EQUAL SUMS OF SEVENTH POWERS

AJAI CHOUDHRY

Abstract

Until now only three numerical solutions of the diophantine equation $x_{1}^{7}+x_{2}^{7}+x_{3}^{7}+x_{4}^{7}=y_{1}^{7}+y_{2}^{7}+$ $y_{3}^{7}+y_{4}^{7}$ are known. This paper provides three numerical solutions in positive integers of the hitherto unsolved system of simultaneous diophantine equations $x_{1}^{k}+x_{2}^{k}+x_{3}^{k}+x_{4}^{k}=$ $y_{1}^{k}+y_{2}^{k}+y_{3}^{k}+y_{4}^{k}, k=1,3$ and 7 .

Parametric solutions of the diophantine equation

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{7}=\sum_{i=1}^{n} y_{i}^{7} \tag{1}
\end{equation*}
$$

have been given by Sastri and Rai [5] when $n=6$ and by Gloden [3], [4] when $n=5$. When $n=4$, only three numerical solutions of (1) are known. These were discovered by Ekl [1], [2] via computer search.

In this paper we obtain three numerical solutions in positive integers of the hitherto unsolved system of diophantine equations

$$
\begin{equation*}
\sum_{i=1}^{4} x_{i}^{k}=\sum_{i=1}^{4} y_{i}^{k}, \quad k=1,3,7 \tag{2}
\end{equation*}
$$

To solve the system of equations (2), we write

$$
\begin{array}{ll}
x_{1}=X_{1}-X_{2}-X_{3}, & y_{1}=Y_{1}-Y_{2}-Y_{3} \\
x_{2}=-X_{1}+X_{2}-X_{3}, & y_{2}=-Y_{1}+Y_{2}-Y_{3} \tag{3}\\
x_{3}=-X_{1}-X_{2}+X_{3}, & y_{3}=-Y_{1}-Y_{2}+Y_{3} \\
x_{4}=X_{1}+X_{2}+X_{3}, & y_{4}=Y_{1}+Y_{2}+Y_{3}
\end{array}
$$

Then we have the identities

$$
\sum_{i=1}^{4} x_{i}=0, \quad \sum_{i=1}^{4} x_{i}^{3}=24 X_{1} X_{2} X_{3}
$$

Received by the editors on June 25, 1999.
and
$\sum_{i=1}^{4} x_{i}^{7}=56 X_{1} X_{2} X_{3}\left\{3\left(X_{1}^{4}+X_{2}^{4}+X_{3}^{4}\right)+10\left(X_{1}^{2} X_{2}^{2}+X_{2}^{2} X_{3}^{2}+X_{3}^{2} X_{1}^{2}\right)\right\}$.
Hence we will get a solution of the system of equations (2) if we can find $X_{i}, Y_{i}, i=1,2,3$, such that

$$
\begin{equation*}
X_{1} X_{2} X_{3}=Y_{1} Y_{2} Y_{3} \tag{4}
\end{equation*}
$$

and
(5) $3\left(X_{1}^{4}+X_{2}^{4}+X_{3}^{4}\right)+10\left(X_{1}^{2} X_{2}^{2}+X_{2}^{2} X_{3}^{2}+X_{3}^{2} X_{1}^{2}\right)$

$$
=3\left(Y_{1}^{4}+Y_{2}^{4}+Y_{3}^{4}\right)+10\left(Y_{1}^{2} Y_{2}^{2}+Y_{2}^{2} Y_{3}^{2}+Y_{3}^{2} Y_{1}^{2}\right)
$$

To solve the simultaneous equations (4) and (5), we write

$$
\begin{align*}
X_{1} & =p(x-q), & X_{2} & =q(x-s), & X_{3} & =r s \\
Y_{1} & =r(x-s), & Y_{2} & =s(x-q), & Y_{3} & =p q \tag{6}
\end{align*}
$$

With these values of $X_{i}, Y_{i}, i=1,2,3$, equation (4) is identically satisfied while equation (5) reduces to the following cubic equation in x :

$$
\begin{align*}
& \left(3 p^{4}+10 p^{2} q^{2}+3 q^{4}-3 r^{4}-10 r^{2} s^{2}-3 s^{4}\right) x^{3} \\
& -4\left(3 p^{4} q+5 p^{2} q^{3}+5 p^{2} q^{2} s+3 q^{4} s-5 q r^{2} s^{2}\right. \\
& \left.\quad-3 q s^{4}-3 r^{4} s-5 r^{2} s^{3}\right) x^{2} \\
& +2\left(9 p^{4} q^{2}+5 p^{2} q^{4}+20 p^{2} q^{3} s-5 p^{2} q^{2} r^{2}+5 p^{2} r^{2} s^{2}\right. \tag{7}\\
& \left.\quad+9 q^{4} s^{2}-9 q^{2} s^{4}-20 q r^{2} s^{3}-9 r^{4} s^{2}-5 r^{2} s^{4}\right) x \\
& -4\left(3 p^{4} q^{3}+5 p^{2} q^{4} s-5 p^{2} q^{2} r^{2} s+5 p^{2} q r^{2} s^{2}\right. \\
& \left.\quad+3 q^{4} s^{3}-3 q^{3} s^{4}-5 q r^{2} s^{4}-3 r^{4} s^{3}\right)=0 .
\end{align*}
$$

If p, q, r and s are real, the cubic equation (7) will have a real root. By trial we will choose p, q, r and s to be integers such that equation (7) has a rational root. This rational root of (7) will lead to a rational solution of the simultaneous equations (4) and (5). Since both the equations (4) and (5) are homogeneous, we may multiply the rational solution of these equations by a suitable constant to obtain a solution
of equations (4) and (5) in integers. Using the relations (3), we finally obtain a solution in integers of the system of equations (2).

In order to find suitable integers p, q, r and s by trial such that equation (7) has a rational root, we note that p and r occur in equation (7) only in even degrees, and so we may take them to be positive integers. In fact, a little reflection shows that, without loss of generality, we may take p, q and r to be positive integers while s may be either positive or negative. We further note that when p, q, r and s are all positive, equation (7) is unaltered if we interchange p and r and simultaneously also interchange q and s. Thus, while carrying out the trials with p, q, r and s all positive, we may impose the condition $p<r$.

A computer search was carried out for sets of values of p, q, r and s such that equation (7) has a rational root, with p, q, r and s being positive integers in the range $4 \leq(p+q+r+s) \leq 400$. This yielded the following three numerical solutions of the system of equations (2):
(i) when $p=4, q=49, r=47$ and $s=19$, equation (7) has the rational root $x=130$ which leads to the following solution of equations (4) and (5):

$$
\begin{aligned}
X_{1} & =324, & X_{2} & =5439,
\end{aligned} r X_{3}=893, ~ 子 Y_{3}=196 .
$$

Using the relations (3) we get, after removal of common factors and suitable transposition, the following solution:

$$
1741^{k}+2435^{k}+3004^{k}+3476^{k}=1937^{k}+2111^{k}+3280^{k}+3328^{k}
$$

where the equality holds for $k=1,3$ and 7 .
(ii) when $p=35, q=24, r=90$ and $s=189$, equation (7) is satisfied by $x=10878 / 107$, and this leads to the following solution of (2):

$$
\begin{gathered}
1523^{k}+4175^{k}+4492^{k}+5956^{k}=1951^{k}+3107^{k}+5528^{k}+5560^{k} \\
k=1,3,7
\end{gathered}
$$

(iii) Finally, when $p=21, q=156, r=52$ and $s=133$, equation (7) is satisfied by $x=1820 / 47$, and we eventually get the solution:

$$
\begin{gathered}
344^{k}+902^{k}+1112^{k}+1555^{k}=479^{k}+662^{k}+1237^{k}+1535^{k} \\
k=1,3,7
\end{gathered}
$$

A computer search was also carried out for rational solutions of equation (7) with p, q, r being positive integers and s being a negative integer in the range $4 \leq(p+q+r+|s|) \leq 200$. This did not yield any additional solutions of (2).

REFERENCES

1. R.L. Ekl, Equal sums of four seventh powers, Math. Comp. 65 (1996), 1755-1756.
2. New results in equal sums of like powers, Math. Comp. 67 (1998), 1309-1315.
3. A. Gloden, Sur la multigrade $A_{1}, A_{2}, A_{3}, A_{4}, A_{5} \stackrel{k}{=} B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ ($k=1,3,5,7$), Revista Euclides 8 (1948), 383-384.
4. Zwei Parameterlosungen einer mehrgradigen Gleichung, Arch. Math. (Basel) 1 (1949), 480-482.
5. S. Sastry and T. Rai, On equal sums of like powers, Math. Student 16 (1948), 18-19.

Ambassador, Embassy of India, Kantari Street, Sahmarani Building, P.O. Box 113-5240, Beirut, Lebanon

E-mail address: ajaic203@yahoo.com

