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APPROACH GROUPS

R. LOWEN AND B. WINDELS

ABSTRACT. Any normed vector space X is a topological
group with respect to the norm topology and the underlying
group operation of the vector space. Although for the major-
ity of applications it is sufficient to know that this operation
+ : X × X → X : (x, y) �→ x + y is continuous, stronger
properties of this mapping can be shown. In fact, if X ×X is
equipped with the sum product metric, then addition becomes
a contraction. Examples show that different well-known topo-
logical (semi-)groups can be equipped with a natural metric
(or gauge of metrics) such that addition is contractive. This
approach group structure is a canonical generalization of topo-
logical groups (or metric groups in the sense of Parthasarathy)
and shares some of the important features with the classical
concept. For instance, every approach group allows for a nat-
ural uniformization.

1. Introduction. For the convenience of the reader we briefly recall
some definitions from Lowen and Windels [6].

A collection of ideals (A(x))x∈X in [0,∞] is called an approach system
on X if and only if for all x ∈ X the following conditions are satisfied:

(A1) For all ϕ ∈ A(x) : ϕ(x) = 0.

(A2) For all ϕ ∈ [0,∞]X : (for all ε > 0, for all N < ∞ :
there exists ϕN

ε ∈ A(x) such that ϕ ∧N ≤ ϕN
ε + ε) ⇒ ϕ ∈ A(x).

(A3) For all ϕ ∈ A(x), for all ε > 0, for all N < ∞, there exists
(ϕz)z∈X ∈

∏
z∈X A(z) such that for all y, z ∈ X : ϕ(y) ∧ N ≤

ϕx(z) + ϕz(y) + ε.

The pair (X, (A(x))x∈X) is called an approach space.

An approach space can also be described by means of a distance
function δ : X×2X → [0,∞] or by a limit operator λ : F(x) → [0,∞]X ,
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satisfying the right conditions; see Lowen [4] for details.

A function f : (X, (A(x))x) → (Y, (A′(y))y) is called a contraction if
and only if for all x ∈ X, for all ϕ ∈ A′(f(x)) : ϕ ◦ f ∈ A(x). The
category of approach spaces and contractions is denoted by Ap.

2. Basic definitions and results. The usual approach product
on X × X is not suitable in the current context. Therefore, we shall
endow X ×X with a so-called additive product.

Proposition 2.1. Let (A(x))x∈X be an approach system on a set
X. Then

B(a, b) := {ϕ : (x, y) �→ ϕ1(x) + ϕ2(y) | ϕ1 ∈ A(a), ϕ2 ∈ A(b)}

defines an approach system on X ×X.

Proof. We only show that B(a, b) satisfies (A1) and (A3); the other
axiom is obvious.

(A1) For every ϕ ∈ B(a, b), ϕ(x, y) = ϕ1(x) +ϕ2(y) say, we have that
ϕ((a, b)) = ϕ1(a) + ϕ2(b) = 0 + 0 = 0.

(A3) Let ϕ ∈ B(a, b), ϕ(x, y) = ϕ1(x) + ϕ2(y), say. Let ε > 0 and
N < ∞. Since ϕ1 ∈ A(a) and ϕ2 ∈ A(b), (ϕ1

z)z ∈
∏

z∈X A(z) and
(ϕ2

z)z ∈
∏

z∈X A(z) exist such that for all p, q ∈ X:

ϕ1(p) ∧N ≤ ϕ1
a(q) + ϕ1

q(p) + ε/2

and

ϕ2(p) ∧N ≤ ϕ2
b(q) + ϕ2

q(p) + ε/2.

Define (ϕ(z1,z2))(z1,z2) ∈
∏

(z1,z2)∈X×X B((z1, z2)) by ϕ(z1,z2)(x, y) =
ϕ1

z1
(x) + ϕ2

z2
(y). Then for all p1, p2, q1, q2 ∈ X:

ϕ((p1, p2)) ∧N = (ϕ1(p1) + ϕ2(p2)) ∧N

≤ ϕ1(p1) ∧N + ϕ2(p2) ∧N

≤ ϕ1
a(q1) + ϕ1

q1
(p1) + ϕ2

b(q2) + ϕ2
q2

(p2) + ε

= ϕ(a,b)(q1, q2) + ϕ(q1,q2)(p1, p2) + ε.
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The approach structure defined in the previous lemma is called the
additive product. If X × X is equipped with its additive product, we
shall denote this by X ⊗X.

Analogous to the definition of a topological group, we define the
following.

Definition 2.2. A triple (X, δ,+) is called an approach group if and
only if

(a) (X, δ) is an approach space

(b) (X,+) is a group

(c) + : X ⊗X → X : (x, y) �→ x + y is a contraction

(d) − : X → X : x �→ −x is a contraction.

We now turn to some basic properties of approach groups.

Proposition 2.3. Let (X, δ,+) be an approach group; then, for every
a ∈ X,

Ta : X → X : x �→ x + a

is an isomorphism in Ap.

Proof. If a ∈ X, then Ta is the composition of the map X → X⊗X :
x �→ (x, a) and addition, which are both contractions. In particular,
T−a is a contraction and is the inverse of Ta.

If X is a group, then we denote the neutral element by zero, and
further

∀A,B ⊂ X : A−B = {a− b | a ∈ A, b ∈ B}

∀F ,G ∈ F(X) : F − G = {F −G | F ∈ F , G ∈ G},

A− x = A− {x} and F − x = F − ẋ.

As for topological groups, we have that the approach structure is
completely determined by the structure around zero, in the sense of
the following proposition.
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Proposition 2.4. Let (X, δ,+) be an approach group. Then

(a) for all x ∈ X : A(x) = {ϕ ◦ T−x | ϕ ∈ A(0)}.
(b) For all x ∈ X, for all A ⊂ X : δ(x,A) = δ(0, A− x).

(c) For all x ∈ X, for all F ∈ F(X) : λF(x) = λ(F − x)(0).

Proof. Let x ∈ X. Since T−x is an isomorphism, we have that

(a) ϕ ∈ A(0) ⇐⇒ ϕ ◦ T−x ∈ A(x),

(b) δ(0, A− x) = δ(T−x(x), T−x(A)) = δ(x,A) and

(c) λF(x) = λ(T−x(F))(T−x(x)) = λ(F − x)(0).

Proposition 2.5. Let (X, δ,+) be an approach group, and let T be
the topological coreflection of δ. Then (X, T ,+) is a topological group.

Proof. The fact that inversion is continuous follows from the fact that
it is a contraction. To see that addition is continuous, it suffices to note
that the topological coreflection of X×X and of X⊗X coincide.

Corollary 2.6. If δ is a topological approach space on X, δ = δ(T )
say, then the following are equivalent.

(1) (X, δ,+) is an approach group.

(2) (X, T ,+) is a topological group.

Proof. The fact that (1) ⇒ (2) is exactly the previous proposition.
Conversely, (2) ⇒ (1) follows from the observations that Top is fully
embedded in Ap and that if X is a topological approach space, then
X ⊗X is topological too.

Denote by ApGr the category of approach groups and contractive
group homomorphisms.

Corollary 2.7. The category TopGr is a full coreflective subcategory
of ApGr.
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3. Examples.

Example 3.1. (a) (Rn, δ,+) with the usual distance δ and usual
addition + is an approach group.

(b) (R0, δ, ·) is not an approach group.

(c) If (X,�) is a group and δ is the discrete distance on X, then
(X, δ,�) is an approach group.

(d) If (X,�) is a group and δ is the trivial distance on X, then
(X, δ,�) is an approach group.

(e) Every topological group is an approach group.

Example 3.2. Any normed space is an approach group in the
sense that if ‖ · ‖ is a norm on a vector space (X,+) and δ‖·‖ is the
metric approach space induced by the metric d(x, y) = ‖y − x‖, then
(X, δ‖·‖,+) is an approach group.

This follows from the fact that for all a, b, x, y ∈ X:

d(a + b, x + y) = ‖(a + b)− (x + y)‖
≤ ‖a− x‖+ ‖b− y‖ = d(a, x) + d(b, y)

and
d(−a,−x) = ‖ − a + x‖

= ‖a− x‖
= d(a, x).

Example 3.3. If X is a normed space and δw is the weak distance,
i.e., for all x ∈ X:

A(x) =
{

sup
f∈F

|f(x)−f(·)| | F is a finite subset of {f ∈ X∗ | ‖f‖≤1}
}
,

then (X, δw,+) is an approach group.

Indeed, for all F ∈ 2X∗
, for all a, b, x, y ∈ X:

sup
f∈F

|f(a + b)− f(x + y)| = sup
f∈F

|f(a)− f(x) + f(b)− f(y)|

≤ sup
f∈F

|f(a)− f(x)|+ sup
f∈F

|f(b)− f(y)|
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and thus + is a contraction. On the other hand, we have that for all
F ∈ 2X∗

, for all a, x ∈ X:

sup
f∈F

|f(−a)− f(−x)| = sup
f∈F

| − f(a) + f(x)| = sup
f∈F

|f(a)− f(x)|

and consequently − is a contraction.

Contractivity is typical for addition-like operations. However, ap-
proach groups exist which carry a multiplicative operator.

Example 3.4. Let O2 denote the set of all orthogonal 2×2 matrices.
As a set, O2 can be seen as a subset of R4 and inherits the Euclidean
metric. In fact,

d

([
cosα sinα
sinα − cosα

]
,

[
cosβ sin β
sin β − cosβ

])
= 2

√
1− cos(α− β).

It is an amusing trig exercise to check that for all A,B,C ∈ O2 :
d(A · C,B · C) = d(A,B) and d(A,B) = d(A−1, B−1).

Now (O2, δ(d), ·) is an approach group. Indeed, for all A,B,X, Y ∈
O2 we have

d(AB,XY ) ≤ d(AB,XB) + d(XB,XY )
= d(A,X) + d(B, Y ),

and therefore multiplication is contractive. On the other hand, since
d(A−1, X−1) = d(A,X), inversion is contractive too.

Example 3.5. Let (X, d) be a metric space. Denote by

IT (X) := {f : X → X | f is an isometric bijection}.

Let X be a collection of subsets of X such that

(1) ∪X = X.

(2) For all A,B ∈ X : A ∪B ∈ X .

(3) For all A ∈ X , for all f ∈ IT (X) : f(A) ∈ X .
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On the set IT (X) we shall consider the approach structure of X -
convergence, that is, the approach structure δ generated by the pseudo-
metrics

dF : IT (X)× IT (X) −→ [0,∞] : (f, g) �−→ sup
x∈F

d(f(x), g(x))

for every F ∈ X (see [6]). Then (IT (X), δ, ◦) is an approach group.
Indeed, for every x ∈ X and f, g, p, q ∈ IT (X) we have

d(fg(x), pq(x)) ≤ d(fg(x), pg(x)) + d(pg(x), pq(x))
= d(f(g(x)), p(g(x))) + d(g(x), q(x)),

and thus for all F ∈ X :

dF (fg, pq) ≤ dg(F )(f, p) + dF (g, q),

whence composition is a contraction. On the other hand, we have for
all f, p ∈ IT (X):

d(f−1(x), p−1(x)) = d(f−1(x), p−1ff−1(x))
= d(pf−1(x), ff−1(x))
= d(f(f−1(x)), p(f−1(x))),

and, therefore, for all F ∈ X :

dF (f−1, p−1) = df−1(F )(f, p),

which means that inversion is a contraction as well.

4. Uniformization of approach groups. Recall from [6] that
an approach uniformity (X,Γ) is a set X together with an ideal Γ of
functions from X ×X into [0,∞], satisfying the following conditions:

(AU1) For all γ ∈ Γ, for all x ∈ X : γ(x, x) = 0.

(AU2) For all ξ ∈ [0,∞]X×X : (∀ ε > 0, ∀N < ∞ : ∃ γN
ε ∈ Γ such

that ξ ∧N ≤ γN
ε + ε) ⇒ ξ ∈ Γ.

(AU3) For all γ ∈ Γ, ∀N < ∞, ∃ γN ∈ Γ such that ∀x, y, z ∈ X :
γ(x, z) ∧N ≤ γN (x, y) + γN (y, z).
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(AU4) For all γ ∈ Γ : γs ∈ Γ,

where γs(x, y) = γ(y, x). If (X, γ) is an approach uniformity then
we call the approach structure given by A(x) = {γ(x, ·) | γ ∈ Γ},
the underlying approach structure of Γ, or that Γ and (A(x))x are
compatible.

As for topological groups, which are always uniformizable, we can
associate with every approach group a natural approach uniformity.

Proposition 4.1. Let (X, δ,+) be an approach group. Then

Γ := 〈{γ : X ×X → [0,∞] : (x, y) �−→ ϕ(x− y) | ϕ ∈ A(0)}〉

is an approach uniformity on X, compatible with δ.

Proof. Since A(0) is an ideal, Γ is an ideal too. Also we have

(AU1) For every γ ∈ Γ, γ(x, y) = ϕ(x− y), say, and x ∈ X, we have
that γ(x, x) = ϕ(x− x) = ϕ(0) = 0.

(AU3) Let γ ∈ Γ, γ(x, y) = ϕ(x − y), say, N < ∞ and ε > 0.
Since addition is contractive, some ϕN

ε ∈ A(0) exists such that for all
x, y ∈ X:

ϕ(x + y) ∧N ≤ ϕN
ε (x) + ϕN

ε (y) + ε.

Put γN
ε (x, y) = ϕN

ε (x− y). Then, for all x, y, z ∈ X:

γ(x, z) ∧N = ϕ(x− y) ∧N

≤ ϕN
ε (x− z) + ϕN

ε (z − y) + ε

= γN
ε (x, z) + γN

ε (z, y) + ε.

(AU4) follows from the fact that if ϕ ∈ A(0), then ϕ(−·) : x �→
ϕ(−x) ∈ A(0).

Finally, the underlying approach structure of Γ is given by

A′(x) = {γ(x, ·) | γ ∈ Γ}
= {γ(·, x) | γ ∈ Γ}
= {ϕ ◦ T−x | ϕ ∈ A(0)}
= A(x).
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Proposition 4.2. Let (X, T ,+) be a topological group. If Γ is the
uniformization of (X, δ(T ),+) and U is the Unif-uniformization of
(X, T ,+), then Γ = Γ(U).

Proof. Immediate.

The next two sections consider two natural modifications of the
concept of approach groups. In Section 5 we shall no longer require the
existence of inverse elements. In Section 6 we will drop the triangular
inequality-like axiom for the approach structure.

5. Approach semi-groups.

Proposition 5.1. A triple (X, δ,+) is called an approach semi-group
if and only if

(a) (X, δ) is an approach space.

(b) (X,+) is a semi-group.

(c) + : X ⊗X → X : (x, y) �→ x + y is a contraction.

Example 5.2. Let X be a compact metrizable topological (additive)
group. Let the collection M(X) of probability measures on X be
equipped with the weak approach structure δ, see [6], generated by
the pseudo-metrics

dC(P,Q) = sup
f∈C

∣∣∣∣
∫

f dP −
∫

f dQ

∣∣∣∣ P,Q ∈M(X)

for every finite subset C of the set C(X, [0, 1]) of continuous functions
on X into [0, 1]. Let convolution on M(X) be denoted by ∗. In order
to prove that (M(X), δ, ∗) is an approach semi-group, it is sufficient to
show that ∗ : M(X)⊗M(X) →M(X) is a contraction.

Let A be the algebra generated by the collection

{F : X ×X → R : (x, y) �→ F1(x) · F2(y) | F1, F2 ∈ C(X, [0, 1])}.

Clearly, A contains all constant maps and separates points in X ×X.
By the Stone-Weierstrass theorem, A is uniformly dense in C∗(X×X).
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Consequently, and since + is continuous on X, we have that for any
continuous function f ∈ C(X, [0, 1]) and for every ε > 0 there exist
(without loss of generality) fε

1 , f
ε
2 ∈ C∗(X) such that supx,y∈X |fε

1 (x) ·
fε
2 (y)− f(x + y)| < ε/2.

Now let ε > 0 and C ∈ 2C(X,[0,1]). Consider the finite sets C1 =
{fε

1 | f ∈ C} and C2 = {fε
2 | f ∈ C}. For every f ∈ C and for every

P,Q, µ, ν ∈M(X), we see that by definition of convolution and by the
Fubini theorem∣∣∣∣

∫
f d(P ∗Q)−

∫
f d(µ ∗ ν)

∣∣∣∣
=

∣∣∣∣
∫

f(x + y)d(P ×Q)(x, y)−
∫

f(x + y) d(µ× ν)(x, y)
∣∣∣∣

≤
∣∣∣∣
∫

(fε
1 (x)fε

2 (y)) d(P ×Q)(x, y)−
∫

(fε
1 (x)fε

2 (y)) d(µ× ν)(x, y)
∣∣∣∣ + ε

≤
∣∣∣∣
∫

fε
1 (x) dP (x)−

∫
fε
1 (x) dµ(x)

∣∣∣∣
+

∣∣∣∣
∫

fε
2 (y) dQ(y)−

∫
fε
2 (y) dν(y)

∣∣∣∣ + ε.

If we take the supremum over all f ∈ C, then we find that

dC(P ∗Q,µ ∗ ν) ≤ dC1(P, µ) + dC2(Q, ν) + ε.

Therefore (M(X), δ, ∗) is an approach semi-group.

6. Approach convergence groups.

6.1 Definitions. The aim of this section is to generalize the notion
of convergence groups introduced in [2]. Recall from [3] that (X,λ) is
called a convergence approach space, if λ : F(X) → [0,∞]X satisfies the
following conditions for every F ,G ∈ F(X):

(CAL1) For all x ∈ X: λẋ(x) = 0

(CAL2) F ⊂ G ⇒ λG ≤ λF .

(CAL3) λ(F ∩ G) ≤ λF ∨ λG.

If (X,λ) and (Y, λ′) are convergence approach spaces, then a function
f : (X,λ) → (Y, λ′) is called a contraction if and only if for all
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F ∈ F(X) : λ′(f(F))◦f ≤ λ(F). The category of convergence approach
spaces and contractions is denoted by Cap.

Lemma 6.1. If (X, (A(x))x is an approach space, then the approach
limit on X ⊗X is given by

λ⊗F(a, b) = sup
ϕa∈A(a)

sup
ϕb∈A(b)

inf
F∈F

sup
(x,y)∈F

(ϕa(x) + ϕb(y)).

Proof. This is a combination of the definition of the additive product
and Proposition 1.8.30 in [5].

For a convergence approach space (X,λ) too, we can consider the sets

A(x) = {ϕ | ∀F ∈ F(X) : inf
F∈F

sup
y∈F

ϕ(y) ≤ λF(x)}.

Lemma 6.2. Let (X,λ) be a convergence approach space. The map
λ⊗ defined in Lemma 6.1 defines a convergence approach structure on
X ×X.

We call this structure again the additive product on X ×X, and we
denote this by X ⊗X. We have for all F ∈ F(X ×X):

λ⊗F ≤ λ(pr1F) + λ(pr2F),

but the inequality is strict in general, which is shown in the following
example. In particular, contractivity of + yields for all F ,G ∈ F(X):

λ(F + G) ≤ λ(F) + λ(G).

Example 6.3. On R2 with the usual Euclidean approach structure,
consider the filter F = stack ({(x, 1− x) | 0 ≤ x ≤ 1}). Then

λ⊗F(0, 0) = inf
F∈F

sup
(x,y)∈F

(d(0, x) + d(0, y)) = 1
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and
λ(pr1F)(0) + λ(pr2F)(0) = inf

F1∈pr1F
sup
x∈F1

d(0, x)

+ inf
F2∈pr2F

sup
y∈F2

d(0, y) = 2.

Definition 6.4. A triple (X,λ,+) is called an approach convergence
group if and only if

(a) (X,λ) is a convergence approach space

(b) (X,+) is a group

(c) + : X ⊗X : (x, y) �→ x + y is a contraction

(d) − : X → X : x �→ −x is a contraction.

6.2 Examples.

Proposition 6.5. Every approach group is a convergence approach
group.

Proof. Follows from Lemma 6.2.

Proposition 6.6. Every convergence group is a convergence ap-
proach group.

Proof. Analogous to the proof of Proposition 2.5.

6.3. Uniformization of (approach) convergence groups. A
convergence group admits a uniform convergence structure, which
was shown in Cook and Fischer [1]. Unfortunately, this particular
uniformization is not an extension of the classical uniformization of
topological groups (see Example 6.7). Therefore, the uniformization
of approach convergence structures presented in this section shall not
be required to extend the concept in [1]. Instead we shall suggest an
alternative uniformization for ordinary convergence groups.

Example 6.7. Let us start from R equipped with the usual topology
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and addition. This topological group is uniformized by the usual
uniformity U on R. Now suppose the associated uniform convergence
structure L = {G | G ⊃ U} coincides with the uniformization of
(R, λ,+); that is, the u.c.s. generated by L′ = {F × F | F − F → 0}.
Then there are F1, . . . ,Fn such that

Fi −Fi −→ 0 and U ⊃
n⋂

i=1

Fi ×Fi.

Let ε < ∞ and choose Fi ∈ Fi such that Fi − Fi ⊂ [−ε, ε]. Then for
all i ∈ {1, . . . , n} : diamFi ≤ ε, and thus no U ∈ U can be covered by
∪n

i=1Fi × Fi.

We adopt the following notations for a group X. If F ⊂ X × X
and x ∈ X, we denote the section of F in x by F (x) = {y ∈ X |
(x, y) ∈ F}. If F ∈ F(X ×X) then we denote the global section of F
by FX = {∪x∈XF (x)− x | F ∈ F} ∈ F(X).

Lemma 6.8. Let X be a group. Then for all F ,G ∈ F(X ×X):

(a) (F ∩ G)X = FX ∩ GX

(b) (F × G)X = G − F
(c) (F−1)X = −(FX),

(d) (F ◦ G)X ⊃ FX + GX .

Proof. (a) follows from the observation that

⋃
x∈X

(F ∪G)(x)− x =
⋃

x∈X

F (x)− x ∪
⋃

x∈X

G(x)− x.

(b) follows from the observation that for all F ∈ F , for all G ∈ G,

⋃
x∈X

(F ×G)(x)− x =
⋃

x∈F

G− x = G− F.

(c) follows from the observation that ∪x∈XF−1(x) − x =
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−(∪x∈XF (x)− x) which holds since

y ∈
⋃

x∈X

F−1(x)− x ⇐⇒ ∃x ∈ x : (x, x + y) ∈ F−1

⇐⇒ ∃x ∈ X : (x + y, x) ∈ F

⇐⇒ ∃z ∈ X : (z, z − y) ∈ F

⇐⇒ ∃z ∈ X : y − z ∈ −F (z)

⇐⇒ y ∈
⋃

z∈X

z − F (z).

(d) follows from the observation that
⋃

x∈X

(F ◦G)(x)− x ⊂
⋃

x∈X

F (x)− x +
⋃

x∈X

G(x)− x.

Indeed, if y ∈ ∪x∈X(F ◦G)(x)− x, then for some x ∈ X we have that
(x, x + y) ∈ F ◦G, which means that p ∈ X exists such that (x, p) ∈ G
and (p, x + y) ∈ F . Let y1 = y − o + x and y2 = p− x. Then

y1 + y2 = (y − p + x) + (p− x) = y

(p, p + y1) = (p, x + y) ∈ F

(x, x + y2) = (x, p) ∈ G,

and therefore,

y ∈ {y1 + y2 | ∃ p, x ∈ X : (p, p + y1) ∈ F, (x, x + y2) ∈ G}

=
( ⋃

p∈X

F (p)− p

)
+

( ⋃
x∈X

G(x)− x

)
.

Recall from [8] that an approach uniform convergence structure on
the set X is a map η: F(X ×X) → [0,∞] such that for all x ∈ X, for
all F ,G ∈ F(X ×X):

(AUCS1) η(ẋ× ẋ) = 0

(AUCS2) F ⊂ G ⇒ η(G) ≤ η(F)

(AUCS3) η(F ∩ G) ≤ η(F) ∨ η(G)
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(AUCS4) η(F−1) = η(F)

(AUCS5) η(F ◦ G) ≤ η(F) + η(G).

If (X, η) is an approach uniform convergence group, then λF(x) =
η(F × ẋ) defines a convergence approach structure on X. We call λ
the underlying convergence structure of η, or say that η and λ are
compatible.

With every approach convergence group, we can associate an ap-
proach uniform convergence space in a natural way.

Proposition 6.9. Let (X,λ,+) be an approach convergence group.
Then

η : F(X ×X) −→ [0,∞] : F �−→ λFX(0)

is an approach uniform convergence structure on X, compatible with λ.

Proof. First we show that η is an approach uniform convergence
structure.

(AUCS1) Let x ∈ X. By Lemma 6.8(b) and (CAL1), η(ẋ × ẋ) =
λ0̇(0) = 0.

(AUCS2) Suppose F ⊂ G. Then FX ⊂ GX and therefore, by (CAL2),
η(G) = λGX(0) ≤ λFX(0) = η(F).

(AUCS3) By Lemma 6.8(a) and (CAL3) we have

η(F ∩ G) = λ(F ∩ G)X(0) = λ(FX ∩ GX)(0)

≤ λFX(0) ∨ λGX(0) = η(F ) ∨ η(G).

(AUCS4) By Lemma 6.8(c) and contractivity of inversion, we have
η(F−1) = λ(F−1)X(0) = λ(−FX)(0) = λFX(0) = η(F).

(AUCS5) By Lemma 6.8(d), (CAL2) and contractivity of +, we have
that

η(F ◦ G) = λ(F ◦ G)X(0) ≤ λ(FX + GX)(0)

≤ λFX(0) + λGX(0) = η(F) + η(G).

Second we show that the underlying Cap-structure of η is λ. Let λ′

denote the underlying structure of η. Then by Lemma 6.8(d) we see
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that for all F ∈ F(X) for all x ∈ X:

λ′F(x) = η(F × ẋ) = η(ẋ×F)

= λ(ẋ×F)X(0) = λ(F − x)(0) = λF(x).

This concept generalizes the uniformization of approach groups dis-
cussed in Section 4.

Proposition 6.10. Let (X,λ,+) be an approach group. If η1 is the
a.u.c.s. induced by the approach uniformity Γ uniformizing X, and if
η2 is the a.u.c.s. uniformizing X as an approach convergence group,
then η1 = η2.

Proof. Let A(0) be the approach system of 0 with respect to λ. Then
for all F ∈ F(X ×X):

η1(F) = min{ε | F ⊃ {{γ < α} | γ ∈ Γ, α > ε}}
= min{ε | ∀α > ε, ∀ϕ ∈ A(0), ∃F ∈ F ,

∀ (x, y) ∈ F : ϕ(y − x) < α}
= sup

ϕ∈A(0)

inf
F∈F

sup
(x,y)∈F

ϕ(y − x)

= sup
ϕ∈A(0)

inf
FX∈FX

sup
z∈FX

ϕ(z)

= λFX(0) = η2(F).

As we stated earlier, our construction does not generalize the uni-
formization of convergence groups discussed in [1]: the latter is coarser
in general. Therefore, we suggest the following modification.

Proposition 6.11. Let (X, τ,+) be a convergence group. Then the
collection

L = {F ∈ F(X ×X) | FX → 0}
is a uniform convergence structure compatible with (X, τ,+). Moreover,
if (X, τ,+) is a topological group, then ∩{F | F ∈ L} is the classical
uniformization of (X, τ,+).
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Proof. The first part of the proposition is an easy consequence of
Proposition 6.9. The second part is just the combination of Proposition
5.1 and Proposition 6.10.
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