1} be the subclass of \mathcal{H} consisting of the modules in \mathcal{H} of torsionfree rank one.

Corollary $2.3[4,3.6]$. A module in the class \mathcal{H} is simply presented if and only if it is isomorphic to a direct sum of modules in the class \mathcal{H}^{1}.

Corollary $2.4[4,3.7]$. A module in the class \mathcal{H} is Warfield if and only if it is a direct sum of a countably generated Warfield module in the class \mathcal{H}, a direct sum of modules in the class \mathcal{H}^{1} and a direct sum of cyclics.

Lemma 2.5 [3, 3.6]. Let G be a module in the class \mathcal{H}^{1} with an indicator of finite-type and $\left\{b_{i-1}, x_{i}^{v} \mid i \in \mathbf{N}, v \in I_{i}\right\}$ a basic generating system with relation array β. Then for each $l \in \mathbf{N}_{0}$ and all sufficiently large k we have

$$
h^{*}\left(p^{l} b_{0}\right)=h^{*}\left(\sum_{j \in \mathbf{N}} \sum_{u \in I_{j}} \sum_{s=0}^{k-1} \beta_{s, j}^{u} p^{s+l} x_{j}^{u}\right)
$$

Theorem $2.6[3,4.4]$. For a reduced module G in the class \mathcal{H}^{1} the following are equivalent:
(1) $p^{\omega} G \neq 0$.
(2) The indicator of G is of ω-type.
(3) There is an element $g \in G \backslash\{0\}$ with $h^{*}(g)=\omega$.
(4) $p^{\omega} G \neq 0$ is cyclic.

3. Warfield modules.

Lemma 3.1. Let G be a module in the class \mathcal{H} having a decomposition basis X. Then there is a basic generating system $B=\left\{x_{i}^{v}, a_{i-1}^{k} \mid\right.$ $\left.i \in \mathbf{N}, v \in I_{i}, k \in I\right\}$ of G with a corresponding restricted relation array such that $\left\{a_{0}^{k} \mid k \in I\right\}=X$.

Proof. The decomposition basis $X=\left\{a_{0}^{k} \mid k \in I\right\}$ is a maximal independent set of torsion-free elements. Hence $\left\{x_{i}^{v}, a_{i-1}^{k} \mid i \in \mathbf{N}, v \in\right.$ $\left.I_{i}, k \in I\right\}$ is a basic generating system where $a_{i}^{k} \in p^{-i}\left(a_{0}^{k}+\mathbf{t} G\right)$ is any representative. By Lemma 2.1 one can choose suitable representatives modulo $\mathbf{t} G$ within the cosets $p^{-i}\left(a_{0}^{k}+\mathbf{t} G\right)$ to get a corresponding relation array that is restricted.

We begin our consideration of the Warfield modules by examining those whose zeroth Ulm factor is torsion. Recall that a torsion-free module is called completely decomposable if it is a direct sum of rank one modules. Furthermore, a submodule G of A is said to be pure, if an equation $n x=g$ is solvable in G, whenever it is solvable in the whole module A. If A is a torsion-free module and S a subset, then the intersection of all pure submodules containing S is the minimal pure submodule that contains S; this intersection is called the pure hull of S in A, cf. [1, Section 26].

Proposition 3.2. A module G of countable torsion-free rank, whose zeroth Ulm factor is torsion and whose torsion submodule is a direct sum of cyclics, is Warfield if and only if its first Ulm submodule is completely decomposable. In particular, if G is reduced, it is Warfield if and only if its first Ulm submodule is free.

Proof. Let G be a module of countable torsion-free rank, whose zeroth Ulm factor is torsion and whose torsion submodule is a direct sum of cyclics. Assume that $p^{\omega} G$ is completely decomposable with decomposition basis $\left\{a^{k} \mid k \in I\right\}$. Then by [1, Section 37], we obtain

$$
h_{p^{\omega} G}^{*}\left(\sum_{k \in I} r_{k} a^{k}\right)=\min _{k \in I}\left(h_{p^{\omega} G}^{*}\left(r_{k} a^{k}\right)\right)
$$

for every linear combination $\sum_{k \in I} r_{k} a^{k}$. Since $h_{G}^{*}(g)=h_{p^{\omega}{ }_{G}}^{*}(g)+\omega$ for every $g \in p^{\omega} G$, cf. [1, Section 79], we obtain

$$
\begin{aligned}
h_{G}^{*}\left(\sum_{k \in I} r_{k} a^{k}\right) & =h_{p^{\omega} G}^{*}\left(\sum_{k \in I} r_{k} a^{k}\right)+\omega \\
& =\min _{k \in I}\left(h_{p^{\omega G}}^{*}\left(r_{k} a^{k}\right)\right)+\omega \\
& =\min _{k \in I}\left(h_{G}^{*}\left(r_{k} a^{k}\right)\right)
\end{aligned}
$$

Furthermore, since $G / p^{\omega} G \cong\left(G /\left\langle a^{k} \mid k \in I\right\rangle\right) /\left(p^{\omega} G /\left\langle a^{k} \mid k \in I\right\rangle\right)$ is torsion by assumption, and since $p^{\omega} G /\left\langle a^{k} \mid k \in I\right\rangle$ is torsion because $\left\{a^{k} \mid k \in I\right\}$ is a decomposition basis of $p^{\omega} G$, the quotient $G /\left\langle a^{k} \mid k \in I\right\rangle$ is torsion, too. Hence the set $\left\{a^{k} \mid k \in I\right\}$ is a decomposition basis of G. Since G has countable torsion-free rank, and since $\mathbf{t} G$ is a direct sum of cyclics, we may write $G=G^{\prime} \oplus T$, where T is a direct summand of $\mathbf{t} G$ and G^{\prime} is a countably generated module which has the decomposition basis $\left\{a^{k} \mid k \in I\right\}$. By [7, Theorem 12], it follows that G^{\prime} is Warfield and hence so is G. If G is reduced, and if its first Ulm submodule $p^{\omega} G$ is free, then $p^{\omega} G$ is in particular completely decomposable. Thus, G is Warfield by the above.

Conversely, let G be Warfield. Then G has a decomposition basis $\left\{a^{k} \mid k \in I\right\}$. Since $G / p^{\omega} G$ is torsion, we may assume that $a^{k} \in p^{\omega} G$, $k \in I$. Then we obtain

$$
\begin{aligned}
\min _{k \in I}\left(h_{p^{\omega} G}^{*}\left(r_{k} a^{k}\right)\right)+\omega & =\min _{k \in I}\left(h_{G}^{*}\left(r_{k} a^{k}\right)\right) \\
& =h_{G}^{*}\left(\sum_{k \in I} r_{k} a^{k}\right) \\
& =h_{p^{\omega} G}^{*}\left(\sum_{k \in I} r_{k} a^{k}\right)+\omega
\end{aligned}
$$

for every linear combination $\sum_{k \in I} r_{k} a^{k}$. Since $p^{\omega} G /\left\langle a^{k} \mid k \in I\right\rangle$ is torsion, we deduce that the set $\left\{a^{k} \mid k \in I\right\}$ is a decomposition basis of $p^{\omega} G$. Therefore, $p^{\omega} G$ is completely decomposable by its torsionfreeness. In particular we have $p^{\omega} G=\oplus_{k \in I}\left\langle a^{k}\right\rangle_{*}^{p^{\omega} G}$ where $\left\langle a^{k}\right\rangle_{*}^{p^{\omega} G}$ is the pure hull of a^{k} in $p^{\omega} G$. In particular, if G is reduced, all of these pure hulls are cyclic, and $p^{\omega} G$ is free.

Example. As in [1, Section 3], let \mathbf{Z}_{p} be the localization of the integers at p, and let $\hat{\mathbf{Z}}_{p}$ be the ring of p-adic integers.

For all indecomposable torsion-free \mathbf{Z}_{p}-modules H of rank 2 there is a non-Warfield \mathbf{Z}_{p}-module G such that
(1) $G / p^{\omega} G$ is torsion,
(2) $\mathbf{t} G$ is a direct sum of cyclics,
(3) $p^{\omega} G \cong H$.

It is enough to construct such a local group G where $\mathbf{t} G \cong G / p^{\omega} G \cong$ $\oplus_{i=1}^{\infty} \mathbf{Z}_{p} x_{i}$ with ann $x_{i}=p^{i} \mathbf{Z}_{p}$. Let $\pi=\sum_{i=0}^{\infty} \pi_{i} p^{i} \in \hat{\mathbf{Z}}_{p}$ be the standard expansion of π, i.e., $\pi_{i} \in \mathbf{Z}$, where $0 \leq \pi_{i}<p$. In particular, let π be a unit in $\hat{\mathbf{Z}}_{p}$, i.e., $\pi_{0} \neq 0$. Let G be a \mathbf{Z}_{p}-module in \mathcal{H} with a basic generating system $\left\{x_{i}, a_{i-1}^{k} \mid i \in \mathbf{N}, k=1,2\right\}$ and corresponding relation array $\alpha=\left(\alpha^{1}, \alpha^{2}\right)$ defined by

$$
\begin{aligned}
& a_{i-1, j}^{1}= \begin{cases}1 & \text { if } i-1=j \\
0 & \text { otherwise }\end{cases} \\
& \alpha_{i-1, j}^{2}=\left\{\begin{array}{ll}
\pi_{i-j-2} & \text { if } i-j-2 \geq 0 \\
0 & \text { otherwise }
\end{array}, \quad i, j \in \mathbf{N}\right.
\end{aligned}
$$

Recall that in general we have the relations

$$
\begin{aligned}
p^{i} a_{i+n}-a_{n} & =\sum_{j=1}^{\infty}\left(\sum_{s=n}^{i+n-1} \alpha_{s, j} p^{s-n}\right) x_{j} \\
& =\sum_{s=n}^{i+n-1} p^{s-n} \sum_{j=1}^{\infty} \alpha_{s, j} x_{j}, \quad i, n \in \mathbf{N}_{0}
\end{aligned}
$$

These relations yield the following

$$
\begin{aligned}
& a_{n}^{1}=p^{i} a_{i+n}^{1}-\sum_{\substack{s=n \\
s \geq 2}}^{i+n-1} p^{s-n} x_{s-1}, \\
& a_{n}^{2}=p^{i} a_{i+n}^{2}-\sum_{s=n}^{i+n-1} p^{s-n} \sum_{j=1}^{s-1} \pi_{s-j-1} x_{j}, \quad i, n \in \mathbf{N}_{0},
\end{aligned}
$$

with the understanding that empty sums are 0 . In particular, for $n=0$, we obtain $a_{0}^{k}=p^{i} a_{i}^{k}$ for $k=1,2$ and all $i \in \mathbf{N}_{0}$. Therefore, $h^{*}\left(a_{0}^{k}\right) \geq \omega$,
$k=1,2$. Hence $\left\langle a_{0}^{1}, a_{0}^{2}\right\rangle \subseteq p^{\omega} G$. For every $n \in \mathbf{N}_{0}$ consider the element $g_{n}=a_{n}^{2}-\sum_{l=1}^{n} \pi_{n-l} a_{l}^{1}$. First we show that $g_{n} \in p^{\omega} G$ for all n. The relations above enable us to write

$$
\begin{aligned}
g_{n}= & a_{n}^{2}-\sum_{l=1}^{n} \pi_{n-l} a_{l}^{1} \\
= & p^{i}\left(a_{i+n}^{2}-\sum_{i=1}^{n} \pi_{n-l} a_{i+l}^{1}\right)-\sum_{s=n}^{i+n-1} p^{s-n} \sum_{j=1}^{s-1} \pi_{s-j-1} x_{j} \\
& +\sum_{l=2}^{n} \pi_{n-l} \sum_{s=l}^{i+l-1} p^{s-l} x_{s-1}
\end{aligned}
$$

for all $i, n \in \mathbf{N}_{0}$. We will show that for every pair $(i, n) \in \mathbf{N}_{0} \times \mathbf{N}_{0}$ the sum of the last two terms is in $p^{i} G$. This implies $g_{n} \in p^{\omega} G$ for all $n \in \mathbf{N}_{0}$. Let $\sum_{l=2}^{n} \pi_{n-l} \sum_{s=l}^{i+l-1} p^{s-l} x_{s-1}=\sum_{m=1}^{i+n-2} \lambda_{m} x_{m}$. Then

$$
\begin{aligned}
\lambda_{m}= & \sum_{l=2}^{\min \{n, m+1\}} p^{m-l+1} \pi_{n-l} \\
= & p^{m-1} \pi_{n-2}+p^{m-2} \pi_{n-3}+\cdots \\
& +p^{m-\min \{n, m+1\}+1} \pi_{n-\min \{n, m+1\}}
\end{aligned}
$$

Similarly, let $\sum_{s=n}^{i+n-1} p^{s-n} \sum_{j=1}^{s-1} \pi_{s-j-1} x_{j}=\sum_{m=1}^{i+n-2} \mu_{m} x_{m}$, then

$$
\begin{aligned}
\mu_{m}= & \sum_{s=\max \{n, m+1\}}^{i+n-1} p^{s-n} \pi_{s-m-1} \\
= & p^{i-1} \pi_{i+n-m-2}+p^{i-2} \pi_{i+n-m-3}+\cdots \\
& +p^{\max \{n, m+1\}-n} \pi_{\max \{n, m+1\}-m-1}
\end{aligned}
$$

For $i-m \geq 0$ we have $\left(\lambda_{m}-\mu_{m}\right) x_{m}=0$. If $i<m$, then

$$
\begin{aligned}
\left(\lambda_{m}-\mu_{m}\right) x_{m} & =\left(p^{m-1} \pi_{n-2}+p^{m-2} \pi_{n-3}+\cdots+p^{i} \pi_{i+n-m-1}\right) x_{m} \\
& =p^{i}\left(p^{m-i-1} \pi_{n-2}+p^{m-i-2} \pi_{n-3}+\cdots+\pi_{i+n-m-1}\right) x_{m}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\sum_{l=2}^{n} \pi_{n-l} \sum_{s=l}^{i+l-1} p^{s-l} x_{s-1}- & \sum_{s=n}^{i+n-1} p^{s-n} \sum_{j=1}^{s-1} \pi_{s-j-1} x_{j} \\
& =p^{i}\left(\sum_{m=i+1}^{n+i-2}\left(\sum_{k=0}^{m-i-1} p^{k} \pi_{n-k-2}\right) x_{m}\right)
\end{aligned}
$$

as necessary for $g_{n} \in p^{\omega} G$. Finally, since

$$
\begin{aligned}
p^{n} g_{n} & =p^{n} a_{n}^{2}-\sum_{l=1}^{n} \pi_{n-l} p^{n} a_{l}^{1}=a_{0}^{2}-\sum_{l=1}^{n} \pi_{n-l} p^{n-l} a_{0}^{1} \\
& =a_{0}^{2}-\left(\sum_{l=0}^{n-1} \pi_{l} p^{l}\right) a_{0}^{1}, \quad n \in \mathbf{N}_{0}
\end{aligned}
$$

the pure hull of $\left\langle a_{0}^{1}, a_{0}^{2}\right\rangle$ in $p^{\omega} G$ equals

$$
\begin{equation*}
\left\langle a_{0}^{1}, a_{0}^{2}\right\rangle_{*}^{p^{\omega} G}=\left\langle a_{0}^{1}, a_{0}^{2}, p^{-\infty}\left(a_{0}^{2}-\pi a_{0}^{1}\right)\right\rangle_{\mathbf{z}_{p}}, \tag{3.1}
\end{equation*}
$$

cf. [1, Section 88, Example 5]. If $\pi \in \hat{\mathbf{Z}}_{p} \backslash \mathbf{Z}_{p}$, then $p^{\omega} G$ is a local Pontryagin group, i.e., $p^{\omega} G$ is homogeneous and strongly indecomposable, and therefore G is reduced. Moreover, G is non-Warfield.

Every indecomposable torsion-free \mathbf{Z}_{p}-module H of rank 2, or local Pontryagin group, can be given in the form (3.1) where π is a p-adic integer which is not rational, cf. [1, Section 88, Example 5]. Hence all such H can be realized as $p^{\omega} G$.

If $\pi \in \mathbf{Z}_{p}$, then G is not reduced, and the divisible part of G equals the pure hull of $a_{0}^{2}-\pi a_{0}^{1}$ in $p^{\omega} G$. Then $p^{\omega} G=R a_{0}^{1} \oplus \mathbf{F}\left(a_{0}^{2}-\pi a_{0}^{1}\right) \cong R \oplus \mathbf{F}$ is completely decomposable, and G is Warfield.
The proof of the analog of Proposition 3.2 to modules with indicators of finite-type is much more extensive. We begin with a remark and a technical lemma on computing heights.

Remark 3.3. Let T be a reduced torsion module, and let $X \subset$ $T[p] \backslash\{0\}$ be a subset such that for all linear combinations $\sum_{x \in X} r_{x} x$ we have

$$
\begin{equation*}
h^{*}\left(\sum_{x \in X} r_{x} x\right)=\min _{x \in X}\left(h^{*}\left(r_{x} x\right)\right) \tag{3.2}
\end{equation*}
$$

Then the set X is independent and in particular height independent. Otherwise there is a nontrivial sum $\sum r_{x} x=0$, contradicting (3.2), since T is reduced.

For every $x \in X$, let $y_{x} \in T$ be such that $x \in\left\langle y_{x}\right\rangle$. Clearly, $\left\{y_{x} \mid x \in X\right\}$ is independent too.

Lemma 3.4. Let G be a strictly reduced module in the class \mathcal{H} with a basic generating system $B=\left\{x_{i}^{v}, a_{i-1}^{k} \mid k \in I, i \in \mathbf{N}, v \in I_{i}\right\}$ and a corresponding restricted relation array $\left(\alpha_{i-1, j}^{k, u}\right)$. Let $i_{k}: \mathbf{N}_{0} \rightarrow \mathbf{N}_{0}$ be the height difference and $j_{k}: \mathbf{N}_{0} \rightarrow \mathbf{N}$ the Ulm-Kaplansky exponent function corresponding to $\mathbf{H}\left(a_{0}^{k}\right), k \in I$. Then for every finite sum $\sum_{k} r_{k} a_{0}^{k}$ there is a sufficiently large i such that

$$
\begin{equation*}
h^{*}\left(\sum_{k} r_{k} a_{0}^{k}\right)=h^{*}\left(\sum_{k} r_{k} \sum_{j>h^{*}\left(r_{k} a_{0}^{k}\right)} \sum_{u \in I_{j}} \sum_{s=i_{k}\left(n_{k}\right)}^{i-1} p^{s} \alpha_{s, j}^{k, u} x_{j}^{u}\right) \tag{3.3}
\end{equation*}
$$

whenever the number n_{k} satisfies $j_{k}\left(n_{k}-1\right)<h^{*}\left(r_{k} a_{0}^{k}\right)<j_{k}\left(n_{k}\right)$.

Proof. Let $\sum_{k} r_{k} a_{0}^{k}$ be a finite sum, and for every k let n_{k} satisfy

$$
\begin{equation*}
j_{k}\left(n_{k}-1\right)<h^{*}\left(r_{k} a_{0}^{k}\right)<j_{k}\left(n_{k}\right) \tag{3.4}
\end{equation*}
$$

Considering $\sum_{k} r_{k} a_{0}^{k}$ as a torsion-free generator of a modified basic generating system, we infer by Lemma 2.5 the existence of some $i \in \mathbf{N}$ such that

$$
\begin{equation*}
h^{*}\left(\sum_{k} r_{k} a_{0}^{k}\right)=h^{*}\left(\sum_{j \in \mathbf{N}} \sum_{u \in I_{j}} \sum_{s=0}^{i-1} p^{s}\left(\sum_{k} r_{k} \alpha_{s, j}^{k, u}\right) x_{j}^{u}\right) \tag{3.5}
\end{equation*}
$$

For each k we have $r_{k} \in p^{m(k)} R \backslash p^{m(k)+1} R$ for some $m(k) \in \mathbf{N}_{0}$. Then $m(k)$ satisfies $h^{*}\left(r_{k} a_{0}^{k}\right)-m(k)=i_{k}\left(n_{k}\right)$ by the definition of the height difference function i_{k}. Since $h^{*}\left(r_{k} a_{0}^{k}\right)=h^{*}\left(p^{m(k)} a_{0}^{k}\right)$ is an entry in the indicator $\mathbf{H}\left(a_{0}^{k}\right)$ between $h^{*}\left(p^{j_{k}\left(n_{k}-1\right)-i_{k}\left(n_{k}-1\right)} a_{0}^{k}\right)$ and $h^{*}\left(p^{j_{k}\left(n_{k}\right)-i_{k}\left(n_{k}\right)-1} a_{0}^{k}\right)$ by (3.4) and by (1.3) we conclude that

$$
\begin{equation*}
j_{k}\left(n_{k}-1\right)-i_{k}\left(n_{k}-1\right) \leq m(k)<j_{k}\left(n_{k}\right)-i_{k}\left(n_{k}\right) \tag{3.6}
\end{equation*}
$$

It follows that $\alpha_{s, u}^{k, u} p^{s+m(k)} x_{j}^{u}=0$ if $j \leq j_{k}\left(n_{k}-1\right)-i_{k}\left(n_{k}-1\right)+s$ by (3.6) or if $s<i_{k}\left(n_{k}\right)$ and $j>j_{k}\left(n_{k}-1\right)-i_{k}\left(n_{k}-1\right)+s$ by Lemma 2.2. Since $p^{m_{k}}$ divides r_{k} we have

$$
\sum_{k} r_{k} \sum_{j \leq i_{k}\left(n_{k}\right)+m(k)} \sum_{u \in I_{j}} \sum_{s=i_{k}\left(n_{k}\right)}^{i-1} p^{s} \alpha_{s, j}^{k, u} x_{j}^{u}=0
$$

Therefore, we may write (3.5) as

$$
h^{*}\left(\sum_{k} r_{k} a_{0}^{k}\right)=h^{*}\left(\sum_{k} r_{k} \sum_{j>i_{k}\left(n_{k}\right)+m(k)} \sum_{u \in I_{j}} \sum_{s=i_{k}\left(n_{k}\right)}^{i-1} p^{s} \alpha_{s, j}^{k, u} x_{j}^{u}\right)
$$

and the proof is complete.

We now prove our result on when a module in \mathcal{H} with indicators of finite-type is Warfield.

Proposition 3.5. A strictly reduced module G in the class \mathcal{H} of countable torsion-free rank is Warfield if and only if it has a basic generating system $B=\left\{x_{i}^{v}, a_{i-1}^{k} \mid k \in I, i \in \mathbf{N}, v \in I_{i}\right\}$ with a corresponding restricted relation array $\left(\alpha_{i-1, j}^{k, u}\right)$ satisfying one of the following equivalent conditions:
(1) The set $\left\{a_{0}^{k} \mid k \in I\right\}$ is a decomposition basis of G.
(2) The sequence of the elements $p^{j-1} t_{j}^{k}(\alpha), k \in J_{j}$, are height independent for every $j \in \mathbf{N}$ satisfying $J_{j} \neq \varnothing$.
(3) The sequence of gap-elements $t_{j}^{k}(\alpha), j \in \mathbf{N}, k \in J_{j}$, are independent.
(4) The sequence of tuples $\varrho_{j}^{k}, k \in J_{j}$, are independent for every $j \in \mathbf{N}$ satisfying $J_{j} \neq \varnothing$.
Indeed, conditions (1)-(4) are equivalent irrespective of the torsion-free rank.

Proof. We begin by proving that conditions (1) through (4) are equivalent. For each $k \in I$, let $i_{k}: \mathbf{N}_{0} \rightarrow \mathbf{N}_{0}$ and $j_{k}: \mathbf{N}_{0} \rightarrow \mathbf{N}$ be the height difference and Ulm-Kaplansky exponent functions corresponding
to $\mathbf{H}\left(a_{0}^{k}\right)$, respectively. Recall that, since G is strictly reduced, all indicators $\mathbf{H}\left(a_{0}^{k}\right)$ are of finite type, i.e., $g_{n}=j(n)-i(n)-1$ is strictly increasing.

Properties (3) and (4) are clearly equivalent since the ϱ_{j}^{k} precisely reflect the coefficients of the elements $t_{j}^{k}(\alpha)$.
$(1) \Longrightarrow(2)$. Let $\tilde{j} \in \mathbf{N}$ satisfying $J_{\tilde{j}} \neq \varnothing$ be fixed. Then the gap-elements $t_{\tilde{j}}^{k}(\alpha)=\sum_{\underset{\sim}{u} \in I_{\tilde{j}}} \alpha_{i_{k}\left(n_{k}\right), \tilde{j}}^{k, u} x_{\tilde{j}}^{u}$ are uniquely determined for all $k \in J_{\tilde{j}}$. Note that $\tilde{j}=j_{k}\left(n_{k}\right)$ and that $\tilde{j}-i_{k}\left(n_{k}\right)-1 \geq 0$. From Lemma 2.2 we have $\alpha_{i_{k}\left(n_{k}\right), j}^{k, u}=0$, whenever $j>\tilde{j}$. Now let $\sum_{k} r_{k} p^{\tilde{j}-1} t_{\tilde{j}}^{k}(\alpha), r_{k} \in R \backslash p R$ be a finite sum, where $k \in J_{\tilde{j}}$. Then

$$
\begin{align*}
f= & \sum_{k} r_{k} p^{\tilde{j}-i_{k}\left(n_{k}\right)-1} \sum_{j>\tilde{j}-1} \sum_{u \in I_{\tilde{j}}} \sum_{s=i_{k}\left(n_{k}\right)}^{i-1} p^{s} \alpha_{s, j}^{k, u} x_{j}^{u} \\
= & \sum_{k} r_{k} p^{\tilde{j}-1} t_{\tilde{j}}^{k}(\alpha) \tag{3.7}\\
& +\sum_{k} r_{k} p^{\tilde{j}-i_{k}\left(n_{k}\right)-1} \sum_{j>\tilde{j}-1} \sum_{u \in I_{\tilde{j}}} \sum_{s=i_{k}\left(n_{k}\right)+1}^{i-1} p^{s} \alpha_{s, j}^{k, u} x_{j}^{u}
\end{align*}
$$

We have

$$
h^{*}\left(p^{\tilde{j}-i_{k}\left(n_{k}\right)-1} a_{0}^{k}\right)=\beta_{\tilde{j}-i_{k}\left(n_{k}\right)-1}=\beta_{g_{n_{k}}}^{k}=j_{k}\left(n_{k}\right)-1=\tilde{j}-1
$$

Thus, by Lemma 3.4,

$$
h^{*}(f)=h^{*}\left(\sum_{k} p^{\tilde{j}-i_{k}\left(n_{k}\right)-1} r_{k} a_{0}^{k}\right)
$$

Since $\left\{a_{0}^{k} \mid k \in I\right\}$ is a decomposition basis, we have $h^{*}(f)=\tilde{j}-1$. The height of the second sum in (3.7) is bigger than $\tilde{j}-1$ because the relation array α is restricted. Consequently,

$$
h^{*}\left(\sum_{k} r_{k} p^{\tilde{j}-1} t_{\tilde{j}}^{k}(\alpha)\right)=\tilde{j}-1
$$

and by Remark 3.3 property (2) holds.
$(2) \Longrightarrow(3)$. By Remark 3.3 the $t_{j}^{k}(\alpha), k \in J_{j}$, are independent for every fixed j. Since $t_{j}^{k}(\alpha) \in \oplus_{u \in I_{j}} R x_{j}^{u}$ property (3) follows.
$(3) \Longrightarrow(1)$. Since the set $\left\{a_{0}^{k} \mid k \in I\right\}$ is a maximal independent set of torsion-free elements, we need to show that $h^{*}\left(\sum_{k} r_{k} a_{0}^{k}\right)=$ $\min _{k}\left(h^{*}\left(r_{k} a_{0}^{k}\right)\right)$. Without loss of generality we may assume that $h^{*}\left(r_{k} a_{0}^{k}\right)=\sigma$ for all k. For each k we have $j_{k}\left(n_{k}-1\right)<\sigma<j_{k}\left(n_{k}\right)$ for some n_{k}. By Lemma 3.4 and by (3) we obtain

$$
\begin{align*}
h^{*}\left(\sum_{k} r_{k} a_{0}^{k}\right) & =h^{*}\left(\sum_{k} r_{k} \sum_{j>h^{*}\left(r_{k} a_{0}^{k}\right)} \sum_{u \in I_{j}} \sum_{s=i_{k}\left(n_{k}\right)}^{i-1} p^{s} \alpha_{s, j}^{k, u} x_{j}^{u}\right) \tag{3.8}\\
& =h^{*}\left(\sum_{k} r_{k} \sum_{j>\sigma} \sum_{u \in I_{j}} \alpha_{i_{k}\left(n_{k}\right), j}^{k, u} p^{i_{k}\left(n_{k}\right)} x_{j}^{u}\right)
\end{align*}
$$

where the last equality follows from the independence of the gapelements $t_{j_{k}\left(n_{k}\right)}^{k}(\alpha)$ and the omission of elements of bigger height. By Lemma 2.2 we know that $\alpha_{i_{k}\left(n_{k}\right), j}^{k, u}=0$ for all $j>j_{k}\left(n_{k}\right)$. Therefore, we may write (3.8) as

$$
\begin{align*}
h^{*}\left(\sum_{k} r_{k} a_{0}^{k}\right)= & h^{*}\left(\left[\sum_{k} r_{k} p^{i_{k}\left(n_{k}\right)} t_{j_{k}\left(n_{k}\right)}^{k}(\alpha)\right]\right. \\
& \left.+\left[\sum_{k} r_{k} p^{i_{k}\left(n_{k}\right)} \sum_{j>\sigma}^{j_{k}\left(n_{k}\right)-1} \sum_{u \in I_{j}} \alpha_{i_{k}\left(n_{k}\right), j}^{k, u} x_{j}^{u}\right]\right) \tag{3.9}\\
= & h^{*}\left(\sum_{k} r_{k} p^{i_{k}\left(n_{k}\right)} t_{j_{k}\left(n_{k}\right)}^{k}(\alpha)\right),
\end{align*}
$$

since the second sum has no bearing on the height by (3) and the fact that α is restricted. Again, by the independence of the gap-elements, we have

$$
h^{*}\left(\sum_{k} r_{k} a_{0}^{k}\right)=\min _{k}\left(r_{k} p^{i_{k}\left(n_{k}\right)} t_{j_{k}\left(n_{k}\right)}^{k}(\alpha)\right)=\min _{k}\left(h^{*}\left(r_{k} a_{0}^{k}\right)\right)
$$

where the last equation follows from the definition of i_{k}, i.e., $h^{*}\left(r_{k} a_{0}^{k}\right)-$ $m(k)=i_{k}\left(n_{k}\right)$ with $r_{k} \in p^{m(k)} R \backslash p^{m(k)+1} R$. Thus the set $\left\{a_{0}^{k} \mid k \in I\right\}$ is a decomposition basis of G.

We now show that these conditions are equivalent to a module being Warfield. If G is Warfield, then by [7, Theorem 11] it has a decomposition basis. An application of Lemma 3.1 completes one direction of the proof. Conversely, assume that one of the conditions (1)-(4) above holds. Without loss of generality it suffices to show that G is Warfield if the first condition is satisfied. Let $B=\left\{x_{i}^{v}, a_{i-1}^{k} \mid i \in\right.$ $\left.\mathbf{N}, v \in I_{i}, k \in I\right\}$ be a basic generating system of G with a corresponding restricted relation array $\left(\alpha_{i-1, j}^{k, u}\right)$ such that the set $\left\{a_{0}^{k} \mid k \in I\right\}$ is a decomposition basis. Since $|I| \leq \aleph_{0}$, and since the relation array $\left(\alpha_{i-1, j}^{k, u}\right)$ is row finite in j and u, we may write $G=G^{\prime} \oplus T$, where T is a direct summand of $\mathbf{t} G$ and G^{\prime} is a countably generated module which has the decomposition basis $\left\{a_{0}^{k} \mid k \in I\right\}$. By [7, Theorem 12] it follows that G^{\prime} is Warfield and hence so is G.

We now give an example showing the necessity of conditions (1)-(4) in Proposition 3.5. Our example is a torsion-free rank 2 module in \mathcal{H} which is non-Warfield yet all torsion-free elements have indicators of finite-type.

Example 3.6. Let G be a mixed module in the class \mathcal{H} with a basic generating system $B=\left\{x_{i}, a_{i-1}^{k} \mid i \in \mathbf{N}, k=1,2\right\}$ and a corresponding relation array $\left(\alpha_{i-1, j}^{k}\right)$ defined by

$$
\alpha_{i, 4 i+1}^{1}=1, \alpha_{i, 2 i+1}^{2}=1 \quad \text { and } \quad \alpha_{i, j}^{k}=0, k=1,2, \quad \text { otherwise. }
$$

We show that G is not Warfield in several steps. First we calculate the indicator of any linear combination $r a_{0}^{1}+s a_{0}^{2} \neq 0$. Then we show that for a fixed pair of linear combinations of the form above there is a gap torsion element relative to both. Finally we apply Proposition 3.5 to deduce that G is not Warfield since the sequence of gap-elements are not independent.
Let $r a_{0}^{1}+s a_{0}^{2} \neq 0$ be a linear combination. If either $r=0$ or $s=0$, then the indicator $\mathbf{H}\left(r a_{0}^{1}+s a_{0}^{2}\right)$ equals either $\mathbf{H}\left(s a_{0}^{1}\right)$ or $\mathbf{H}\left(r a_{0}^{2}\right)$ and there is a sufficiently large $J \in \mathbf{N}$ depending on the p-divisibility of r and s such that for every $j \geq J$ the torsion generator $x_{4 j+1}$ is a gap-element relative to $\mathbf{H}\left(r a_{0}^{1}+s a_{0}^{2}\right)$. Now assume that both r and s are both nonzero. Then integers $m(r), m(s) \in \mathbf{N}_{0}$ exist such that $r \in p^{m(r)} R \backslash p^{m(r)+1} R$ and $s \in p^{m(s)} R \backslash p^{m(s)+1} R$. Considering $r a_{0}^{1}+s a_{0}^{2}$
as a torsion-free generator of a modified basic generating system, by Lemma 2.5 we conclude that for every $n \in \mathbf{N}_{0}$ some $i(n) \in \mathbf{N}$ exists such that

$$
h^{*}\left(p^{n}\left(r a_{0}^{1}+s a_{0}^{2}\right)\right)=h^{*}\left(\sum_{\nu=0}^{i(n)-1} p^{n+\nu}\left(\left(r x_{4 \nu+1}\right)+\left(s x_{2 \nu+1}\right)\right)\right) .
$$

From this we infer that for fixed $n \in \mathbf{N}$ the smallest $\nu \in\{0, \ldots, i(n)-1\}$ satisfying at least one of the conditions
(1) $m(r)+n+\nu \leq 4 \nu \Longleftrightarrow m(r)+n \leq 3 \nu$
(2) $m(s)+n+\nu \leq 2 \nu \Longleftrightarrow m(s)+n \leq \nu$
is relevant for the height of $p^{n}\left(r a_{0}^{1}+s a_{0}^{2}\right)$. Define two functions $\nu_{r}: \mathbf{N}_{0} \rightarrow \mathbf{N}_{0}$ by $\nu_{r}(n)=\min \{z \in \mathbf{N} \mid 3 z \geq m(r)+n\}$, and $\nu_{s}: \mathbf{N}_{0} \rightarrow \mathbf{N}_{0}$ by $\nu_{s}(n)=m(s)+n$. Then we obtain $h^{*}\left(p^{n}\left(r a_{0}^{1}+s a_{0}^{2}\right)\right)=$ $\min \left\{m(r)+n+\nu_{r}(n), m(s)+n+\nu_{s}(n)\right\}$ if $m(r)+n+\nu_{r}(n) \neq$ $m(s)+n+\nu_{s}(n)$. Observe that the function $\nu_{s}(n)-\nu_{r}(n)$ is increasing. Hence for all sufficiently large n satisfying $m(r)+n \equiv 0(\bmod 3)$ we obtain $n+m(r)=3 \nu_{r}(n)$ but $\nu_{s}(n)>\nu_{r}(n)+m(r)-m(s)$. By the above this yields $h^{*}\left(p^{n}\left(r a_{0}^{1}+s a_{0}^{1}\right)\right)=m(r)+n+\nu_{r}(n)=4 \nu_{r}(n)$. The definition of the functions ν_{r} and ν_{s} implies that all elements $x_{4 j+1}$, where $j \geq \nu_{r}(n)$, are gap-elements relative to $\mathbf{H}\left(r a_{0}^{1}+s a_{0}^{2}\right)$.
Altogether, we conclude that for every linear combination $r a_{0}^{1}+s a_{0}^{2} \neq$ 0 a natural number J exists depending on r and s such that the elements $x_{4 j+1}$, where $j \geq J$, are gap-elements relative to $\mathbf{H}\left(r a_{0}^{1}+s a_{0}^{2}\right)$. Since every indicator that is realized in G is equivalent to the indicator of some linear combination of a_{0}^{1} and a_{0}^{2}, therefore any two pairs of indicators of torsion-free elements of G have common gap-elements and hence are not independent. Thus the module G is not Warfield by Proposition 3.5.

Our goal is to characterize the Warfield modules in \mathcal{H} which are either strictly reduced or whose zeroth Ulm factor is torsion. These turn out to be familiar objects, namely, the simply presented modules in \mathcal{H}, or equivalently, the direct sums of modules of torsion-free rank 1 , cf. Corollary 2.3 . We begin by recalling some definitions from [2] and [8].

If M is a module with decomposition basis X then, for any equivalence class $\overline{\mathbf{E}}$ of indicators, let $g_{X}(\overline{\mathbf{E}}, M)$ be the number of elements $x \in X$ such that $\mathbf{H}(x) \in \overline{\mathbf{E}}$. Warfield proved that the $g_{X}(\overline{\mathbf{E}}, M)$ are
independent of the decomposition basis X, cf. [8], and we can write $g_{X}(\overline{\mathbf{E}}, M)=g(\overline{\mathbf{E}}, M)$. As in $[\mathbf{2}]$, we will call the invariant $g(\overline{\mathbf{E}}, M)$ the Warfield invariant of M at $\overline{\mathbf{E}}$. In [8, Theorem 5.3] it was shown that two Warfield modules are isomorphic if and only if they have equal Warfield invariants and equal Ulm-Kaplansky invariants.

Theorem 3.7. For a module G in the class \mathcal{H} which is either strictly reduced or has a torsion zeroth Ulm factor, the following are equivalent:
(1) G is Warfield.
(2) G is simply presented.
(3) G is a direct sum of modules of torsion-free rank 1.

Proof. The statement $(2) \Longrightarrow(1)$ is obvious, while $(3) \Longrightarrow(2)$ follows from Corollary 2.3. It still remains to prove that $(1) \Longrightarrow(3)$.

Let G be a Warfield module in the class \mathcal{H} that either has a torsion zeroth Ulm factor or is strictly reduced. By Corollary 2.4 we may assume that G is countably generated. We will construct a module H such that the following hold true.
(1) H is a direct sum of modules of torsion-free rank 1 ,
(2) $g(\overline{\mathbf{E}}, H)=g(\overline{\mathbf{E}}, G)$ for every equivalent class $\overline{\mathbf{E}}$ of indicators,
(3) $f_{\sigma}(H)=f_{\sigma}(G)$ for every ordinal σ, and $f_{\infty}(H)=f_{\infty}(G)$.

If this is done an application of Warfield's theorem [8, Theorem 5.3] to G and H will conclude the proof.

Since G is Warfield, by [7, Theorem 11] and Lemma 3.1 we may assume that there is a basic generating system $B=\left\{x_{i}^{v}, a_{i-1}^{k} \mid i \in\right.$ $\left.\mathbf{N}, v \in I_{i}, k \in I\right\}$ of G with a corresponding restricted relation array $\left(\alpha_{i-1, j}^{k, u}\right)$ such that the set $\left\{a_{0}^{k} \mid k \in I\right\}$ is a decomposition basis of G. We distinguish two cases, when G has a torsion zeroth Ulm factor or when G is strictly reduced.

First assume that G has a torsion zeroth Ulm factor. We may assume that G is reduced. Since $G / p^{\omega} G$ is torsion and since G is reduced, the
indicators $\mathbf{H}\left(a_{0}^{k}\right), k \in I$, are all of ω-type. Hence, we obtain

$$
g(\overline{\mathbf{E}}, G)= \begin{cases}|I| & \text { if } \overline{\mathbf{E}} \text { is the equivalence class of the } \tag{3.10}\\ \text { indicators of } \omega \text {-type } \\ 0 & \text { otherwise. }\end{cases}
$$

Let $J=\left\{j \in \mathbf{N} \mid I_{j} \neq \varnothing\right\}$. Since $G / \mathbf{t} G$ is divisible and since G is assumed to be reduced, we infer that $|J|=\aleph_{0}$. Hence we have $|I \times \mathbf{N}|=|I| \cdot|\mathbf{N}|=\aleph_{0}=|J|$, and there is an injection $j: I \times \mathbf{N} \rightarrow J$. By the definition of the set J and since $j(k, l) \in J$ for every pair $(k, l) \in I \times \mathbf{N}$, there is some $u(k, l) \in I_{j(k, l)}$ for every pair $(k, l) \in I \times \mathbf{N}$. Now let $\left(\beta_{i-1, j}^{k, u}\right)$ be a relation array defined by

$$
\beta_{j(k, l), j(k, l)}^{k, u(k, l)}=1 \quad \text { and } \quad \beta_{i-1, j}^{k, u}=0 \quad \text { otherwise. }
$$

Furthermore, let H be a module in the class \mathcal{H} with a basic generating system $C=\left\{x_{i}^{v}, b_{i-1}^{k} \mid i \in \mathbf{N}, v \in I_{i}, k \in I\right\}$ and a corresponding relation array $\left(\beta_{i-1, j}^{k, u}\right)$. Since, for every $k \in I$ the relation array $\left(\beta_{i-1, j}^{k, u}\right)$ is diagonal, by Theorem 2.6 the indicator $\mathbf{H}\left(b_{0}^{k}\right), k \in I$, is of ω-type. Moreover, for every $k \in I$ we obtain a submodule $H^{k} \subset H$ of torsionfree rank 1 defined by $\left\langle b_{i-1}^{k} \mid i \in \mathbf{N}\right\rangle$. The submodules H^{k} have the torsion submodule $\mathbf{t} H^{k}=\oplus_{l \in \mathbf{N}} R x_{j(k, l)}^{u(k, l)}, k \in I$, while the intersection $\cap_{k \in I} \mathbf{t} H^{k}$ is zero, as $j: I \times \mathbf{N} \rightarrow J$ is injective.

Now assume that G is strictly reduced. For every $k \in I$, let $j_{k}(n)$ be the Ulm-Kaplansky exponent of $\mathbf{H}\left(a_{0}^{k}\right)$, and define $N^{k}:=\left\{j_{k}(n) \mid\right.$ $\left.n \in \mathbf{N}_{0}\right\}$, i.e., N^{k} is the image of \mathbf{N}_{0} under $j_{k}, k \in I$. Then by Proposition 3.5, we infer that

$$
T \oplus \bigoplus_{j \in \mathbf{N}} \bigoplus_{k \in J_{j}} R t_{j}^{k}(\alpha)=T \oplus \bigoplus_{k \in I} \bigoplus_{j \in N^{k}} R t_{j}^{k}(\alpha) \cong \mathbf{t} G
$$

for some direct sum of cyclic torsion modules T. Now for fixed $k \in I$, let H^{k} be a module in the class \mathcal{H} of torsion-free rank 1 with a basic generating system

$$
C=\left\{t_{j}^{k}(\alpha), b_{i-1}^{k} \mid i \in \mathbf{N}, j \in N^{k}\right\}=\left\{t_{j k(n)}^{k}(\alpha), b_{i-1}^{k} \mid i \in \mathbf{N}, n \in \mathbf{N}_{0}\right\}
$$

and a corresponding relation array $\left(\gamma_{i-1, j}^{k}\right)$ defined by

$$
\gamma_{i_{k}(n), j_{k}(n)}^{k}=1 \quad \text { and } \quad \gamma_{i, j}^{k}=0 \quad \text { otherwise }
$$

where $i_{k}(n)$ is the height difference of $\mathbf{H}\left(a_{0}^{k}\right), k \in I$. Then, for every $k \in I$ the relation array $\left(\gamma_{i-1, j}^{k}\right)$ is strictly concave relative to the indicator $\mathbf{H}\left(a_{0}^{k}\right)$ and by Lemma 2.2 we have

$$
\begin{equation*}
\mathbf{H}\left(b_{0}^{k}\right) \cong \mathbf{H}\left(a_{0}^{k}\right), \quad k \in I \tag{3.11}
\end{equation*}
$$

In both cases we obtain a module H given by $H=T=\oplus \bigoplus_{k \in I} H^{k}$ that is a direct sum of modules of torsion-free rank 1 with a decomposition basis $\left\{b_{0}^{k} \mid k \in I\right\}$ such that $\mathbf{t} H \cong \mathbf{t} G$. Therefore, we have $f_{\sigma}(G)=$ $f_{\sigma}(H)$ for every ordinal σ and $f_{\infty}(G)=f_{\infty}(H)$. Since the sets $\left\{a_{0}^{k} \mid k \in I\right\}$ and $\left\{b_{0}^{k} \mid k \in I\right\}$ are decomposition bases of the modules G and H, respectively, we have $g(\overline{\mathbf{E}}, G)=g(\overline{\mathbf{E}}, H)$ by (3.10) if G has a torsion zeroth Ulm factor and by (3.11) if G is strictly reduced. Thus, the modules G and H satisfy all the hypotheses of [8, Theorem 5.3] and hence are isomorphic. Therefore, G is the direct sum of modules of torsion-free rank 1 .

Now we show that there are Warfield modules in the class \mathcal{H} that are not simply presented. We construct a module of torsion-free rank 2 which contains torsion-free elements whose indicators are of finite and ω-type. This points out the necessity of the hypothesis on the indicators in Theorem 3.7. This example complements the one in [8] of a Warfield module which is not simply presented whose torsion-free rank is 1.

Example 3.8. Let G be a module in the class \mathcal{H} with a basic generating system $B=\left\{x_{2 i}, a_{i-1}^{k} \mid i \in \mathbf{N}, k=1,2\right\}$ and a corresponding restricted relation array $\left(\alpha_{i-1, j}^{k}\right)$ defined by $\alpha_{i, 2 i}^{1}=1$ and $\alpha_{i, j}^{1}=0$ if $j \neq 2 i, \alpha_{2 i, 2 i}^{2}=1$ and $\alpha_{i, j}^{2}=0$ otherwise. Hence we have the relations

$$
\begin{array}{rlrlrl}
p a_{i+1}^{1} & =a_{i}^{1}+x_{2 i}, & i \in \mathbf{N}, & p a_{1}^{1} & =a_{0}^{1}, & \\
p a_{2 i+1}^{2} & =a_{2 i}^{2}+x_{2 i}, \quad i \in \mathbf{N}, & p a_{i+1}^{2} & =a_{i}^{2}, \quad \text { otherwise. }
\end{array}
$$

First we show that G is Warfield by finding a decomposition basis of G. Consider the relation arrays $\left(\alpha_{i-1, j}^{1}\right)$ and $\left(\alpha_{i-1, j}^{2}\right)$. Since the relation array $\left(\alpha_{i-1, j}^{2}\right)$ is diagonal, and by Theorem 2.6, we infer that $\mathbf{H}\left(a_{0}^{2}\right)$ is of ω-type. Hence there exists a torsion-free element $b \in R a_{0}^{2} \subset G$ such that $h^{*}(b) \geq \omega$. As the relation array $\left(\alpha_{i-1, j}^{1}\right)$ is strictly concave, Lemma 2.2 implies that $\mathbf{H}\left(a_{0}^{1}\right)$ is of finite-type.

Hence we have $h^{*}\left(p^{n} a_{0}^{1}\right)<\omega \leq h^{*}(b)$ for all $n \in \mathbf{N}_{0}$. Thus we obtain $h^{*}\left(r a_{0}^{1}+s b\right)=\min \left\{h^{*}\left(r a_{0}^{1}\right), h^{*}(s b)\right\}, r, s \in R$, i.e., $\left\{a_{0}^{1}, b\right\}$ is a decomposition basis of G. By [7, Theorem 12] the module G is Warfield.

We now show that G is not simply presented. Since $\mathbf{t} G=\oplus_{i \in \mathbf{N}} R x_{2 i}$, the defining relations corresponding to B imply that G is generated by $\left\{a_{i-1}^{k} \mid i \in \mathbf{N}, k=1,2\right\}$. If G was simply presented then, by [8, Lemma 2.2], it would be a direct sum of modules of at most torsionfree rank 1. This implies that there is a 2×2-matrix $D=\left(d_{k h}\right)$ with entries in R and two natural numbers $i(1), i(2)$ such that the sets $\left\{d_{k 1} a_{i-1}^{1}+d_{k 2} a_{i-1}^{2} \mid i \geq i(k)\right\}, k=1,2$, generate submodules $G^{k} \subset G$, $k=1,2$, where $G^{k} \neq 0$ for $k=1,2$, and $G^{1} \cap G^{2}=0$. The $G^{k} \neq 0$, $k=1,2$, implies that D has no zero rows, and $G^{1} \cap G^{2}=0$ implies that D has no zero columns. However, we show the nonexistence of such a matrix D thus contradicting our assumption that G is simply presented.
Let $D=\left(d_{k h}\right)$ be a 2×2-matrix with entries in R such that D has no zero rows or zero columns. For $i \geq 2$ and $k \in\{1,2\}$, we obtain

$$
d_{k 1}\left(a_{i}^{1}-a_{i-1}^{1}\right)+d_{k 2}\left(a_{i}^{2}-a_{i-1}^{2}\right)= \begin{cases}d_{k 1} x_{2 i-2} & i \in 2 \mathbf{N} \tag{3.12}\\ d_{k 1} x_{2 i-2}+d_{k 2} x_{i-1} & i \notin 2 \mathbf{N}\end{cases}
$$

Since D has no zero rows or zero columns, we must distinguish two cases, when $d_{k 1} \neq 0, k=1,2$, or $d_{k 1}=0$ for exactly one $k \in\{1,2\}$. Let $i(k) \in \mathbf{N}, k=1,2$. First assume that $d_{k 1} \neq 0$ for $k=1,2$. Then $h_{R}^{*}\left(d_{k 1}\right)<\infty, k=1,2$. Choose an even natural number n such that $n>\max \left\{h_{R}^{*}\left(d_{k 1}\right)+1, i(k) \mid k=1,2\right\}$. Then $h_{R}^{*}\left(d_{11}, d_{21}\right)<2 n-2$ and therefore $d_{11} d_{21} x_{2 n-2} \neq 0$. Furthermore, since $n \in 2 \mathbf{N}$, and by (3.12) we obtain

$$
d_{k 1}\left(a_{n}^{1}-a_{n-1}^{1}\right)+d_{k 2}\left(a_{n}^{2}-a_{n-1}^{2}\right)=d_{k 1} x_{2 n-2}, \quad k=1,2 .
$$

Hence we have $0 \neq d_{11} d_{21} x_{2 n-2} \in \cap_{k=1,2}\left\langle d_{k 1} a_{i-1}^{1}+d_{k 2} a_{i-1}^{2} \mid i \geq i(k)\right\rangle$ and G is not a direct sum of modules of torsion-free rank 1 .
Now assume that $d_{11} \neq 0$ and $d_{21}=0$. Since D has no zero rows or zero columns, we infer that $d_{22} \neq 0$. Thus we have $h_{R}^{*}\left(d_{k k}\right)<\infty$ for $k=1,2$. Choose an even natural number n such that $n>$ $\max \left\{h_{R}^{*}\left(d_{k k}\right)+1, i(k) \mid k=1,2\right\}$. Then $h_{R}^{*}\left(d_{11} d_{22}\right)<2 n-2$, and
therefore $d_{11} d_{22} x_{2 n-2} \neq 0$. Furthermore, since $n \in 2 \mathbf{N}$, and by (3.12), we obtain

$$
d_{11}\left(a_{n}^{1}-a_{n-1}^{1}\right)+d_{12}\left(a_{n}^{2}-a_{n-1}^{2}\right)=d_{11} x_{2 n-2}
$$

and

$$
d_{21}\left(a_{2 n-1}^{1}-a_{2 n-2}^{1}\right)+d_{22}\left(a_{2 n-1}^{2}-a_{2 n-2}^{2}\right) \underset{d_{21}=0}{=} d_{22} x_{2 n-2} .
$$

Altogether we have $0 \neq d_{11} d_{22} x_{2 n-2} \in \cap_{k=1,2}\left\langle d_{k_{1}} a_{i-1}^{1}+d_{k 2} a_{i-1}^{2}\right| i \geq$ $i(k)\rangle$, and again G is not a direct sum of modules of torsion-free rank 1 .

Acknowledgments. The authors would like to thank the referee for several suggestions that helped improve the readability of the paper.

REFERENCES

1. L. Fuchs, Infinite abelian groups I + II, Academic Press, New York, 1970, 1973.
2. R. Hunter, F. Richman and E. Walker, Warfield modules, Lecture Notes in Math. 616, Springer-Verlag, Berlin, 1977, 87-123.
3. R. Jarisch, O. Mutzbauer and E. Toubassi, Calculating indicators in a class of mixed modules, Proc. of Colo. Springs Conf. 1995, Lecture Notes in Pure and Appl. Math. 182 (1996), 291-301.
4. - Characterizing a class of simply presented modules by relation arrays, Arch. Math. (Basel) 71 (1998), 349-357.
5. O. Mutzbauer and E. Toubassi, A splitting criterion for a class of mixed modules, Rocky Mountain J. Math. 24 (1994), 1533-1543.
6. -, Classification of mixed modules, Acta Math. Hung. 72 (1996), 153-166.
7. R.B. Warfield, Jr., The structure of mixed abelian groups, Lecture Notes in Math. 616, Springer-Verlag, Berlin, 1977, 1-38.
8. -, Classification theory of abelian groups, II: Local theory, Lecture Notes in Math. 874, Springer-Verlag, Berlin, 1981, 322-349.

Mathematisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

Mathematisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
E-mail address: mutzbauer@mathematik.uni-wuerzburg.de
Department of Mathematics, University of Arizona, Tucson, Arizona 85721, U.S.A.
E-mail address: elias@math.arizona.edu

[^0]: Received by the editors on December 19, 1997, and in revised form on October 18, 1999.

 1991 AMS Mathematics Subject Classification. 20K21, 20 K 35.

