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ANALYTIC FOURIER-FEYNMAN TRANSFORM
AND CONVOLUTION OF FUNCTIONALS

ON ABSTRACT WIENER SPACE

KUN SOO CHANG, BYOUNG SOO KIM AND IL YOO

ABSTRACT. Huffman, Park and Skoug obtained various
results for the Lp analytic Fourier-Feynman transform and
the convolution of functionals in some Banach algebra S on
classical Wiener space. Recently, Ahn studied L1 analytic
Fourier-Feynman transform theory for functionals in the Fres-
nel class F(B) of abstract Wiener space (B, ν).

In this paper we first define an Lp analytic Fourier-Feynman
transform and a convolution of functionals on a product ab-
stract Wiener space and establish various relationships be-
tween the Fourier-Feynman transform and convolution for
functionals in the generalized Fresnel class FA1,A2 containing
F(B). Also we obtain Parseval’s relation for those function-
als. Results of Huffman, Park, Skoug and Ahn are corollaries
of our results.

1. Introduction. The concept of an L1 analytic Fourier-Feynman
transform for functionals on classical Wiener space was introduced
by Brue in [3]. In [4], Cameron and Storvick introduced an L2

analytic Fourier-Feynman transform on classical Wiener space. In
[11], Johnson and Skoug developed an Lp analytic Fourier-Feynman
transform theory for 1 ≤ p ≤ 2 that extended the results in [3],
[4] and gave various relationships between the L1 and L2 theories.
In [8] Huffman, Park and Skoug defined a convolution product for
functionals on classical Wiener space, and they obtained various results
for the Fourier-Feynman transform and the convolution product [8],
[9], [10]. Moreover, Chang, Kim and Yoo [6] introduced the integral
transform which is an extension of Fourier-Wiener transform on the
abstract Wiener space, and they established the relationship between
the integral transform of functionals in some classes and the integral
transform of their convolution.
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Recently, Ahn [1] introduced an L1 analytic Fourier-Feynman trans-
form and a convolution on the Fresnel class F(B) of abstract Wiener
space, and he obtained similar results as in [9].

On the other hand, for a successful treatment of certain physical prob-
lems by means of a Feynman integral (e.g., the anharmonic oscillator of
[2], Section 5) Kallianpur and Bromley introduced a larger class FA1,A2

than the Fresnel class F(B) and showed the existence of the analytic
Feynman integral of functionals in FA1,A2 [12].

In this paper we define an Lp analytic Fourier-Feynman transform
and a convolution of functionals defined on a product abstract Wiener
space and establish various relationships between the Fourier-Feynman
transforms of functionals in FA1,A2 and the Fourier-Feynman transform
of their convolution. In addition, we establish a Parseval’s relation for
functionals in FA1,A2 from this relationship. Results in [1], [9] are
corollaries of our results.

2. Definitions and preliminaries. Let (H,B, ν) be an abstract
Wiener space, and let {ej} be a complete orthonormal system in H
such that the ej ’s are in B∗, the dual of B. For each h ∈ H and x ∈ B,
we define a stochastic inner product (h, x)∼ as follows:

(2.1) (h, x)∼ =
{
limn→∞

∑n
j=1〈h, ej〉(x, ej) if the limit exists

0 otherwise,

where (·, ·) denotes the natural dual pairing between B and B∗. It is
well known [12], [13] that, for each h( 	= 0) in H, (h, ·)∼ is a Gaussian
random variable on B with mean zero and variance |h|2, that is,

(2.2)
∫

B

exp{i(h, x)∼} dν(x) = exp
{
− 1

2
|h|2

}
.

A subset E of a product abstract Wiener space B2 is said to be
scale-invariant measurable provided {(αx1, βx2) : (x1, x2) ∈ E} is
abstract Wiener measurable for every α > 0 and β > 0, and a scale-
invariant measurable set N is said to be scale-invariant null provided
(ν × ν)({(αx1, βx2) : (x1, x2) ∈ N}) = 0 for every α > 0 and β > 0. A
property that holds except on a scale-invariant null set is said to hold
scale-invariant almost everywhere (s almost everywhere). A function F
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is said to be scale-invariant measurable provided F is defined on a scale-
invariant measurable set and F ((α·, β·)) is abstract Wiener measurable
for every α > 0 and β > 0. Given two complex-valued functions F and
G on B2, we say that F = G s almost everywhere, and write F ≈ G,
if F (αx1, βx2) = G(αx1, βx2) for ν × ν almost every (x1, x2) ∈ B2 for
all α > 0 and β > 0. For a functional F on B2, we will denote by
[F ] the equivalence class of functionals which are equal to F s almost
everywhere.

Let C denote the complex numbers, and let

(2.3) Ω = {�λ = (λ1, λ2) ∈ C2 : Reλk > 0 for k = 1, 2}

and

(2.4) Ω̃ = {�λ = (λ1, λ2) ∈ C2 : λk 	= 0, Reλk ≥ 0 for k = 1, 2}.

Let F be a complex-valued function on B2 such that the integral

(2.5) JF (λ1, λ2) =
∫

B2
F (λ−1/2

1 x1, λ
−1/2
2 x2)d(ν × ν)(x1, x2)

exists as a finite number for all real numbers λ1 > 0 and λ2 > 0. If
there exists a function J∗

F (λ1, λ2) analytic on Ω such that J∗
F (λ1, λ2) =

JF (λ1, λ2) for all λ1 > 0 and λ2 > 0, then J∗
F (λ1, λ2) is defined to be

the analytic Wiener integral of F over B2 with parameter �λ = (λ1, λ2),
and for �λ ∈ Ω we write

(2.6)
∫ anw�λ

B2
F (x1, x2)d(ν × ν)(x1, x2) = J∗

F (λ1, λ2).

Let q1 and q2 be nonzero real numbers and F a functional on B2

such that
∫ anw�λ

B2 F (x1, x2)d(ν × ν)(x1, x2) exists for all �λ ∈ Ω. If the
following limit exists, then we call it the analytic Feynman integral of
F over B2 with parameter �q = (q1, q2), and we write

(2.7)
∫ anf�q

B2
F (x1, x2)d(ν × ν)(x1, x2)

= lim

λ→(−iq1,−iq2)

∫ anw�λ

B2
F (x1, x2)d(ν × ν)(x1, x2),
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where �λ = (λ1, λ2) approaches (−iq1,−iq2) through Ω.

Notation 2.1. (i) For �λ = (λ1, λ2) ∈ Ω and (y1, y2) ∈ B2, let

(2.8) (T
λ(F ))(y1, y2) =
∫ anw�λ

B2
F (x1 + y1, x2 + y2)d(ν × ν)(x1, x2).

(ii) Let 1 < p ≤ 2, and let {Gn} and G be scale-invariant measurable
functionals such that, for each α > 0 and β > 0,

(2.9) lim
n→∞

∫
B2

|Gn(αx1, βx2)−G(αx1, βx2)|p′
d(ν × ν)(x1, x2) = 0,

where p and p′ are related by (1/p) + (1/p′) = 1. Then we write

(2.10) lim
n→∞(wp′

s )(Gn) ≈ G

and call G the scale-invariant limit in the mean of order p′. A similar
definition is understood when n is replaced by the continuously varying
parameter �λ.

Definition 2.2. Let q1 and q2 be nonzero real numbers. For
1 < p ≤ 2, we define the Lp analytic Fourier-Feynman transform
T

(p)

q (F ) of F on B2 by the formula (�λ ∈ Ω)

(2.11) (T (p)

q (F ))(y1, y2) = lim


λ→(−iq1,−iq2)
(wp′

s )(T
λ(F ))(y1, y2),

whenever this limit exists. We define the L1 analytic Fourier-Feynman
transform T

(1)

q (F ) of F by (�λ ∈ Ω)

(2.12) (T (1)

q (F ))(y1, y2) = lim


λ→(−iq1,−iq2)
(T
λ(F ))(y1, y2),

for s almost everywhere, (y1, y2) ∈ B2.

We note that, for 1 ≤ p ≤ 2, T (p)

q (F ) is defined only s almost

everywhere. We also note that if T (p)

q (F1) exists and if F1 ≈ F2, then

T
(p)

q (F2) exists and T

(p)

q (F1) ≈ T (p)


q (F2).
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Definition 2.3. Let F and G be functionals on B2. For �λ =
(λ1, λ2) ∈ Ω, we define their convolution product, if it exists, by

(2.13)
(F ∗G)
λ(y1, y2)

=
∫ anw�λ

B2
F

(
y1+x1√

2
,
y2+x2√

2

)
G

(
y1−x1√

2
,
y2−x2√

2

)
d(ν×ν)(x1, x2).

For �q = (q1, q2) with nonzero real numbers q1 and q2, we define their
convolution product, if it exists, by
(2.14)
(F ∗G)
q(y1, y2)

=
∫ anf�q

B2
F

(
y1+x1√

2
,
y2+x2√

2

)
G

(
y1−x1√

2
,
y2−x2√

2

)
d(ν×ν)(x1, x2).

Definition 2.4. Let A1 and A2 be bounded, nonnegative self-adjoint
operators on H. Let FA1,A2 be the space of all s-equivalence classes of
functionals F on B2 which have the form

(2.15) F (x1, x2) =
∫

H

exp
{
i[(A1/2

1 h, x1)∼ + (A1/2
2 h, x2)∼]

}
dσ(h)

for some complex-valued countably additive Borel measure σ on H.

As is customary, we will identify a functional with its s-equivalence
class and think of FA1,A2 as a collection of functionals on B2 rather
than as a collection of equivalence classes.

Let M(H) denote the space of complex-valued countably additive
Borel measures on H. Under the total variation norm ‖ · ‖ and with
convolution as multiplication, M(H) is a commutative Banach algebra
with identity [2]. In addition the map σ �→ [F ] defined by (2.15) sets
up an algebra isomoprhism between M(H) and FA1,A2 if the range of
A1 + A2 is dense in H. In this case FA1,A2 becomes a Banach algebra
under the norm ‖F‖ = ‖σ‖ [12].

Remark 2.5. Let F(B) denote the class of all functions F on B of the
form

F (x) =
∫

H

exp{i(h, x)∼} dσ(h)
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for some σ ∈M(H). Then we know that if A1 is the identity operator
on H and A2 = 0, then FA1,A2 is essentially the Fresnel class F(B).

3. Transform and convolution of functionals in FA1,A2 . In
this section we establish several results involving the concepts of ‘Lp

analytic Fourier-Feynman transform’ and ‘convolution’ for functionals
in the class FA1,A2 . In addition, we establish some interesting formulas
for functionals in FA1,A2 .

We begin with the existence theorem of the Lp analytic Fourier-
Feynman transform for functionals in FA1,A2 .

Theorem 3.1. Let F ∈ FA1,A2 be given by

(3.1) F (x1, x2) =
∫

H

exp
{
i[(A1/2

1 /h, x1)∼ + (A1/2
2 h, x2)∼]

}
dσ(h),

for s almost everywhere, (x1, x2) ∈ B2, where σ is an element ofM(H).
Then, for all p with 1 ≤ p ≤ 2, the Lp analytic Fourier-Feynman
transform T

(p)

q (F ), �q = (q1, q2), exists for all nonzero real numbers

q1 and q2, and belongs to FA1,A2 . Moreover, T (p)

q (F ) is given by the

formula
(3.2)

(T (p)

q (F ))(y1, y2) =

∫
H

exp
{
i[(A1/2

1 h, y1)∼ + (A1/2
2 h, y2)∼]

− i

2q1
|A1/2

1 h|2 − i

2q2
|A1/2

2 h|2
}
dσ(h),

for s almost everywhere, (y1, y2) ∈ B2.

Proof. For all λ1 > 0, λ2 > 0 and s almost everywhere, (y1, y2) ∈ B2,
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using the Fubini theorem and (2.2) we obtain

(3.3)
(T
λ(F ))(y1, y2)

=
∫

B2
F (λ−1/2

1 x1 + y1, λ
−1/2
2 x2 + y2)d(ν×ν)(x1, x2)

=
∫

B2

∫
H

exp
{
i[(A1/2

1 h, λ
−1/2
1 x1 + y1)∼

+ (A1/2
2 h, λ

−1/2
2 x2 + y2)∼]

}
dσ(h) d(ν×ν)(x1, x2)

=
∫

H

exp
{
i[(A1/2

1 h, y1)∼ + (A1/2
2 h, y2)∼]

− 1
2λ1

|A1/2
1 h|2 − 1

2λ2
|A1/2

2 h|2
}
dσ(h).

Let �λ = (λ1, λ2) ∈ Ω̃, and let {(λ1,n, λ2,n)} be a sequence in Ω̃ which
converges to �λ. Then

∣∣∣ exp{
i[(A1/2

1 h, y1)∼ + (A1/2
2 h, y2)∼]

− 1
2λ1,n

|A1/2
1 h|2 − 1

2λ2,n
|A1/2

2 h|2
}∣∣∣ ≤ 1

for all n = 1, 2, . . . , and so, by the dominated convergence theorem, the
last expression in (3.3) is a bounded continuous function of �λ ∈ Ω̃. Also,
by the Morera theorem, we can show that it is an analytic function of
�λ ∈ Ω. Hence for �λ ∈ Ω and s almost everywhere, (y1, y2) ∈ B2,

(T
λ(F ))(y1, y2) =
∫

H

exp
{
i[(A1/2

1 h, y1)∼ + (A1/2
2 h, y2)∼]

− 1
2λ1

|A1/2
1 h|2 − 1

2λ2
|A1/2

2 h|2
}
dσ(h).

In case p = 1, by the dominated convergence theorem,

lim

λ→(−iq1,−iq2)

(T
λ(F ))(y1, y2) =
∫

H

exp
{
i[(A1/2

1 h, y1)∼+ (A1/2
2 h, y2)∼]

− i

2q1
|A1/2

1 h|2− i

2q2
|A1/2

2 h|2
}
dσ(h),
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for s almost everywhere, (y1, y2) ∈ B2, where �λ→ (−iq1,−iq2) through
Ω. If 1 < p ≤ 2, again by the dominated convergence theorem,

lim

λ→(−iq1,−iq2)

∫
B2

∣∣∣∣
∫

H

exp
{
i[(A1/2

1 h, y1)∼+ (A1/2
2 h, y2)∼]

− i

2q1
|A1/2

1 h|2− i

2q2
|A1/2

2 h|2
}
dσ(h)

−(T
λ(F ))(y1, y2)
∣∣∣∣
p′

d(ν × ν)(y1, y2) = 0

for s almost everywhere, (y1, y2) ∈ B2, where �λ→ (−iq1,−iq2) through
Ω. Hence (T (p)


q (F ))(y1, y2) exists and is given by (3.2) for all desired
values of p and �q.

Finally, let σ′ be a set function on B(H), the Borel class of H, defined
by

σ′(E) =
∫

E

exp
{
− i

2q1
|A1/2

1 h|2 − i

2q2
|A1/2

2 h|2
}
dσ(h), E ∈ B(H).

Then σ′ ∈M(H) and
(3.4)

(T (p)

q (F ))(y1, y2) =

∫
H

exp
{
i[(A1/2

1 h, y1)∼ + (A1/2
2 h, y2)∼]

}
dσ′(h),

for s almost everywhere, (y1, y2) ∈ B2. Thus, T (p)

q (F ) belongs to

FA1,A2 .

Next we obtain an inverse transform theorem for F ∈ FA1,A2 .

Theorem 3.2. Let F ∈ FA1,A2 be given by (3.1). Then, for all
nonzero real numbers q1 and q2, and for 1 ≤ p ≤ 2,

(3.5) T
(p)
−
q (T

(p)

q (F )) ≈ F,

where �q = (q1, q2) and −�q = (−q1,−q2).

Proof. Proceeding as in the proof of Theorem 3.1, for all λ1, λ2 > 0
and s almost everywhere, (y1, y2) ∈ B2, using (3.2), Fubini’s theorem
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and (2.2), we have

(T
λ(T
(p)

q (F )))(y1, y2)

=
∫

B2
(T (p)


q (F ))(λ−1/2
1 x1 + y1, λ

−1/2
2 x2 + y2) d(ν × ν)(x1, x2)

=
∫

B2

∫
H

exp
{
i[(A1/2

1 h, λ
−1/2
1 x1 + y1)∼+ (A1/2

2 h, λ
−1/2
2 x2 + y2)∼]

− i

2q1
|A1/2

1 h|2 − i

2q2
|A1/2

2 h|2
}
dσ(h) d(ν × ν)(x1, x2)

=
∫

H

exp
{
i[(A1/2

1 h, y1)∼+ (A1/2
2 h, y2)∼]− i

2q1
|A1/2

1 h|2− i

2q2
|A1/2

2 h|2

− 1
2λ1

|A1/2
1 h|2 − 1

2λ2
|A1/2

2 h|2
}
dσ(h).

By the same method as in the proof of Theorem 3.1, we can show
that the last expression is an analytic function of �λ throughout Ω, and
it is a bounded continuous function of �λ on Ω̃ for all (y1, y2) ∈ B2.
Hence if we let �λ → (iq1, iq2) through values in Ω, then we obtain
T

(p)
−
q (T

(p)

q (F )) ≈ F as desired.

Theorem 3.3. Let F and G be elements of FA1,A2 with correspond-
ing finite Borel measures σ and ρ in M(H), respectively. Then their
convolution product (F ∗G)
q exists for all nonzero real numbers q1, q2
and belongs to FA1,A2 . Moreover, (F ∗G)
q is given by the formula

(F ∗G)
q(y1, y2)

=
∫

H2
exp

{
i√
2
[(A1/2

1 (h+ k), y1)∼+ (A1/2
2 (h+ k), y2)∼]

− i

4q1
|A1/2

1 (h−k)|2 − i

4q2
|A1/2

2 (h− k)|2
}
dσ(h) dρ(k),

for s almost everywhere, (y1, y2) ∈ B2.

Proof. Proceeding as in the proof of Theorem 3.1, for all λ1, λ2 > 0
and s almost everywhere, (y1, y2) ∈ B2, using Fubini’s theorem and
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(2.2) we have

(F ∗G)
λ(y1, y2)

=
∫

B2
F

(
y1 + λ

−1/2
1 x1√
2

,
y2 + λ

−1/2
2 x2√
2

)

·G
(
y1 − λ−1/2

1 x1√
2

,
y2 − λ−1/2

2 x2√
2

)
d(ν × ν)(x1, x2)

=
∫

B2

∫
H

exp
{
i√
2
[(A1/2

1 h, y1 + λ
−1/2
1 x1)∼

+ (A1/2
2 h, y2 + λ

−1/2
2 x2)∼]

}
dσ(h)

·
∫

H

exp
{
i√
2
[(A1/2

1 k, y1 − λ−1/2
1 x1)∼

+ (A1/2
2 k, y2 − λ−1/2

2 x2)∼]
}
dρ(k) d(ν × ν)(x1, x2)

=
∫

H2
exp

{
i√
2
[(A1/2

1 (h+ k), y1)∼ + (A1/2
2 (h+ k), y2)∼]

− 1
4λ1

|A1/2
1 (h−k)|2 − 1

4λ2
|A1/2

2 (h−k)|2
}
dσ(h) dρ(k).

The last expression is an analytic function of �λ throughout Ω and
it is a bounded continuous function of �λ on Ω̃ for all (y1, y2) ∈ B2.
Hence, if we let �λ → (−iq1,−iq2) through Ω, then by the dominated
convergence theorem, (F ∗G)
q exists and is given by (3.6) for all nonzero
real numbers q1 and q2.

Finally, let µ be a set function on B(H2), the Borel class of H2,
defined by

µ(E) =
∫

E

exp
{
− i

4q1
|A1/2

1 (h−k)|2 − i

4q2
|A1/2

2 (h−k)|2
}
dσ(h) dρ(k),

for E ∈ B(H2). Then µ is a complex Borel measure on H2 and

(F ∗G)
q(y1, y2) =
∫

H2
exp

{
i√
2
[(A1/2

1 (h+ k), y1)∼

+ (A1/2
2 (h+ k), y2)∼]

}
dµ(h, k),
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for s almost everywhere, (y1, y2) ∈ B2. Now define a function φ : H2 →
H by φ(h, k) = (h+k)/

√
2. Then φ is a Borel measurable function and

so η ≡ µ ◦ φ−1 is in M(H). Using the change of variable theorem, we
have

(F ∗G)
q(y1, y2) =
∫

H

exp
{
i[(A1/2

1 h, y1)∼ + (A1/2
2 h, y2)∼]

}
dη(h),

for s almost everywhere, (y1, y2) ∈ B2 and so (F ∗ G)
q belongs to
FA1,A2 .

Theorem 3.4. Let F,G, σ and ρ be given as in Theorem 3.3. Then,
for all nonzero real numbers q1 and q2, and for s almost everywhere,
(z1, z2) ∈ B2, (T (p)


q (F ∗G)
q)(z1, z2) exists and

(3.7)

(T (p)

q (F ∗G)
q)(z1, z2)

= (T (p)

q (F ))

(
z1√
2
,
z2√
2

)
(T (p)


q (G))
(
z1√
2
,
z2√
2

)

for 1 ≤ p ≤ 2. Moreover, both sides of (3.7) are given by the expression

∫
H2

exp
{
i√
2
[(A1/2

1 (h+ k), z1)∼ + (A1/2
2 (h+ k), z2)∼]

− i

2q1
(|A1/2

1 h|2 + |A1/2
1 k|2)− i

2q2
(|A1/2

2 h|2 + |A1/2
2 k|2)

}
(3.8)

dσ(h) dρ(k).

Proof. For λ1, λ2 > 0 and s almost everywhere, (z1, z2) ∈ B2, using
(3.6), Fubini’s theorem and (2.2), we see that

(T
λ(F ∗G)
q)(z1, z2)

=
∫

B2
(F ∗G)
q(λ−1/2

1 y1 + z1, λ
−1/2
2 y2 + z2) d(ν × ν)(y1, y2)
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=
∫

B2

∫
H2

exp
{
i√
2
[(A1/2

1 (h+ k), λ−1/2
1 y1 + z1)∼

+ (A1/2
2 (h+ k), λ−1/2

2 y2 + z2)∼]− i

4q1
|A1/2

1 (h−k)|2

− i

4q2
|A1/2

2 (h−k)|2
}
dσ(h) dρ(k) d(ν × ν)(y1, y2)

=
∫

H2
exp

{
i√
2
[(A1/2

1 (h+ k), z1)∼ + (A1/2
2 (h+ k), z2)∼]

− i

4q1
|A1/2

1 (h−k)|2 − i

4q2
|A1/2

2 (h−k)|2

− 1
4λ1

|A1/2
1 (h+ k)|2 − 1

4λ2
|A1/2

2 (h+ k)|2
}
dσ(h) dρ(k).

The last expression is an analytic function of �λ throughout Ω and it is
a bounded continuous function of �λ on Ω̃ for all (z1, z2) ∈ B2. Hence, if
we let �λ→ (−iq1,−iq2) through Ω, T (p)


q (F ∗G)q exists and is given by
(3.8). Moreover, by (3.2), the right-hand side of (3.7) has the expression
(3.8) and so the result follows.

Theorem 3.5. Let F and G be given as in Theorem 3.3. Then,
for all nonzero real numbers q1 and q2, and for s almost everywhere,
(y1, y2) ∈ B2,

(3.9)
(T (p)


q (F ) ∗ T (p)

q (G))−
q(y1, y2)

= T (p)

q

(
F

( ·√
2
,

·√
2

)
G

( ·√
2
,

·√
2

))
(y1, y2)

for 1 ≤ p ≤ 2.

Proof. We proved in Theorem 3.1 that T (p)

q (F ), T (p)


q (G) ∈ FA1,A2

and they are given by the expressions

(T (p)

q (F ))(y1, y2) =

∫
H

exp
{
i[(A1/2

1 h, y1)∼ + (A1/2
2 h, y2)∼]

}
dσ′(h),

(T (p)

q (G))(y1, y2) =

∫
H

exp
{
i[(A1/2

1 k, y1)∼ + (A1/2
2 k, y2)∼]

}
dρ′(k),
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where

σ′(E) =
∫

E

exp
{
− i

2q1
|A1/2

1 h|2 − i

2q2
|A1/2

2 h|2
}
dσ(h),

ρ′(E) =
∫

E

exp
{
− i

2q1
|A1/2

1 k|2 − i

2q2
|A1/2

2 k|2
}
dρ(k),

for E ∈ B(H). Hence (3.6) and a direct calculation show that, for fixed
p and �q and for s almost everywhere, (y1, y2) ∈ B2, we obtain

(T (p)

q (F ) ∗ T (p)


q (G))−
q(y1, y2)

=
∫

H2
exp

{
i√
2
[(A1/2

1 (h+ k), y1)∼ + (A1/2
2 (h+ k), y2)∼]

+
i

4q1
|A1/2

1 (h−k)|2 + i

4q2
|A1/2

2 (h−k)|2
}
dσ′(h)ρ′(k)

=
∫

H2
exp

{
i√
2
[(A1/2

1 (h+ k), y1)∼ + (A1/2
2 (h+ k), y2)∼]

− i

4q1
|A1/2

1 (h+ k)|2 − i

4q2
|A1/2

2 (h+ k)|2
}
dσ(h)ρ(k).

On the other hand, for λ1, λ2 > 0 and s almost everywhere, (y1, y2) ∈
B2, using Fubini’s theorem and (2.2),

T
λ

(
F

( ·√
2
,

·√
2

)
G

( ·√
2
,

·√
2

))
(y1, y2)

=
∫

B2
F

(
λ
−1/2
1 x1 + y1√

2
,
λ
−1/2
2 x2 + y2√

2

)

·G
(
λ
−1/2
1 x1 + y1√

2
,
λ
−1/2
2 x2 + y2√

2

)
d(ν × ν)(x1, x2)

=
∫

B2

∫
H

exp
{
i√
2
[(A1/2

1 h, λ
−1/2
1 x1 + y1)∼

+ (A1/2
2 h, λ

−1/2
2 x2 + y2)∼]

}
dσ(h)
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·
∫

H

exp
{
i√
2
[(A1/2

1 k, λ
−1/2
1 x1 + y1)∼

+ (A1/2
2 k, λ

−1/2
2 x2 + y2)∼]

}
dρ(k) d(ν × ν)(x1, x2)

=
∫

H2
exp

{
i√
2
[(A1/2

1 (h+ k), y1)∼ + (A1/2
2 (h+ k), y2)∼]

− 1
4λ1

|A1/2
1 (h+ k)|2 − 1

4λ2
|A1/2

2 (h+ k)|2
}
dσ(h) dρ(k).

The last expression is an analytic function of �λ ∈ Ω, and it is a
bounded continuous function of �λ ∈ Ω̃ for all (y1, y2) ∈ B2. So, letting
�λ→ (−iq1,−iq2) through Ω, we obtain the desired result.

In our next theorem we establish an interesting Parseval’s relation
for functionals F and G in the class FA1,A2 .

Theorem 3.6. Let F and G be given as in Theorem 3.3. Then, for
all nonzero real numbers q1 and q2, the Parseval’s relation

∫ anf−�q

B2
(T (p)


q (F ))
(
z1√
2
,
z2√
2

)
(T (p)


q (G))
(
z1√
2
,
z2√
2

)
d(ν × ν)(z1, z2)

=
∫ anf�q

B2
F

(
z1√
2
,
z2√
2

)
G

(
− z1√

2
,− z1√

2

)
d(ν × ν)(z1, z2),

holds for 1 ≤ p ≤ 2.

Proof. Fix p and �q = (q1, q2). Then for λ1, λ2 > 0, using (3.8),
Fubini’s theorem and (2.2), we have
∫

B2
(T (p)


q (F ∗G)
q)(λ−1/2
1 z1, λ

−1/2
2 z2) d(ν × ν)(z1, z2)

=
∫

B2

∫
H2

exp
{
i√
2
[(A1/2

1 (h+ k), λ−1/2
1 z1)∼+ (A1/2

2 (h+ k), λ−1/2
2 z2)∼]

− i

2q1
(|A1/2

1 h|2+ |A1/2
1 k|2)− i

2q2
(|A1/2

2 h|2+ |A1/2
2 k|2)

}

dσ(h) dρ(k) d(ν × ν)(z1, z2)
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=
∫

H2
exp

{
− 1

4λ1
|A1/2

1 (h+ k)|2 − 1
4λ2

|A1/2
2 (h+ k)|2

− i

2q1
(|A1/2

1 h|2 + |A1/2
1 k|2)− i

2q2
(|A1/2

2 h|2 + |A1/2
2 k|2)

}

dσ(h) dρ(k).

The last expression is an analytic function of �λ throughout Ω and it is
a continuous function of �λ on Ω̃. So, letting �λ → (iq1, iq2) through Ω
and using (3.7) we obtain

∫ anf−�q

B2
(T (p)


q (F ))
(
z1√
2
,
z2√
2

)
(T (p)


q (G))
(
z1√
2
,
z2√
2

)
d(ν × ν)(z1, z2)

=
∫ anf−�q

B2
(T (p)


q (F ∗G)
q)(z1, z2) d(ν × ν)(z1, z2)

=
∫

H2
exp

{
− i

4q1
|A1/2

1 (h−k)|2 − i

4q2
|A1/2

2 (h−k)|2
}
dσ(h) dρ(k).

On the other hand, for λ1, λ2 > 0,

∫
B2
F

(
λ
−1/2
1 z1√

2
,
λ
−1/2
2 z2√

2

)
G

(
− λ

−1/2
1 z1√

2
,−λ

−1/2
2 z2√

2

)
d(ν × ν)(z1, z2)

=
∫

B2

∫
H2

exp
{
i√
2
[(A1/2

1 (h−k), λ−1/2
1 z1)∼

+ (A1/2
2 (h−k), λ−1/2

2 z2)∼]
}
dσ(h) dρ(k) d(ν × ν)(z1, z2)

=
∫

H2
exp

{
− 1

4λ1
|A1/2

1 (h−k)|2 − 1
4λ2

|A1/2
2 (h−k)|2

}
dσ(h) dρ(k),

and the last expression is an analytic function of �λ throughout Ω and
it is a continuous function of �λ on Ω̃. So, letting �λ → (−iq1,−iq2)
through Ω we obtain the desired result.

The following corollary follows immediately from equation (3.10) by
choosing G ≡ F for (i) and G ≡ 1 for (ii) below.

Corollary 3.7. Let F, p and �q be given as in Theorem 3.6. Then,
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(i)

∫ anf−�q

B2

[
(T (p)


q (F ))
(
z1√
2
,
z2√
2

)]2

d(ν × ν)(z1, z2)

=
∫ anf�q

B2
F

(
z1√
2
,
z2√
2

)
F

(
− z1√

2
,− z2√

2

)
d(ν × ν)(z1, z2).

(ii)

∫ anf−�q

B2
(T (p)


q (F ))
(
z1√
2
,
z2√
2

)
d(ν × ν)(z1, z2)

=
∫ anf�q

B2
F

(
z1√
2
,
z2√
2

)
d(ν × ν)(z1, z2).

From the proof of Theorem 3.6, we can easily obtain the following
interesting alternative form of Parseval’s relation.

Corollary 3.8. Let F,G, p and �q be given as in Theorem 3.6. Then
∫ anf−�q

B2
(T (p)


q/2(F ))(z1, z2)(T
(p)

q/2(G))(z1, z2) d(ν × ν)(z1, z2)

=
∫ anf�q

B2
F (z1, z2)G(−z1,−z2) d(ν × ν)(z1, z2),

where �q/2 = (q1/2, q2/2).

From Theorem 3.2 and Theorem 3.6, we have the following multipli-
cation formula.

Corollary 3.9. Let F,G, p and �q be given as in Theorem 3.6. Then
∫ anf−�q

B2
(T (p)


q (F ))
(
z1√
2
,
z2√
2

)
G

(
z1√
2
,
z2√
2

)
d(ν × ν)(z1, z2)

=
∫ anf�q

B2
F

(
z1√
2
,
z2√
2

)
(T (p)

−
q (G))
(
− z1√

2
,− z2√

2

)
d(ν × ν)(z1, z2).
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4. Corollaries. In this section we give various corollaries which
show that our results in Section 3 are indeed very general theorems.
Below we list results of two types.

(i) Abstract Wiener space. If A1 is the identity operator on H and
A2 = 0, then FA1,A2 is essentially the Fresnel class F(B) and

(T (p)
(q1,q2)(F ))(y1, y2) = (T (p)

q1
(F0))(y1),

where F0(y1) = F (y1, y2) for all (y1, y2) ∈ B2 and (T (p)
q1 (F0))(y1) means

the Lp analytic Fourier-Feynman transform on B.

Theorem 4.1. Let F and G be in F(B). Then, for all nonzero real
q and for s almost everywhere, z in B, (T (p)

q (F ∗G)q)(z) exists and

(T (p)
q (F ∗G)q)(z) = (T (p)

q (F ))
(
z√
2

)
(T (p)

q (G))
(
z√
2

)

for 1 ≤ p ≤ 2.

Theorem 4.2. Let F and G be given as in Theorem 4.1. Then for
all nonzero real numbers q and for s almost everywhere, z ∈ B,

(T (p)
q (F ) ∗ T (p)

q (G))−q(z) = T (p)
q

(
F

( ·√
2

)
G

( ·√
2

))
(z)

for 1 ≤ p ≤ 2.

Theorem 4.3. Let F,G and q be given as in Theorem 4.1. Then
Parseval’s relation∫ anf−q

B

(T (p)
q (F ∗G)q)(z) dν(z) =

∫ anfq

B

F

(
z√
2

)
G

(
− z√

2

)
dν(z)

holds for 1 ≤ p ≤ 2.

Corollary 4.4. Let F,G, p and q be given as in Theorem 4.3. Then,
∫ anf−q

B

(T (p)
q/2(F ))(z)(T

(p)
q/2(G))(z) dν(z) =

∫ anfq

B

F (z)G(−z) dν(z).
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Corollary 4.5. Let F,G, p and �q be given as in Theorem 4.3. Then

∫ anf−q

B

(T (p)
q (F ))

(
z√
2

)
G

(
z√
2

)
dν(z)

=
∫ anfq

B

F

(
z√
2

)
(T (p)

−q (G))
(
− z√

2

)
dν(z).

(ii) Classical Wiener space. Fix T > 0 and let H0 = H0[0, T ] be
the space of real-valued functions f on [0, T ] which are absolutely
continuous and whose derivative Df is in L2[0, T ]. The inner product
on H0 is given by

〈f, g〉 =
∫ T

0

(Df)(s)(Dg)(s) ds.

Then H0 is a real separable infinite dimensional Hilbert space. Let
B0 = C0[0, T ] be the space of all continuous functions x on [0, T ] with
x(0) = 0, and equip B0 with the sup norm. Let ν0 be the classical
Wiener measure. Then (H0, B0, ν0) is an example of an abstract Wiener
space. Note that if {en} is a complete orthonormal set in H0, then
{Den} is also a complete orthonormal set in L2[0, T ] and (en, x)∼ equals
the Paley-Wiener-Zygmund stochastic integral

∫ T

0
(Den)(s)d̃x(s) for s

almost everywhere, x ∈ B0. Moreover, we know that F ∈ F(B0) if and
only if F ∈ S where S is the Banach algebra introduced by Cameron
and Storvick [5].

Theorem 4.6 [9, Theorem 3.3]. Let F and G be in S. Then, for all
nonzero real numbers q and for s almost everywhere, z ∈ B0,

(T (p)
q (F ∗G)q)(z) = (T (p)

q (F ))
(
z√
2

)
(T (p)

q (G))
(
z√
2

)

for 1 ≤ p ≤ 2.

Theorem 4.7 [9, Theorem 3.4]. Let F and G be given as in
Theorem 4.6. Then, for all nonzero real numbers q, the Parseval’s
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identity

∫ anf−q

B0

(T (p)
q (F ∗G)q)(z) dν0(z) =

∫ anfq

B0

F

(
z√
2

)
G

(
− z√

2

)
dν0(z)

holds for 1 ≤ p ≤ 2.

Corollary 4.8 [9, Corollary 3.1 and its remark]. Let F,G, p and q
be given as in Theorem 4.7. Then

(i)

∫ anf−q

B0

[
(T (p)

q (F ))
(
z√
2

)]2

dν0(z)

=
∫ anfq

B0

F

(
z√
2

)
F

(
− z√

2

)
dν0(z).

(ii)

∫ anf−q

B0

(T (p)
q (F ))

(
z√
2

)
dν0(z) =

∫ anfq

B0

F

(
z√
2

)
dν0(z),

and

(iii)

∫ anf−q

B0

(T (p)
q/2(F ))(z)(T

(p)
q/2(G))(z) dν0(z) =

∫ anfq

B0

F (z)G(−z) dν0(z).

Acknowledgment. This paper was supported in part by Non
Directed Research Fund, Korea Research Foundation, BSRIP, Ministry
of Education, 1998, and Yonsei University Research Fund of 1999. The
second author was supported by Post Doctoral Fellowship, KOSEF,
1999.

REFERENCES

1. J.M. Ahn, L1 analytic Fourier-Feynman transform on the Fresnel class of
abstract Wiener space, Bull. Korean Math. Soc. 35 (1998), 99 117.



842 K.S. CHANG, B.S. KIM AND I. YOO

2. S. Albeverio and R. Høegh-Krohn, Mathematical theory of Feynman path
integrals, Lecture Notes in Math. 523, Springer-Verlag, Berlin, 1976.

3. M.D. Brue, A functional transform for Feynman integrals similar to the
Fourier transform, Thesis, Univ. of Minnesota, Minneapolis, 1972.

4. R.H. Cameron and D.A. Storvick, An L2 analytic Fourier-Feynman transform,
Michigan Math. J. 23 (1976), 1 30.

5. , Some Banach algebras of analytic Feynman integrable functionals,
Analytic Functions (Kozubnik, 1979), Lecture Notes in Math. 798 Springer-Verlag,
Berlin, 1980, 18 67.

6. K.S. Chang, B.S. Kim and I. Yoo, Integral transform and convolution of
analytic functions on abstract Wiener space, Numer. Funct. Anal. Optim. 21 (2000),
97 105.

7. L. Gross, Abstract Wiener spaces, Proc. 5th Berkeley Sym. Math. Stat. Prob.
2 (1965), 31 42.

8. T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and
convolution, Trans. Amer. Math. Soc. 347 (1995), 661 673.

9. , Convolutions and Fourier-Feynman transforms of functionals involv-
ing multiple integrals, Michigan Math. J. 43 (1996), 247 261.

10. , Convolution and Fourier-Feynman transforms, Rocky Mountain J.
Math. 27 (1997), 827 841.

11. G.W. Johnson and D.L. Skoug, An Lp analytic Fourier-Feynman transform,
Michigan Math. J. 26 (1979), 103 127.

12. G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic
continuation in several complex variables, in Stochastic analysis and application
(M.H. Pinsky, ed.), Marcel-Dekker, Inc., New York, 1984.

13. G. Kallianpur, D. Kanman and R.L. Karandikar, Analytic and sequential
Feynman integrals on abstract Wiener and Hilbert spaces and a Cameron-Martin
formula, Ann. Inst. Henri Poincaré 21 (1985), 323 361.
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