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EQUAL SUMS OF SEVENTH POWERS
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ABSTRACT. Until now only three numerical solutions of
the diophantine equation x7

1 + x7
2 + x7

3 + x7
4 = y7

1 + y7
2 +

y7
3 + y7

4 are known. This paper provides three numerical
solutions in positive integers of the hitherto unsolved system
of simultaneous diophantine equations xk

1 + xk
2 + xk

3 + xk
4 =

yk
1 + yk

2 + yk
3 + yk

4 , k = 1, 3 and 7.

Parametric solutions of the diophantine equation

(1)
n∑

i=1

x7
i =

n∑

i=1

y7
i

have been given by Sastri and Rai [5] when n = 6 and by Gloden [3],
[4] when n = 5. When n = 4, only three numerical solutions of (1) are
known. These were discovered by Ekl [1], [2] via computer search.

In this paper we obtain three numerical solutions in positive integers
of the hitherto unsolved system of diophantine equations

(2)
4∑

i=1

xk
i =

4∑

i=1

yk
i , k = 1, 3, 7.

To solve the system of equations (2), we write

(3)

x1 = X1 − X2 − X3, y1 = Y1 − Y2 − Y3,

x2 = −X1 + X2 − X3, y2 = −Y1 + Y2 − Y3,

x3 = −X1 − X2 + X3, y3 = −Y1 − Y2 + Y3,

x4 = X1 + X2 + X3, y4 = Y1 + Y2 + Y3.

Then we have the identities

4∑

i=1

xi = 0,

4∑

i=1

x3
i = 24X1X2X3,
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and

4∑

i=1

x7
i = 56X1X2X3{3(X4

1 +X4
2 +X4

3 ) + 10(X2
1X2

2 +X2
2X2

3 +X2
3X2

1 )}.

Hence we will get a solution of the system of equations (2) if we can
find Xi, Yi, i = 1, 2, 3, such that

(4) X1X2X3 = Y1Y2Y3

and

(5) 3(X4
1 + X4

2 + X4
3 ) + 10(X2

1X2
2 + X2

2X2
3 + X2

3X2
1 )

= 3(Y 4
1 + Y 4

2 + Y 4
3 ) + 10(Y 2

1 Y 2
2 + Y 2

2 Y 2
3 + Y 2

3 Y 2
1 ).

To solve the simultaneous equations (4) and (5), we write

(6)
X1 = p(x − q), X2 = q(x − s), X3 = rs,

Y1 = r(x − s), Y2 = s(x − q), Y3 = pq.

With these values of Xi, Yi, i = 1, 2, 3, equation (4) is identically
satisfied while equation (5) reduces to the following cubic equation in
x:

(7)

(3p4 + 10p2q2 + 3q4 − 3r4 − 10r2s2 − 3s4)x3

− 4(3p4q + 5p2q3 + 5p2q2s + 3q4s − 5qr2s2

− 3qs4 − 3r4s − 5r2s3)x2

+ 2(9p4q2 + 5p2q4 + 20p2q3s − 5p2q2r2 + 5p2r2s2

+ 9q4s2 − 9q2s4 − 20qr2s3 − 9r4s2 − 5r2s4)x
− 4(3p4q3 + 5p2q4s − 5p2q2r2s + 5p2qr2s2

+ 3q4s3 − 3q3s4 − 5qr2s4 − 3r4s3) = 0.

If p, q, r and s are real, the cubic equation (7) will have a real root.
By trial we will choose p, q, r and s to be integers such that equation
(7) has a rational root. This rational root of (7) will lead to a rational
solution of the simultaneous equations (4) and (5). Since both the
equations (4) and (5) are homogeneous, we may multiply the rational
solution of these equations by a suitable constant to obtain a solution
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of equations (4) and (5) in integers. Using the relations (3), we finally
obtain a solution in integers of the system of equations (2).

In order to find suitable integers p, q, r and s by trial such that
equation (7) has a rational root, we note that p and r occur in equation
(7) only in even degrees, and so we may take them to be positive
integers. In fact, a little reflection shows that, without loss of generality,
we may take p, q and r to be positive integers while s may be either
positive or negative. We further note that when p, q, r and s are
all positive, equation (7) is unaltered if we interchange p and r and
simultaneously also interchange q and s. Thus, while carrying out the
trials with p, q, r and s all positive, we may impose the condition p < r.

A computer search was carried out for sets of values of p, q, r and
s such that equation (7) has a rational root, with p, q, r and s being
positive integers in the range 4 ≤ (p + q + r + s) ≤ 400. This yielded
the following three numerical solutions of the system of equations (2):

(i) when p = 4, q = 49, r = 47 and s = 19, equation (7) has the
rational root x = 130 which leads to the following solution of equations
(4) and (5):

X1 = 324, X2 = 5439, X3 = 893,

Y1 = 5217, Y2 = 1539, Y3 = 196.

Using the relations (3) we get, after removal of common factors and
suitable transposition, the following solution:

1741k + 2435k + 3004k + 3476k = 1937k + 2111k + 3280k + 3328k,

where the equality holds for k = 1, 3 and 7.

(ii) when p = 35, q = 24, r = 90 and s = 189, equation (7) is satisfied
by x = 10878/107, and this leads to the following solution of (2):

1523k + 4175k + 4492k + 5956k = 1951k + 3107k + 5528k + 5560k,

k = 1, 3, 7.

(iii) Finally, when p = 21, q = 156, r = 52 and s = 133, equation (7)
is satisfied by x = 1820/47, and we eventually get the solution:

344k + 902k + 1112k + 1555k = 479k + 662k + 1237k + 1535k,

k = 1, 3, 7.
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A computer search was also carried out for rational solutions of
equation (7) with p, q, r being positive integers and s being a negative
integer in the range 4 ≤ (p + q + r + |s|) ≤ 200. This did not yield any
additional solutions of (2).
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