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VECTOR BUNDLES ON A FORMAL
NEIGHBORHOOD OF A CURVE IN A SURFACE

E. BALLICO AND E. GASPARIM

ABSTRACT. Here we study vector bundles in a formal
or tubular neighborhood of a smooth projective curve C
in a complex surface W . In several cases (e.g., if C has
genus 0 and its normal bundle has degree −1 or −2) we
attach to every such bundle a series of discrete invariants and
“simpler” bundles, and we study the set of all bundles with
fixed invariants.

0. Introduction. Let W be either a smooth connected quasi-
projective surface defined over an algebraically closed field K or a
smooth connected two-dimensional complex manifold. Let C ⊂ W
be a smooth connected curve of genus q ≥ 0 and U either the formal
completion of W along C or, in the complex analytic case, a small
tubular neighborhood of C in W for the Euclidean topology. We want
to study algebraic (or complex analytic) vector bundles on U . Even
more, we want to study families of vector bundles on U “parametrized”
(not one-to-one and usually not even generically finite to one) by
integral varieties or irreducible and reduced complex spaces. In some
cases a natural topological structure appears which allows us to say
that a family of vector bundles is in the closure of another set of vector
bundles. We give an easy example. Let π :W → P2 be the blowing-up
of the complex plane at a point. Let U be a small open Euclidean
neighborhood of the exceptional divisor C on W . Consider a rank two
holomorphic bundle E overW withE | C ∼= OC(2)⊕OC(−2). A simple
application of [3, Theorem 2.1] tells us that E | U can be given by a 2×2
transition matrix of the form (gij) with g11 = z2, g22 = z−2, g21 = 0
and g12 ∈ C[z, u] with g12 of the form g12 = (p10 + p11z)u + p21zu
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with p10, p11 and p21 complex numbers. By [3, Theorem 3.4] we have
the following three strata S1, S2 and S3:

(i) a generic stratum S1 corresponding to the case where the bundle
is a nontrivial extension on the first infinitesimal neighborhood, i.e., to
the case in which p10 + p11z 
= 0; this stratum is parametrized by P1;

(ii) a stratum S2 consisting of bundles that are trivial extensions
to the first infinitesimal neighborhood of C but not to the second
infinitesimal neighborhood; here, up to isomorphisms, there is a unique
bundle;

(iii) a stratum S3 corresponding to bundles whose restriction to
the second infinitesimal neighborhood of C splits; there is a unique
such bundle and it corresponds to the split bundle on the formal
neighborhood of C.

It is obvious that S2 and S3 are limits of bundles in the stratum
S1. In this paper we want to study further these situations. However,
for bundles E on W with E | C ∼= OC(a) ⊕ OC(b) and a − b ≥ 6 the
situation (i.e., the dependence of E | U on the polynomial g12 appearing
in its transition matrix) is very complicated. Therefore, in this paper
we will look for a stratification given by numerical invariants which
are simple to identify. Our numerical invariants will be associated to
each vector bundle using certain transformations, called elementary
transformations, described below. Essentially we choose a particular
curve on a surface and perform elementary transformations until we get
to bundles which are trivial on the chosen curve. Then we list numerical
invariants which represent the sequence of elementary transformations
we performed. We use such lists of invariants to stratify parameter
spaces of bundles and then we give a naive definition of when certain
strata are in the closure of another stratum. This program was started
in [1] for rank two vector bundles when C is an exceptional divisor,
i.e., when q = 0 and the normal bundle, N , of C in W has degree
−1. In this paper we again study the same situation (see Section 1)
and then consider more general cases: the case q = 0 but arbitrary
rank in Section 2, the case q = 0 and deg (N) = −2 in Section 3 and
the case q > 0 (but only for rank two vector bundles) in Section 4.
In Section 5 we give several easy technical lemmas and remarks which
are used in the first four sections. As in [1] we use the notion of
elementary transformation of a vector bundle along a Cartier divisor
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of the ambient variety to study vector bundles on U and, when q = 0
and deg (N) = −1 or deg (N) = −2, to put them in a normal form
in an algorithmic way. The invariants associated to each bundle E
on U using this procedure give a stratification of the set of all vector
bundles on U . If q = 0, deg (N) = −1, and we consider only rank
two vector bundles. We prove that these strata are parametrized by
an irreducible variety (Theorem 1.2) and we show when bundles in one
stratum are in the closure of the set of all bundles in another stratum
(Theorem 1.4). These two theorems are the main results of this paper,
but the main aim of this paper is to give the general approach and
show how far it can lead in more general situations. For rank two
vector bundles when q > 0 we analyze several different cases according
to the triple of integers (q, e, s(E)) where e := deg (N) and s(E) is the
stability (or instability) degree of the bundle E in the sense of [8]. We
were stimulated to study vector bundles on U by [7, Problem 17]. It
is often important to study vector bundles on formal spaces and on
the formal completion of a compact subspace of a complex space. In
particular, this is essential for the study of coherent modules over germs
of isolated singularities. Another interesting case is when we take the
compact exceptional set, D, of a strongly 1-convex space X, i.e., when
there is a proper holomorphic map π : X → Y with Y a Stein space,
dim (D) = 0, D has no isolated point and π | (X\D) : X\D → Y \π(D)
is biholomorphic; in this case, the cohomological properties of a vector
bundle on X are determined by its restriction to the formal completion
of D in X [11, Proposition 2.16]. In the algebraic case (in arbitrary
dimension) elementary transformations are known to be a powerful
tool; for instance, a theorem of Maruyama [9, Theorem 1.12] shows
that every vector bundle is obtained from the trivial bundle making
suitable elementary transformations along Cartier divisors. In our two-
dimensional set-up we use only one Cartier divisor, C. If C ∼= P1 and
C is an exceptional divisor in [1] for rank 2 and here in Section 3 for
arbitrary rank it was shown how to use elementary transformations
along C to compute “the drop of c2 along C,” i.e., a suitable integral
on the boundary of a tubular neighborhood of C.

1. C rational, deg (N ) = −1, rank two. In this paper we will use
the following notations. W is a smooth surface and C is a smooth curve
of genus q onW . U is either the formal neighborhood of C inW or, if we
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work over C, a small tubular neighborhood of C in W in the Euclidean
topology. N is the normal bundle of C in W . Set e := deg (N). Let
I be the ideal sheaf of C in U . For every integer n ≥ 0 let C(n) be
the nth infinitesimal neighborhood of C in U . Hence C(n) is the closed
subscheme of U with In+1 as ideal sheaf. In particular, C(0) = C and
C

(n)
red = C for every n ≥ 0. Hence for every integer n ≥ 0 we have the
following exact sequences

(1) 0 −→ In/In+1 −→ OU/In+1 −→ OU/In −→ 0.
In this section we will study the stratification of “admissible types”
for rank 2 vector bundles in a formal neighborhood, or a Euclidean
tubular neighborhood if we are in the complex analytic category, of
an exceptional curve of the first kind. We assume that W contains an
exceptional divisor C, i.e., a smooth curve C ∼= P1 with OC(−1) as a
normal bundle.

Remark 1.1. Let E be a vector bundle on U . It is known and follows
easily from the exact sequences (1.1) that if E | C is trivial, then E is
trivial.

Let E be a rank two vector bundle on U and (a, b) the splitting
type of U | C, i.e., let a, b be the integers with a ≥ b and such that
E | C ∼= OC(a) ⊕ OC(b). In the paper [1] there was associated to E
an integer t ≥ 1, a finite sequence {(ai, bi)}1≤i≤t of pairs of integers
with a1 = a, b1 = b, at = bt = (a + b + t − 1)/2 and a finite number
of bundles Ei, 1 ≤ i ≤ t, with E1 = E, Ei | C with splitting type
(ai, bi) in the following way. Fix a line bundle R on C and see R as a
coherent torsion sheaf on U and onW supported on C. Fix a surjection
r : E → R induced by a surjection ρ : E | C → R; in our situation
Pic (U) ∼= Pic (C) (Lemma 5.1) but for the map r we view R a sheaf
supported on C, not as a vector bundle on U . There exists such a
surjection if and only if deg (R) ≥ b. If deg (R) = b < a, then ρ is
unique, up to a multiplicative constant. Hence if deg (R) = b < a the
sheaf Ker (r) is uniquely determined, up to an isomorphism. Since C
is a Cartier divisor, the sheaf Ker (r) is a vector bundle on U . We will
say that Ker (r) is the bundle obtained from E making the negative
elementary transformation induced by r. Note that Ker (ρ) is a line
bundle on C with deg (Ker (ρ)) = a+ b− deg (R). Since deg (I/I2) = 1
it is easy to check that deg (Ker (r) | C) = a+ b+ 1 and that we have
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an exact sequence on C:
(2)
0 −→ OC(a+ b+ 1− deg (Ker (ρ))) −→ Ker (r) | C −→ Ker (ρ) −→ 0.
Furthermore, using (2), we obtain a surjection t : Ker (r) → Ker (ρ)
such that Ker (t) ∼= E(−C). In particular, Ker (t) | C ∼= OC(a +
1) ⊕ OC(b + 1). Thus, up to the twist by the line bundle OU (−C),
the negative elementary transformation induced by r has an inverse
operation and we will say that E is obtained from Ker (r) making
a positive elementary transformation supported by C. Note that if
deg (R) = b, then Ker (r) | C fits in an exact sequence
(3) 0 −→ OC(b+ 1)→ Ker (r) | C −→ OC(a) −→ 0.
Hence if b < a then Ker (r) | C is more balanced than E | C. If b ≤ a−3,
then (3) does not determine uniquely Ker (r) | C. If b ≤ a − 2 and
Ker (r) | C is not balanced, we iterate the construction starting from
Ker (r) and taking as R′ the lowest degree factor of Ker (r) | C and the
unique surjection, up to a multiplicative constant, ρ′ : Ker (r)→ R′. In
a finite number of steps, say t−1 steps, we send E into a bundle which,
up to a twist by OU (−((a + b + t − 1)/2)C), has trivial restriction to
C and hence into a bundle isomorphic to OU (−(a+ b+ t− 1)/2)C)⊕2

by Remark 1.1. Set E1 := E, a1 := a and b1 := b. If a1 = b1, set t := 1
and stop. Assume a1 > b1. Hence we have defined the bundle Ker (r).
Set E2 := Ker (r). Let (a2, b2) be the splitting type of Ker (r) | C. Note
that a2+b2 = a1+b1+1 and b1 < b2 ≤ a2 ≤ a1. Hence a2−b2 < a1−b1.
If a2 = b2, set t := 2 and stop. If a2 > b2 iterate the construction. In
a finite number of steps, say t− 1 steps, we arrive at a bundle Et with
splitting type (at, bt) with at = bt. Call Ei, 2 ≤ i ≤ t, the bundle we
obtained after i− 1 steps and (ai, bi) the splitting type of Ei | C. Call
{Ei}1≤i≤t the associated sequence of bundles of E. Note that the finite
sequence {(ai, bi)}1≤i≤t of pairs obtained in this way has the following
properties: ai ≥ bi for every i > 0, ai + bi = a1 + b1 + i − 1 for every
i > 1, ai ≥ ai+1 ≥ bi+1 > bi for every i ≥ 1, at = bt. We will call
“admissible” any such finite sequence of pairs of integers. We will say
that an admissible sequence {(ai, bi)}1≤i≤t is the admissible sequence
associated to the bundle E if this sequence is created by the algorithm
just described. If {Aα}α∈T and {A′

β}β∈T ′ are flat families of bundles on
W with the same Chern classes and ranks, it is natural to ask if the first
family is in the closure of the second one (in a suitable moduli space or
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in a local deformation functor or in some other sense). For us, without
any stability or simpleness assumption, this would be equivalent to the
existence of a flat family {A′′

x}x∈S with S an integral variety, U ′ an
open subset of S, V a closed subset of S, and dominant maps T → V ,
T ′ → U ′ such that the families {Aα}i∈Γ and {A′

β}β∈T ′ are as pull-backs
from the family {A′′

x}x∈S . This is a very naive definition, but at least
it gives that the usual semi-continuity statements for all cohomological
properties of the “generic” bundle of the two given families are as
expected. For bundles on U instead of c1 we fix a1 + b1 and then
we may use the same naive definition. The aim of this section is the
study of this set-theoretic stratification by admissible type of the set
of rank 2 vector bundles on U . We will use a key idea contained in [3],
i.e., the use of explicit transition matrices for bundles on U as in the
proof of Lemma 5.7.

Theorem 1.2. Let W be either a smooth two-dimensional algebraic
variety or a smooth two-dimensional complex manifold. Let C ⊂ W be
an exceptional P1 in W , i.e., C ∼= P1 with normal bundle of degree
−1. Let U be the formal completion of W along C. Fix an admissible
sequence {(ai, bi)}1≤i≤t and let E,F be rank 2 vector bundles on U with
{(ai, bi)}1≤i≤t as an associated admissible sequence. Then there exist
a flat family {Es}s∈T of rank 2 vector bundles on U parametrized by
an integral variety T and o, o′ ∈ T with Eo

∼= E and Eo′ ∼= F and such
that for every s ∈ T the bundle Es has {(ai, bi)}1≤i≤t as an associated
admissible sequence.

Proof. We use induction on t. If t = 1 the result is obvious because if
t = 1 both E and F are trivial vector bundles by Remark 1.1. Assume
t > 1 and the result is true for the integer t−1. Let E2 (respectively F2)
be the second associated bundle of E (respectively F ). Hence E2 and
F2 have {(ai, bi)}2≤i≤t as an associated admissible sequence. By the
inductive assumption there is a flat family {E′

s}s∈S of rank 2 vector
bundles on U and m, m′ ∈ S with E′

m
∼= E2, E′

m′ ∼= F2 and such
that for every s ∈ S the bundle E′

s has {(ai, bi)}2≤i≤t as an associated
admissible sequence. By the construction of the sequences of associated
bundles of E and F , we have exact sequences

0 −→ E −→ E2(C) −→ OC(a1 − 1) −→ 0(4)
0 −→ F −→ F2(C) −→ OC(a1 − 1) −→ 0.(5)
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For every bundle M on U with {(ai, bi)}2≤i≤t as an associated ad-
missible sequence, the set of all surjections M(C) → OC(a1 − 1) is
parametrized by an integral nonempty variety whose dimension de-
pends only on a1, a2 and b2 := a1+b1+1−a2. For any such surjection,
t, Ker (t) | C is an extension of OC(b1) by OC(a1). Since a1 > b1
this extension splits and hence the bundle Ker (t) has {(ai, bi)}1≤i≤t as
an associated admissible sequence. Varying M among the bundles E′

s,
s ∈ S, the set of all such surjections are parametrized by an irreducible
nonempty variety, T . Furthermore, the family of all such kernels is flat
(e.g., use that it is flat its restriction to every infinitesimal neighbor-
hood C(n) of C in W , n > 0, because for any fixed ample line bundle
H on C(n), the bundles in this family have by the exact sequences (1)
the same Hilbert polynomials with respect to H). Hence, we conclude
the proof.

1.3. We fix homogeneous coordinates z0, z1 on C and set C0 :=
{x ∈ C : z0 
= 0}, C1 := {x ∈ C : z1 
= 0}, C ′′ := C0 ∩ C1. Call
U0 (respectively U1, respectively U ′′) the open formal subschemes of
U with support C0 (respectively C1, respectively C ′′). Set z := z1/z0
as a regular function on U ′′ and C ′′. We may take as W the vector
bundle V(OC(1)). Hence we will take as regular coordinates on U ′′z
and a “fiber coordinate” w such that C(n), n ≥ 0, is given scheme-
theoretically by the equation wn+1 = 0. Note that every vector bundle
on U is trivial on U0 and U1 (Lemma 5.7). Hence every rank 2 vector
bundle E on U is given by an invertible matrix on U ′′ with coordinates
z and w. Note that OC(k) is given on C ′′ by the 1 × 1 transition
matrix z−k. Hence the same transition matrix on U ′′ defines the line
bundle OU (−kC). Assume that E | C has splitting type (a, b) with
a > b. It is very easy to check (see [3] or the proof of Lemma 5.2) that
E has a transition matrix a := a(i, j)1≤i≤2,1≤j≤2 with a(1, 1) = z−b,
a(2, 2) = z−a, a(2, 1) = 0 and as a(2, 2) a polynomial in u, z of the
form a(2, 2)(z, u) = z−a+1(

∑
0≤i≤a−b−2

∑
0≤k≤a−b−1−i pikz

iuk) with
pik ∈ K. Vice versa, any such matrix a defines a rank 2 vector bun-
dle F on U such that F | C is an extension of OC(a) by OC(b).
This extension is uniquely determined by a(2, 2)(z, 0). This exten-
sion splits if and only if F | C has OC(a) as a subbundle. Call
e ∈ H1(C,Hom(OC(a),OC(b))) the extension class of F | C. For
every integer m with b < m ≤ a, we have a cup-product bilinear map
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H1(C,Hom(OC(a),OC(b)))×H0(C,OC(a−m))→ H1(C,OC(b−m))
and H0(C, (F | C)(−m)) is the right annihilator of the extension class
e for the cup-product bilinear map. The bundle F | C has a subsheaf
isomorphic toOC(m) if and only ifH0(C, (F | C)(−m)) 
= 0. Writing e
in the form z−a+1(q(z)) with q(z) =

∑
1≤i≤a−b−2 qiz

i polynomial of de-
gree ≤ a−b−2 and taking a similar identification forH1(C,OC(b−m))
with the space of all polynomials of degree ≤ m− b− 2, we obtain that
H0(C, (F | C)(−m)) 
= 0 with b < m < a if and only if there is an
integer i ≥ 2m− a− b− 1 with qi 
= 0. Hence for every integer m with
(a+ b)/2 < m < a the maximal degree of a subbundle of F | C is m if
and only if q2m−a−b−1 is the first nonzero coefficient of e. Furthermore,
the extension ofOC(a) byOC(b) giving F | C splits if and only if qi = 0
for every integer i with 1 ≤ i ≤ a−b−2. Hence E | C has splitting type
(a, b) if and only if pi0 = 0 for every integer i with 1 ≤ i ≤ a − b − 2.
Set E1 := E and a1 := a, say a1 := {a1(i, j)}1≤i≤2,1≤j≤2. Call
a2 = {a2(i, j)}1≤i≤2,1≤j≤2 the matrix giving the associated bun-
dle E2 of E as an extension of OU (a) by OU (b + 1). We have
a2(2, 2)(z, u) = z−a+1(

∑
0≤i≤a−b−3

∑
1≤k≤a−b−1−i pikz

iuk−1). Hence
the splitting type of E2 | C, i.e., the pair (a2, b2) is associated to∑

0≤i≤a−b−3

∑
1≤k≤a−b−1−i pikz

iuk−1. If b2 < a2 to obtain the pair
(a3, b3), it is sufficient to express E2 as an extension of OU (−a2C)
by OU (−b2C) and then iterate the computations just made. If it is
possible to carry out this step in a very explicit way we could, induc-
tively, read off from a(2, 2) the admissible sequence {(ai, bi)}1≤i≤t of
E. We are unable to carry out this step. To avoid this problem in
the last part of the proof of Theorem 1.4 we will use a trick. How-
ever, the computations just made show that if E,F are rank 2 bundles
with E | C(1) ∼= F | C(1), then E2 | C ∼= F2 | C. Inductively we
obtain that if E,F are rank 2 bundles with E | C(n) ∼= F | C(n) for
some integer n ≥ 1, then for all integers i with 2 ≤ i ≤ n, we have
Ei | C(n−i+1) ∼= Fi | C(n−i+1).

Theorem 1.4. Fix admissible types {(ai, bi)}1≤i≤t and {(ci, di)}1≤i≤t′

with a1 + b1 = c1 + d1, t′ ≥ t and ai ≤ ci for every i ≤ t. Let E
be a rank 2 vector bundle on U with admissible type {(ci, di)}1≤i≤t′ .
Then there exist an integral variety T (or a reduced and irreducible
complex space T ) o ∈ T , and a flat family {Ex}x∈T of vector bun-
dles on U parametrized by T with Eo

∼= E and Ex of admissible type
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{(ai, bi)}1≤i≤t for every x ∈ (T\{o}).

Proof. The following partial order on the set of all types for rank
two vector bundles on U was introduced at the end of [1]. Take two
admissible sequences {(ai, bi)}1≤i≤t and {(ci, di)}1≤i≤t′ . We will write
{(ai, bi)}1≤i≤t ≥ {(ci, di)}1≤i≤t′ if a1 + b1 = c1 + d1 and for all in-
tegers i with 1 ≤ i ≤ min{t, t′} we have ai ≤ ci. Note that if
{(ai, bi)}1≤i≤t ≥ {(ci, di)}1≤i≤t′ we have t ≤ t′. This partial order
is generated by a “proximity relation.” We will say that {(ai, bi)}1≤i≤t

is larger and proximal to {(ci, di)}1≤i≤t′ if a1+ b1 = c1+ d1 and either
t′ = t and there is an integer s < t with ai = ci for i 
= s, as = cs−1, or
t′ = t+2, ai = ci for i < t and ct = dt+2, i.e., ct = at+1. A deforma-
tion of a deformation is a deformation (even for formal schemes); for
formal schemes taking C(n) for some fixed large n (e.g., n = a1 − b1)
and using Lemmas 5.7 and 1.8, we may reduce this assertion to the
case of proper schemes or analytic space. Hence we reduce to the case
in which {(ai, bi)}1≤i≤t and {(ci, di)}1≤i≤t′ are proximal. Note that for
every i ≤ t we have ai+ bi = a1+ b1 + i− 1 = c1+ d1 + i− 1 = ci+ di.
We use induction on the integer t′, the case t′ ≤ 2 being trivial. As-
sume t′ > 2. First we consider the case a1 = c1. By the inductive
assumption we may find an integral variety S, a flat family {Hj}j∈S

of rank 2 vector bundles on U parametrized by S and m ∈ S with
Hm

∼= E2 and with Hy of type {(ai, bi)}2≤i≤t for every y ∈ S\{m}.
Recall that E ∼= Ker (u), where u : E2(−C) → OC(a) is a surjection.
Since d2 ≤ a2 ≤ a1, for every integer n ≥ 0 and every y ∈ T we
have h0(C(n),Hom(Hy(−C) | C(n),OC(a1))) = h0(C,Hom(Hy(−C) |
C,OC(a1))) = h0(C,Hom(E2(−C) | C,OC(a1))) = h0(C(n),
Hom (E2(−C) | C(n),OC(a1))). Hence by the Formal Function Theo-
rem [6], we may extend u to a family of surjections uy : Hy → OC(a)
with y near m. Since bi ≤ di ≤ a1 for every integer n ≥ 0 and for every
y ∈ S we have h1(C,Hom(Hy(−C) | C(n),OC(a1)) ⊗ In/In+1) = 0.
Hence, by the Formal Function Theorem and the exact sequences (1)
for every y ∈ S the restriction map H0(U,Hom(Hy(−C),OC(a1)))→
H0(C,Hom(Hy(−C) | C,OC(a1))) is surjective. Note that the ele-
mentary transformation of each Hy induced by each such surjection
has splitting type (a1, b1) on C. Since a1 = c1, we conclude in this
subcase. Now we assume a1 
= c1 and hence since the two admissi-
ble sequences are proximal t′ = t and ai = ci for 2 ≤ i ≤ t. We
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fix the bundle E2 and we express it as an extension of OU (−a1C)
by OU (−b1C) (Lemma 5.2). We use an explicit matrix of transition
functions a2 := a2(i, j)}1≤i≤2,1≤j≤2. In (1.3) we listed all possible ma-
trices of transition functions with E2 as the associated bundle. Any
such matrix is uniquely determined by a polynomial

∑
1≤i≤a−b−2 qiz

i

with qi ∈ K. Since E | C has splitting type (a1, b1), the associated
polynomial of E has qi = 0 for every i. Taking a polynomial λza−b−2

with λ ∈ K\{0} we obtain a bundle Eλ with Eλ | C of splitting type
(a1−1, b1+1) = (a2, b2), see (2.3). Hence, sending λ to 0 we obtain the
flat family parametrized by the affine line we were looking for.

2. C rational, deg (N ) = −1. In this section we study the
stratification of “admissible types” for rank r vector bundles in a formal
neighborhood, or a Euclidean tubular neighborhood if we are in the
complex analytic category, of an exceptional curve of the first kind,
extending the case r = 2 considered in [1] and studied again here in
Section 1. We assume C ∼= P1 and that OC(−1) is the normal bundle
of C in W . Fix an integer r ≥ 2. Let E be a rank r vector bundle
on U and call a1 ≥ · · · ≥ ar the splitting type of E | C. We will
associate to E an integer t ≥ 1, a finite sequence {(a(i, j)}1≤i≤t,1≤j≤r

of r-tuples of nonincreasing integers with a(1, j) = aj for 1 ≤ j ≤ r,∑
1≤j≤r a(i, j) =

∑
1≤i≤r a(1, j) + i − 1 for 2 ≤ i ≤ t, a(t, j) = a(t, 1)

for 2 ≤ i ≤ r, and a finite number of bundles Ei, 1 ≤ i ≤ t, with
E1 = E, Ei | C with splitting type a(i, 1) ≥ · · · ≥ a(i, r) in the
following way. Set E1 := E and a(1, j) = aj for 1 ≤ j ≤ t. If
a(1, 1) = a(1, r), set t := 1 and stop. Assume a(1, 1) > a(1, r).
Choose a surjection ρ : E | C → OC(ar) and make the corresponding
elementary transformation r : E → OC(ar). Set E2 := Ker (r). Since
ar ≤ ar−1, we have Ker (ρ) ∼= ⊕1≤i≤r−1OC(ai) and Ker (r) | C fits in
the exact sequence

(6) 0 −→ OC(ar + 1) −→ Ker (r) | C −→
⊕

1≤i≤r−1

OC(ai) −→ 0.

Call a(2, 1) ≥ · · · ≥ a(2, r) the splitting type of E2. In particular,∑
1≤j≤r a(i, j) =

∑
1≤i≤r a(1, j) + 1. Note that if i < t the bundle

E2 is more balanced than the bundle E1 in the following sense. We
have a(1, 1) ≥ a(2, 1), a(1, r) ≤ a(2, r), the number of integers j with
a(2, j) = a(1, r) is exactly one less than the number of integers m with
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a(1,m) = a(1, r) and the bundle Ker (r) | D is more balanced (in the
sense of the Harder-Narasimhan polygon of bundles of fixed degree)
than the bundle ⊕1≤i≤r−1OC(ai) ⊕ OC(ar + 1). If a(2, 1) = a(2, r),
set t = 2 and stop. Otherwise, we repeat the construction using E2

instead of E1. In a finite number of steps, say t − 1 steps, we arrive
at a balanced bundle Et := ⊕1≤i≤rOC(a(t, i)) with a(t, i) = a(t, 1)
for every i. Note that this relation gives a strong restriction on the
integer t because we have

∑
1≤i≤r a(1, j) + t − 1 ≡ 0 modulo r. This

construction stops after at most (r− 1)a1 −
∑

2≤i≤r ai steps and hence
1 ≤ t ≤ 1 + (r − 1)a1 − ∑

2≤i≤r ai. Note that if i < t the bundle
Ei+1 is more balanced than the bundle Ei. If W is complete or (in
the analytic case) compact and E ∼= A | U with A the vector bundle
on W , we claim that the admissible splitting type of E determines
uniquely the so-called drop of c2 of A related to C, i.e., the integer
d2(A) defined in [1]. Indeed, the associated bundles Ei are of the form
Ui | C with Ui bundles on W . If t = 1, we have d2(A) = r(r − 1)a1/2.
If t > 1 we leave to the interested reader the task of using the t − 1
exact sequences defining the bundles Ei, 1 ≤ i ≤ t, and the relation
d2(Et) = r(r − 1)a(t, 1) to obtain d2(At−1) and then d2(At−2) and so
on, mimicking the proof of [1, Theorem 0.3].

3. C rational, deg (N ) = −2. In this section we consider the
case of a smooth curve C ∼= P1 with normal bundle of degree −2.
By assumption OC(−2) is the normal bundle of C in W . Fix an
integer r ≥ 2. Let E be a rank r vector bundle on U , and let
a1 ≥ · · · ≥ ar be the splitting type of E | C. Now we will associate
to E an integer t ≥ 1, a finite sequence {(a(i, j)}1≤i≤t,1≤j≤r of r-
tuples of nonincreasing integers with a(1, j) = aj for 1 ≤ i ≤ j,∑

1≤j≤r a(i, j) =
∑

1≤i≤r a(1, j)+2i−2 for 2 ≤ i ≤ t, a(t, r) ≤ a(t, 1)+1
for 2 ≤ i ≤ r, and a finite number of bundles Ei, 1 ≤ i ≤ t, with
E1 = E, Ei | C with splitting type a(i, 1) ≥ · · · ≥ a(i, r). Set
E1 := E and a(1, j) = aj for 1 ≤ j ≤ t. If a(1, 1) ≤ a(1, r) + 1,
set t := 1 and stop. Assume a(1, 1) ≥ a(1, r) + 2. Choose a
surjection ρ : E | C → OC(ar) and make the corresponding elementary
transformation r : E → OC(ar). Set E2 := Ker (r). Since ar ≤ ar−1,
we have Ker (ρ) ∼= ⊕1≤i≤r−1OC(ai) and Ker (r) | C fits in the exact
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sequence

(7) 0 −→ OC(ar + 2) −→ Ker (r) | C −→
⊕

1≤i≤r−1

OC(ai) −→ 0.

Call a(2, 1) ≥ · · · ≥ a(2, r) the splitting type of E2. In particular,∑
1≤j≤r a(i, j) =

∑
1≤i≤r a(1, j) + 2. Note that if i < t the bundle

E2 is more balanced than the bundle E1 in the following sense. We
have a(1, 1) ≥ a(2, 1), a(1, r) ≤ a(2, r), the number of integers j
with a(2, j) ≤ a(1, r) + 1 is exactly one less than the number of
integers m with a(1,m) ≤ a(1, r) + 1 and the bundle Ker (r) | C
is more balanced (in the sense of the Harder-Narasimhan polygon of
bundles of fixed degree) than the bundle ⊕1≤i≤r−1OC(ai)⊕OC(ar+2).
Furthermore, we have h1(C,End (E2 | C)) < h1(C,End (E1 | C)) and
h0(C,End (E2 | C)) < h0(C,End (E1 | C)). If a(2, 1) ≤ a(2, r) + 1, set
t = 2 and stop. Otherwise, we repeat the construction using E2 instead
of E1. In a finite number of steps, say t−1 steps, we arrive at a bundle
Et := ⊕1≤i≤rOC(a(t, i)) with a(t, 1) ≤ a(t, i) ≤ a(t, 1) + 1 for every i.
Note that if r = 2 this is equivalent to the fact that the bundle Et | C is
rigid. This construction stops after at most ((r − 1)a1 −

∑
2≤i≤r ai)/2

steps and hence 1 ≤ t ≤ 1 + ((r − 1)a1 − ∑
2≤i≤r ai)/2. Note that

if i < t the bundle Ei+1 | C is more balanced than the bundle
Ei | C, that h1(C,End (Ei+1 | C)) < h1(C,End (Ei | C)) and
h0(C,End (Ei+1 | C)) < h0(C,End (Ei | C)) and that no bundle Ei

with i < t is rigid. Of course, a similar construction may be done for
every smooth rational curve C embedded with normal bundle OC(e)
with e ≤ −3, just considering the condition “a1 − ar ≤ −e” instead of
the condition “a1 = ar ≤ −2,” but the final bundle, Et, we obtain for
e ≤ −3 seems not to have any geometric property.

4. C arbitrary, rank two. In this section we consider the case of
rank 2 vector bundles when the curve C has arbitrary genus, q. Let N
be the normal bundle of C in W (or U). Set e := deg (N).

Remark 4.1. If e > 4q + 5 by [4] U is uniquely determined by C and
N and in the algebraic case even a Zariski open neighborhood of C in
W is uniquely determined by C and N and is isomorphic to a Zariski
open neighborhood of the zero-section of the vector bundle V(N∗) on
C.
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Let E be a rank 2 vector bundle on U . We distinguish several different
cases according to the triple of integers (q, e, s(E)) where s(E) is the
stability degree of the bundle E in the sense of [8], which will be
described below. At the end of the paper we will give a more precise
description when e = −1. We assume that E | C fits in an exact
sequence

(8) 0 −→ A −→ E | C −→ B −→ 0
with A and B line bundles on C. We fix R ∈ Pic (C) and a surjection
ρ : E | C → R. Composing the restriction map E → E | C
with the surjection ρ we obtain a surjection r : E → R, where
R is seen as a torsion coherent sheaf on U . Since C is a Cartier
divisor in U , Ker (r) is a rank 2 vector bundle on U (see, e.g., [9]
or [10]). The vector bundle Ker (r) is said to be obtained from E
making a negative elementary transformation supported by C. We
have det (Ker (r) | C) ∼= det (E | C) ⊗ N∗ and Ker (r) | C fits in the
following exact sequence on C:

(9) 0 −→ R ⊗N∗ −→ Ker (r) | C −→ det (E | C)⊗R∗ −→ 0.
Now we distinguish several cases and subcases according to the stability
or instability of E | C (and its order) the degree of R and the value
e. If E fits in an exact sequence (8) with deg (A) maximal, we will set
s(E) := deg (B) − deg (A) and call s(E) the degree of stability of E.
By definition of stability and semi-stability E is stable if and only if
s(E) > 0, E is semi-stable but not stable if and only if s(E) = 0, while
E is called unstable if and only if s(E) < 0.

Case 1. Assume that E | C is stable, i.e., s(E | C) > 0. In particular,
we have deg (B) > deg (A). We assume that A is a subbundle of E | C
of maximal degree. Set s := deg (B) − deg (A) = s(E). Note that
s ≡ deg (E | C) modulo 2. The variety of rank 2 stable vector bundles
on C with fixed determinant was studied in detail in [8]. By an old
theorem of Segre and Nagata we have 0 < s ≤ q if q ≥ 2. This case
does not occur for q = 0, while if q = 1 we have s = 1. Since we assume
that (9) does not split, we have deg (R) ≥ deg (B). We distinguish two
subcases according to the value of deg (R).

Subcase 1.1. Assume deg (R) > deg (B). In this case there are surjec-
tions ρ if and only if H0(C,Hom(A,R)) 
= 0, H0(C,Hom(B,R)) 
= 0
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and the base locus of |R ⊗ A∗| does not intersect the base locus of
|R ⊗ B∗|. For instance this condition is always satisfied if deg (R) ≥
2q + deg (A) because 0 ≤ s ≤ q. If (A,B,R) are a general triple of
Pic deg (A)(C) × Pic deg (B)(C) × Pic deg (R)(C), then this condition is
satisfied if and only if deg (R) ≥ deg (B) + q. The exact sequence
(9) shows that Ker (r) | C is an extension of a line bundle of de-
gree 2deg (A) + s − deg (R) by a line bundle of degree deg (R) − e.
Note that 2deg (A) + s + e < 2deg (R) + s for e ≤ 0 and in almost
all interesting cases with e > 0 (see Remark 4.1). Hence, if e ≤ 0
and in many other cases Ker (r) | C is “less stable” than E | C. If
2deg (A) + s + e < 2deg (R), then Ker (r) | C is unstable and (9) is a
destabilizing exact sequence for Ker (r) | C, i.e., its Harder-Narasimhan
filtration.

Subcase 1.2. Here we assume deg (R) = deg (B). For many bundles
E | C the exact sequence (9) with deg (A) maximal is not uniquely
determined (see [8]) and for such bundles the isomorphism class of R is
not uniquely determined by the existence of the surjection ρ. If e−s < 0
the bundle Ker (r) | C is always unstable.

Case 2. Here we assume that E | C is semi-stable but not stable,
i.e., that s(E | C) = 0. We take as exact sequence (8) a sequence
with deg (A) = deg (B), i.e., with deg (A) maximal. Such a sequence
is unique if E | C is indecomposable. We repeat the discussion of
Case 1 taking just s := 0 and obtain the two subcases 2.1) (with
deg (R) > deg (A)) and 2.2) (with deg (R) = deg (A)).

Case 3. Here we assume that E | C is properly unstable, i.e., that
s(E | C) < 0. We take as exact sequence (8) the Harder-Narasimhan
filtration of E | C and set s := deg (B) − deg (A). Hence s < 0 and
for some bundle E | C every negative value of s may occur, but if
s < −2q + 2 we have E | C ∼= A ⊕ B. To have a surjection ρ we need
deg (R) ≥ deg (B). Again we distinguish two subcases.

Subcase 3.1. Here we assume deg (R) > deg (B). Note that the
existence of the surjection ρ implies deg (R) ≥ deg (A). Ker (r) | C is
an extension of a line bundle of degree deg (A)+deg (B)−deg (R) by a
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line bundle of degree deg (R) + e and, hence, unless e is very negative,
Ker (r) | C is unstable and (9) is the Harder-Narasimhan filtration of
Ker (r) | C.

Subcase 3.2. Here we assume deg (R) = deg (B). Hence R ∼= B and,
up to a multiplicative constant, ρ is unique. Ker (r) | C is an extension
of a line bundle of degree deg (A) = deg (B) − s by a line bundle of
degree deg (B)− e.

From now on in this section we assume e = −1 and show an
“algorithm” to transform any bundle E into a semi-stable but not stable
bundle Et, i.e., into a bundle Et with associated integer s(Et) = 0.
Since the case q = 0 was done in [1], we may assume q ≥ 1. We will
define an integer t ≥ 1, a family of bundles Ei, 1 ≤ i ≤ t, with degree
of stability si := s(Ei) ∈ Z, such that E1 = E, s1 = s(E), t = 1 if and
only if E is semi-stable but deg (Ei+1) = deg (Ei) + 1 if st = 0 (i.e.,
Et is semi-stable but not stable) and such that si < 0 for 2 ≤ i < t,
si+1 > si for 2 ≤ i < t, s2 > s1 if s1 < 0, s2 = −s1 + 1 if s1 > 0.
Set E1 = E and s1 := s(E). If E is semi-stable but not stable, set
t = 1 and stop. Now assume E is stable. We apply the construction of
subcase 1.2. Now assume E is unstable and apply the construction of
subcase 3.2. Both in the stable and unstable case set E2 := Ker (r) and
s2 := s(E2). Note that E2 is unstable if E is stable, while E2 is semi-
stable or unstable if E is unstable and in this case we have s2 > s1. If
E2 is not semi-stable, we continue taking E2 instead of E. In a finite
number of steps, say t − 1 steps, we arrive at a semi-stable bundle Et

and stop. Note that if E is stable we have 3 ≤ t ≤ s(E), while if E is
unstable we have 2 ≤ t ≤ −s(E) + 1.

5. Technical lemmas. In this section we collect several technical
results which were used in the previous sections.

Lemma 5.1. The restriction map Pic (U)→ Pic (C) is surjective.

Proof. Since dim (C) = 1, we have h2(C, In/In+1) = 0 for every
n ≥ 0. To prove the result even for singular and/or reducible C
it is sufficient to copy [5, p. 179]. If C is smooth we may also
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give the following proof. Since C is smooth it is sufficient to show
that, for every P ∈ C there is a Cartier divisor Z(P ) on U with
Z(P ) | C = {P} (as Cartier divisors). This is obvious in several cases.
In the analytic set-up this is obvious not just for formal neighborhoods
but also for “good” (i.e., locally trivial in the transcendental topology)
tubular neighborhoods. The existence of “good” tubular neighborhoods
follows from the smoothness of C. To obtain an extension to tubular
neighborhoods in the analytic case for singular curves, C ′, just use that
every line bundle on C ′ has a meromorphic section with zeros and poles
on Creg and use a fundamental system of neighborhoods of C ′ which
are locally trivial at every point of C ′

reg.

For related results, see Lemmas 5.9 and 5.10.

Lemma 5.2. Assume C ∼= P1 and e := deg (N) < 0. Let E be
a rank r vector bundle on U . Then there is an increasing filtration
{Ei}0≤i≤r of E with Ei a saturated subbundle of E, rank (Ei) = i,
E0 = {0}, Er = E and Ei+1/Ei ∈ Pic (U) for 0 ≤ i < r. Let
a1 ≥ · · · ≥ ar be the splitting type of E | C. Fix integers b1, . . . , br
such that

∑
1≤i≤r bi =

∑
1≤i≤r ai and such that for every integer u

with 1 < u ≤ r we have
∑

u≤i≤r bi ≤ ∑
u≤i≤r ai. Then there exists

such a filtration {Ei}0≤i≤r of E with deg (Ei+1/Ei | C) = br−i for
every i < r, i.e., such that Ei+1/Ei

∼= OU (−br−iC) for every i < r.

Proof. We will use induction on r. First we will show that E has a
subbundle E1

∼= OU (−brC) with E/E1 locally free. Set F := E(brC).
Since F | C has splitting type a1 − br ≥ · · · ≥ ar − br ≥ 0, F | C has a
saturated rank 1 trivial subbundle. Tensoring by F the exact sequences
(1.1) and using that deg (In/In+1) = −ne > 0, we obtain H1(U,F ) = 0
and that the chosen section of F | C lifts to a section of F . By
Nakayama’s lemma we obtain that the associated map OU (−brC)→ E
has a locally free quotient. This implies the lemma for r = 2. Assume
r ≥ 3. We use induction on r. The proof of the existence of the rank 1
subbundle E1 shows that we may take as (E/E1) | C any rank r − 1
bundle which is the quotient of E | C by OC(br). Since ⊕1≤i<rOC(bi)
is such a quotient, we conclude by the inductive assumption.



VECTOR BUNDLES 811

Since every vector bundle on a smooth projective curve is obtained
by taking a sequence of r − 1 extensions by line bundles, the proof of
Lemma 5.2, the surjectivity of the map Pic (U)→ Pic (C) (Lemma 5.1)
and Riemann-Roch on C give the following result.

Lemma 5.3. Assume C smooth of genus q and e := deg (N) < 0. Let
E be a rank r vector bundle on U . Then there is an increasing filtration
{Ei}0≤i≤r of E with Ei a saturated subbundle of E, deg (Ei) = i,
E0 = {0}, Er = E and Ei+1/Ei ∈ Pic (U) for 0 ≤ i < r. Assume
that E | C has an increasing filtration {Fi}0≤i≤r with Fi a subbundle
of E | C, rank (Fi) = i, F0 = {0}, Fr = E | C and Fi+1/Fi ∈ Pic (C)
for 0 ≤ i < r; set ai := deg (Fi+1/Fi) and fix integers b1, . . . , br
with

∑
1≤i≤r bi =

∑
1≤i≤r ai and such that for every integer u with

1 < u ≤ r we have
∑

u≤i≤r bi + 2q(r − u + 1) ≤ ∑
u≤i≤r ai. Fix

Li ∈ Pic (C), 2 ≤ i ≤ r, with deg (Li) = bi and Mi ∈ Pic (U) with
Mi | C ∼= Li. Then there exists such a filtration {Ei}0≤i≤r of E with
Ei+1/Ei

∼=Mr−i for every i < r.

Lemma 5.4. Let Y be either an affine variety or a Stein analytic
space and E,F and G vector bundles on Y . Assume E | Yred trivial.
Then E is trivial. Furthermore, every isomorphism u : F | Yred → G |
Yred is the restriction of an isomorphism between F and G and every
homomorphism v : F | Y → G | Y with v | Yred = u is an isomorphism.

Proof. Taking E := F and G := O⊕r
Y , r := rank (F ) (or trivial

bundles of perhaps different ranks in different connected components
of Y ) we reduce the first assertion to the second one. Let u : F |
Yred → G | Yred be an isomorphism. By Cartan-Serre Theorem A the
map u extends to a homomorphism v : F | Y → G | Y . Since F and
G are vector bundles, and for every x ∈ Yred the map u | {x} is an
isomorphism, by Nakayama’s lemma v is an isomorphism.

Remark 5.5 By the proof of [2, Theorem 30] every complex analytic
vector bundle over a one-dimensional complex Stein space is trivial (as
a complex analytic vector bundle).

Remark 5.6. It is very easy and very well-known that every algebraic
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vector bundle over the affine line is trivial.

Lemma 5.7. Let Y be either a one-dimensional projective scheme
over an algebraically closed field K with char (K) = 0 or a one-
dimensional quasi-projective scheme with Yred

∼= P1 or a compact one-
dimensional complex space. Then every vector bundle on Yred is the
restriction of a vector bundle on Y .

Proof. Let E be a vector bundle on Yred. If Y is algebraic and
char (K) = 0 by the Lefschetz principle, we reduce to the case K = C
and then by GAGA we reduce to proving the extension of an analytic
vector bundle over the analytic space (Yred)an to an analytic vector
bundle over the analytic space Yan. In all cases by Remarks 5.5 and
5.6 there are two open sets U1 and U2 with Y = U1 ∪ U2 and with
E | (U1)red and E | (U2)red trivial. Hence E is defined by an invertible
matrix of functions g12 on (U1)red ∩ (U2)red and there is no cocycle
condition. Since U1 ∩ U2 is Stein (or affine if we work in the algebraic
set-up with Yred

∼= P1) g extends to a matrix h12 of regular functions
on U1 ∩ U2. By Nakayama’s lemma this matrix h12 is invertible and
hence it gives a vector bundle on Y which extends E.

Lemma 5.8. Let Y be either a one-dimensional projective scheme
over an algebraically closed field K with char (K) = 0 or a one-
dimensional quasi-projective scheme with Yred

∼= P1. Then every flat
family {Es}s∈T of vector bundles on Yred parametrized by a reduced
scheme T , or a reduced complex space T , is the restriction of a flat
family of vector bundles on Y parametrized by T .

Proof. We follow the proof of Lemma 5.7 and obtain an “algebraic
family” of vector bundles on Y parametrized by T . We need to check
the flatness of this family. We fix an ample line bundle OY (1) on Y .
Let J be the nilradical of OY , i.e., the ideal sheaf of Y . Fix an integer
k > 0 with Jk = 0. For every integer n > 0 we have an exact sequence

(10) 0 −→ Jn/Jn+1 −→ OY /Jn+1 −→ OY /Jn −→ 0

and we may tensor (10) by any product M ⊗ OY (z) with M vector
bundle on Y and z ∈ Z. We obtain that the Hilbert polynomial of M
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with respect to OY (1) depends only on the Hilbert polynomials of all
tensor powers (M | Yred) ⊕ Jn/Jn+1, 1 ≤ n < k. Hence all vector
bundles appearing in our “algebraic family” have the same Hilbert
polynomials. The flatness of our “algebraic family” follows from the
proof of [6, Theorem III.9.9].

The definition of vector bundle on a formal space and the proof of
Lemma 5.7 give the following two results.

Lemma 5.9. Assume either char (K) = 0 or C ∼= P1. Then every
vector bundle on C is the restriction of a vector bundle on U .

Lemma 5.10. Assume either char (K) = 0 or C ∼= P1. Then every
flat family of vector bundles on C parametrized by an integral variety
(or reduced and irreducibly complex space) T is the restriction to C of
a flat family of vector bundles on U parametrized by T .

Remark 5.11. Let A and E be vector bundles on U . Since
dim (C) = 1 the Formal Function Theorem [6, III.11.1] implies that
H2(U, I ⊗ A) = 0. In the analytic case in which U is a tubular neigh-
borhood of C in W this is true because dim (U) = 2 and U contains
no compact two-dimensional component. Hence the restriction map
H1(U,A) → H1(C,A | C) is surjective. Applying this remark to the
case A = End (E) and using the vanishing of the obstruction spaces
H2(C,End (E)/It+1) ∼= H2(C(t),End (E | C(t))) for every t ≥ 0, we
see that the local deformation space of E as bundle on U surjects onto
the local deformation space of E | C even if E | C is not simple. The
same proof works taking W instead of U if we assume that there is a
contraction π :W → Z of C with Z = π(W ) and Z affine variety or, in
the analytic case, a Stein space. There is a small problem to define the
local deformation functor for E on U and onW becauseH0(U,End (E))
and H0(W,End (E)) have infinite dimension in the cases we are inter-
ested in, but in these cases, for a fixed bundle E | C, we may replace
U or W with a high order infinitesimal neighborhood of C in U ; here
“surjectivity of the local deformation functors” just means existence of
lifting to arbitrary high order infinitesimal neighborhoods of C in U
of every flat deformation of E | C, as a bundle on C. In particular,
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the surjectivity of the local deformation functors gives that d2(B), the
drop of c2, defined in [1] for any vector bundle B on U (or on W if Z
is affine or Stein) is not invariant under flat deformations.
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