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A NOTE ON SCHUR-CONVEX FUNCTIONS

N. ELEZOVIĆ AND J. PEČARIĆ

ABSTRACT. In this note it is proved that the integral
arithmetic mean of a convex function is a Schur-convex func-
tion. Applications to Schur-convexity of logarithmic mean and
gamma functions are given.

For the convenience of the reader, we recall shortly the main defini-
tions. Function F of n arguments defined on In, where I is an interval
with nonempty interior, is Schur-convex on In if

(1) F (x1, . . . , xn) ≤ F (y1, . . . , yn)

for each two n-tuples x = (x1, . . . , xn), y = (y1, . . . , yn) in In, such
that x ≺ y holds, i.e.,

(2)

k∑
i=1

x[i] ≤
k∑

i=1

y[i], k = 1, . . . , n − 1,

n∑
i=1

x[i] =
n∑

i=1

y[i],

where x[i] denotes the ith largest component in x. F is strictly Schur-
convex on In if a strict inequality holds in (1) whenever x ≺ y and x
is not a permutation of y.

For n = 2, a continuously differentiable function F on I2 (I being
an open interval) is Schur-convex if and only if it is symmetric and the
following holds

(3)
(

∂F

∂y
− ∂F

∂x

)
(y − x) > 0 for all x, y ∈ I, x �= y.

Of course, F is Schur-concave if and only if −F is Schur-convex.
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In [3] some inequalities concerning gamma and digamma functions
are proved. One of the main results is the following

Theorem A. The function (x, y) �→ F (x, y) defined by

(4)
F (x, y) =

log Γ(x)− log Γ(y)
x − y

, x �= y,

F (x, x) = Ψ(x)

is strictly Schur-concave on x > 0, y > 0.

We shall generalize this result.

Theorem 1. Let f be a continuous function on I. Then

(5)
F (x, y) =

1
y − x

∫ y

x

f(t) dt, x, y ∈ I, y �= x,

F (x, x) = f(x)

is Schur-convex (Schur-concave) on I2 if and only if f is convex
(concave), on I.

Proof. F is evidently symmetric. The following holds, for all x, y ∈ I

(
∂F

∂y
− ∂F

∂x

)
(y − x) =

[
− 1

(y − x)2

∫ y

x

f(t) dt +
f(y)
y − x

− 1
(y − x)2

∫ y

x

f(t) dt +
f(x)
y − x

]
(y − x)

= f(x) + f(y)− 2
y − x

∫ y

x

f(t) dt.

By extension of the Hermite-Hadamard inequality [4, p. 15], the in-
equality

1
y − x

∫ y

x

f(t) dt ≤ f(x) + f(y)
2

holds for all x, y ∈ I if and only if f is a convex function. This proves
the theorem.
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In fact, using Schur-convexity we immediately also obtain the left side
of the Hermite-Hadamard inequality: if f is convex on I, then F (x, y)
defined by (5) is Schur-convex; therefore the following holds

(6) f

(
x + y

2

)
≤ 1

y − x

∫ y

x

f(t) dt

since [(x + y)/2, (x + y)/2] ≺ (x, y).

To prove Theorem A, it is sufficient to note that the function Ψ =
Γ′/Γ is concave on (0,∞):

Corollary 1. If f > 0 is a function defined on I such that f ′/f is
convex (concave) on I, then

F (x, y) =
log f(x)− log f(y)

x − y
, x �= y,

F (x, x) = f(x)

is Schur-convex (Schur-concave) on I2.

Taking f(x) = x, it follows that K(x, y) = (log x − log y)/(x − y)
is Schur-convex on R2

+, and therefore L(x, y) = 1/K(x, y) is Schur-
concave on this set [2, Section 3.I.4]. More generally, the following
holds:

Corollary 2. Generalized logarithmic mean

Lr(x, y) =
(

yr − xr

r(y − x)

)1/(r−1)

, x, y > 0

L(x, x) = x

is Schur-convex for r > 2 and Schur-concave for r < 2. (For r = 0, we
have L0 = L, and for r = 1 we have L1(x, y) = [(xx/yy)1/(x−y)/e]).

Proof. Function t �→ tr−1 is convex on R+ for r < 1 or r > 2 and
concave for 1 < r < 2. Therefore, by Theorem 1,

yr − xr

r(y − x)
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is Schur-convex on R2
+ for r < 1 and r > 2, and Schur-concave for

1 < r < 2. Since t �→ t1/(r−1) is increasing for r > 1, Lr(x, y) remains
Schur-convex for r > 2 and Schur-concave for 1 < r < 2 [3, p. 61].
But t �→ t1/(r−1) is decreasing for r < 1, therefore Lr becomes Schur-
concave for r < 1. Taking a limit r → 1, the corollary also holds for
r = 1.

Remark. Using Schur-concavity of the function (4), the following
version of Gautschi’s inequality is proved in [3]:

(6) exp
(

β
Ψ(x + β) + Ψ(x)

2

)
< Q(x, β) < exp(βΨ(x + β/2))

where Q(x, β) = Γ(x + β)/Γ(x), x > 0, β > 0. The author claims that
this inequality is better than the known one, given by Kershaw:

(7)
Ψ(x + β) + Ψ(x)

2
> Ψ(x + β − 1 +

√
1− β).

But both the proof and this inequality are not correct. It is sufficient
to take x = 0.5 and β = 0.75. The following holds ([1], up to
five decimals): Ψ(0.5) = −1.96351, Ψ(1.25) = −0.22745, Ψ(0.75) =
Ψ(1.75) − 1/0.75 = −1.08586, which disproves (7). Therefore, direct
application of Schur-concavity does not lead to better bounds.

REFERENCES

1. M. Abramowitz and I.A. Stegun (eds.), Handbook of mathematical functions,
4th printing, National Bureau of Standards, Washington, DC, 1965.

2. A.W. Marshall and I. Olkin, Inequalities: Theory of majorization and its
applications, Academic Press, New York, 1979.

3. M. Merkle, Convexity, Schur-convexity and bounds for the gamma function
involving the digamma function, Rocky Mountain J. Math. 28 (1998), 1053 1066.

4. A.W. Roberts and D.E. Varberg, Convex functions, Academic Press, New
York, 1973.

Department of Applied Mathematics, Faculty of Electrical Engineering

and Computing, Unska 3, 10 000 Zagreb, Croatia

E-mail address: neven.elez@fer.hr

Faculty of Textile Technology, University of Zagreb, Pierottijeva 6,

10 000 Zagreb, Croatia

E-mail address: pecaric@hazu.hr


