HANKEL TRANSFORMATION AND HANKEL CONVOLUTION OF TEMPERED BEURLING DISTRIBUTIONS

M. BELHADJ AND J.J. BETANCOR

Abstract

In this paper we complete the distributional theory of Hankel transformation developed in [5] and [18]. New Fréchet function spaces $\mathcal{H}_{\mu}(w)$ are introduced. The functions in $\mathcal{H}_{\mu}(w)$ have a growth in infinity restricted by the Beurling type function w. We study on $\mathcal{H}_{\mu}(w)$ and its dual the Hankel transformation and the Hankel convolution.

1. Introduction. The Hankel integral transformation is usually defined by

$$
h_{\mu}(\phi)(x)=\int_{0}^{\infty}(x y)^{-\mu} J_{\mu}(x y) \phi(y) y^{2 \mu+1} d y, \quad x \in(0, \infty)
$$

where J_{μ} represents the Bessel function of the first kind and order μ. We will assume throughout this paper that $\mu>-1 / 2$. Note that if ϕ is a Lebesgue measurable function on $(0, \infty)$ and

$$
\int_{0}^{\infty} x^{2 \mu+1}|\phi(x)| d x<\infty
$$

then, since the function $z^{-\mu} J_{\mu}(z)$ is bounded on $(0, \infty)$, the Hankel transform $h_{\mu}(\phi)$ is a bounded function on $(0, \infty)$. Moreover, $h_{\mu}(\phi)$ is continuous on $(0, \infty)$ and, according to the Riemann-Lebesgue theorem for Hankel transforms $([\mathbf{1 7}]), \lim _{x \rightarrow \infty} h_{\mu}(\phi)(x)=0$.

The study of the Hankel transformation in distribution spaces was started by Zemanian ([18], [19]). In [18] the Hankel transform of distribution of slow growth was defined. More recently, Betancor and

[^0]Rodríguez-Mesa [5] have investigated the h_{μ} transform of generalized functions with exponential growth. Our objective in this paper that is motivated by the studies of Björck [8] is to define the Hankel transformation on new distribution spaces that are, in a certain sense, between the spaces considered in [5] and [18]. Thus we complete the investigations in [5] and [18].

Zemanian [18] introduced the space \mathcal{H}_{μ} that consists of all those complex valued and smooth functions ϕ defined on $(0, \infty)$ such that, for every $m, n \in \mathbf{N}$,

$$
\gamma_{m, n}^{\mu}(\phi)=\sup _{x \in(0, \infty)}\left(1+x^{2}\right)^{m}\left|\left(\frac{1}{x} D\right)^{n}\left(x^{-\mu-1 / 2} \phi(x)\right)\right|<\infty
$$

On \mathcal{H}_{μ} he considers the topology generated by the family $\left\{\gamma_{m, n}^{\mu}\right\}_{m, n \in \mathbf{N}}$ of semi-norms. Then \mathcal{H}_{μ} is a Fréchet space and the Hankel transformation H_{μ} defined by

$$
H_{\mu}(\phi)(x)=\int_{0}^{\infty}(x y)^{1 / 2} J_{\mu}(x y) \phi(y) d y, \quad x \in(0, \infty)
$$

is an automorphism of $\mathcal{H}_{\mu}([\mathbf{1 8}$, Lemma 8]). Note that the two forms h_{μ} and H_{μ} of Hankel transforms are related through

$$
H_{\mu}(\phi)(x)=x^{\mu+1 / 2} h_{\mu}\left(y^{-\mu-1 / 2} \phi\right)(x), \quad x \in(0, \infty)
$$

The Hankel transformation H_{μ} is defined on the dual $\mathcal{H}_{\mu}^{\prime}$ of \mathcal{H}_{μ} by transposition.

Altenburg [1] developed for the h_{μ} transformation a theory similar to that of Zemanian. Note that the space $\mathcal{H}_{-1 / 2}$ coincides with the space \mathcal{H} considered in [1].

In [5] the space χ_{μ} constituted by all the complex valued and smooth functions ϕ defined on $(0, \infty)$ satisfying that

$$
\eta_{m, n}^{\mu}(\phi)=\sup _{x \in(0, \infty)} e^{m x}\left|\left(\frac{1}{x} D\right)^{n}\left(x^{-\mu-1 / 2} \phi(x)\right)\right|<\infty
$$

for each $m, n \in \mathbf{N}$ is considered. In [5, Theorem 2.1] a characterization of the image by H_{μ} of the space χ_{μ} as a certain space of entire functions with a restricted growth on horizontal strips is given. The

Hankel transform H_{μ} is defined on the corresponding dual spaces by transposition.
In this paper we analyze the behavior of Hankel transformations and Hankel convolutions in the intermediate, in a suitable sense, spaces between the spaces \mathcal{H}_{μ} of functions with growth at infinity restricted by polynomials in x and the spaces χ_{μ} of functions with growth at infinity restricted by polynomials in e^{x}. We introduce here the space $\mathcal{H}_{\mu}(w)$ constituted by functions whose growth is restricted by $e^{n w}, n \in \mathbf{N}$, where w is a function that we will define precisely later.
Hirschman [13], Haimo [12] and Cholewinski [9] investigated the Hankel convolution operation.
The convolution associated with the h_{μ} transformation is defined as follows. The Hankel convolution $f \#_{\mu} g$ of order μ of the measurable functions f and g is given through

$$
\left(f \#_{\mu} g\right)(x)=\int_{0}^{\infty} f(y)\left({ }_{\mu} \tau_{x} g\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y,
$$

where the Hankel translation operator ${ }_{\mu} \tau_{x} g, x \in(0, \infty)$, of g is defined by

$$
\left({ }_{\mu} \tau_{x} g\right)(y)=\int_{0}^{\infty} g(z) D_{\mu}(x, y, z) \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z,
$$

provided that the above integrals exist. Here D_{μ} is the following function

$$
\begin{aligned}
D_{\mu}(x, y, z)=\left(2^{\mu} \Gamma(\mu+1)\right)^{2} \int_{0}^{\infty} & (x t)^{-\mu} J_{\mu}(x t)(y t)^{\mu} J_{\mu}(y t)(z t)^{-\mu} \\
& \cdot J_{\mu}(z t) t^{2 \mu+1} d t, \quad x, y, z \in(0, \infty) .
\end{aligned}
$$

Moreover, we define ${ }_{\mu} \tau_{0} g=g$.
The study of the $\#_{\mu}$-convolution on L_{p}-spaces was developed in [12] and [13].
If we denote by $L_{1, \mu}$ the space of complex valued and measurable functions f on $(0, \infty)$ such that $\int_{0}^{\infty}|f(x)| x^{2 \mu+1} d x<\infty$, the following interchange formula

$$
h_{\mu}(f \# \mu g)=h_{\mu}(f) h_{\mu}(g),
$$

holds for every $f, g \in L_{1, \mu}$.
A straightforward manipulation in $\#_{\mu}$ allows to define a convolution operator for the transformation H_{μ}.

The investigation of the distributional Hankel convolution was started by de Sousa-Pinto [15] who considered only $\mu=0$. Betancor and Marrero ([3], [4] and [14]) studied the Hankel convolution on the Zemanian spaces. In [5], Betancor and Rodriguez-Mesa analyzed the $\# \mu$-convolution of distributions with exponential growth.

In the sequel, since we think any confusion is possible, to simplify we will write $\#, \tau_{x}, x \in[0, \infty)$ and D instead of $\# \mu,{ }_{\mu} \tau_{x}, x \in[0, \infty)$ and D_{μ}, respectively.

As in [8] we consider continuous, increasing and nonnegative functions w defined on $[0, \infty)$ such that $w(0)=0, w(1)>0$, and it satisfies the following three properties
$(\alpha) w(x+y) \leq w(x)+w(y), x, y \in[0, \infty)$,
(β) $\int_{1}^{\infty}\left(w(x) / x^{2}\right) d x<\infty$, and
(γ) there exist $a \in \mathbf{R}$ and $b>0$ such that $w(x) \geq a+b \log (1+x)$, $x \in[0, \infty)$.

We say $w \in \mathcal{M}$ when w satisfies the above conditions. Note that if w is extended to \mathbf{R} as an even function, then w satisfies the subadditivity property in (α) for every $x, y \in \mathbf{R}$.

Beurling [7] developed a general theory of distributions that extends the Schwartz theory. Some aspects of that theory were presented and completed by Björck [8]. Inspired by the works of Beurling [7] and Björck [8], we started in [2] the study of Beurling distributions for Hankel transforms. We now collect some definitions and properties presented in [2] and that will be useful in the sequel.

Let $w \in \mathcal{M}$. For every $a>0$ the space $\mathcal{B}_{\mu}^{a}(w)$ is constituted by all those complex-valued and smooth functions ϕ on $(0, \infty)$ such that $\phi(x)=0, x \geq a, \phi$ and $h_{\mu}(\phi) \in L_{1, \mu}$ and that

$$
\delta_{n}^{\mu}(\phi)=\int_{0}^{\infty}\left|h_{\mu}(\phi)(x)\right| e^{n w(x)} x^{2 \mu+1} d x<\infty
$$

for every $n \in \mathbf{N} . \mathcal{B}_{\mu}^{a}(w)$ is a Fréchet space when we consider on it the topology generated by the system $\left\{\delta_{n}^{\mu}\right\}_{n \in \mathbf{N}}$ of semi-norms. It is
clear that $\mathcal{B}_{\mu}^{a}(w)$ is continuously contained in $\mathcal{B}_{\mu}^{b}(w)$ when $0<a<b$. The union space $\mathcal{B}_{\mu}(w)=\cup_{a>0} \mathcal{B}_{\mu}^{a}(w)$ is endowed with the inductive topology.

For every $x \in(0, \infty)$, the Hankel translation τ_{x} defines a continuous linear mapping from $\mathcal{B}_{\mu}(w)$ into itself ([2, Proposition 2.13]). Then we can define the Hankel convolution $T \# \phi$ of $T \in \mathcal{B}_{\mu}(w)^{\prime}$, the dual space of $\mathcal{B}_{\mu}(w)$ and $\phi \in \mathcal{B}_{\mu}(w)$ by

$$
(T \# \phi)(x)=\left\langle T, \tau_{x} \phi\right\rangle, \quad x \in[0, \infty)
$$

By $\mathcal{E}_{\mu}(w)$ we denote the space of pointwise multipliers of $\mathcal{B}_{\mu}(w)$. $\mathcal{E}_{\mu}(w)$ is endowed with the topology induced by the topology of pointwise convergence of the space $\mathcal{L}\left(\mathcal{B}_{\mu}(w)\right)$ of continuous linear mapping from $\mathcal{B}_{\mu}(w)$ into itself. The space $\mathcal{E}_{\mu}(w)^{\prime}$ dual of $\mathcal{E}_{\mu}(w)$ is characterized as the subspace of $\mathcal{B}_{\mu}(w)^{\prime}$ defining Hankel convolution operators on $\mathcal{B}_{\mu}(w)([\mathbf{2}$, Proposition 3.9] $)$.

This paper is organized as follows. In Section 2 we introduce the space $\mathcal{H}_{\mu}(w)$ of functions and we study its main properties. The dual space $\mathcal{H}_{\mu}(w)^{\prime}$ of $\mathcal{H}_{\mu}(w)$ is considered in Section 3. Also we analyze the Hankel transformation and the Hankel convolution on $\mathcal{H}_{\mu}(w)^{\prime}$.
Throughout this paper we always denote by C a suitable positive constant that can change from one line to another one.
2. The space $\mathcal{H}_{\mu}(w)$. In the sequel w is a function in \mathcal{M}. We now introduce the function spaces $\mathcal{H}_{\mu}(w)$. A function $\phi \in L_{1, \mu}$ is in $\mathcal{H}_{\mu}(w)$ when ϕ and $h_{\mu}(\phi)$ are smooth functions and, for every $m, n \in \mathbf{N}$,

$$
\alpha_{m, n}(\phi)=\sup _{x \in(0, \infty)} e^{m w(x)}\left|\left(\frac{1}{x} D\right)^{n} \phi(x)\right|<\infty
$$

and

$$
\beta_{m, n}^{\mu}(\phi)=\sup _{x \in(0, \infty)} e^{m w(x)}\left|\left(\frac{1}{x} D\right)^{n} h_{\mu}(\phi)(x)\right|<\infty
$$

On $\mathcal{H}_{\mu}(w)$ we consider the topology generated by the family $\left\{\alpha_{m, n}\right.$, $\left.\beta_{m, n}^{\mu}\right\}_{m, n \in \mathbf{N}}$ of semi-norms.

In the following we establish some properties of $\mathcal{H}_{\mu}(w)$ that can be proved by invoking well-known properties of the Hankel transformation h_{μ} and the conditions imposed on the function w.

Proposition 2.1. (i) The space $\mathcal{H}_{\mu}(w)$ is a Fréchet space and it is continuously contained in $\mathcal{H}_{-1 / 2}$. Moreover, if $w(x)=\log (1+x)$, $x \in[0, \infty)$, then $\mathcal{H}_{\mu}(w)=\mathcal{H}_{-1 / 2}$, where the equality is algebraical and topological.
(ii) The Hankel transformation h_{μ} is an automorphism of $\mathcal{H}_{\mu}(w)$.
(iii) The Bessel operator $\Delta_{\mu}=x^{-2 \mu-1} D x^{2 \mu+1} D$ defines a continuous linear mapping from $\mathcal{H}_{\mu}(w)$ into itself.
(iv) If P is a polynomial, then the mapping $\phi \rightarrow P\left(x^{2}\right) \phi$ is linear and continuous from $\mathcal{H}_{\mu}(w)$ into itself.

We now introduce a new family of semi-norms on $\mathcal{H}_{\mu}(w)$ that is equivalent to $\left\{\alpha_{m, n}, \beta_{m, n}^{\mu}\right\}_{m, n \in \mathbf{N}}$ and that will be very useful in the sequel.

Proposition 2.2. For every $m, n \in \mathbf{N}$, we define

$$
A_{m, n}^{\mu}(\phi)=\sup _{x \in(0, \infty)} e^{m w(x)}\left|\Delta_{\mu}^{n} \phi(x)\right|, \quad \phi \in \mathcal{H}_{\mu}(w)
$$

and

$$
B_{m, n}^{\mu}(\phi)=\sup _{x \in(0, \infty)} e^{m w(x)}\left|\Delta_{\mu}^{n} h_{\mu}(\phi)(x)\right|, \quad \phi \in \mathcal{H}_{\mu}(w)
$$

where Δ_{μ} represents the Bessel operator $x^{-2 \mu-1} D x^{2 \mu+1} D$. The family $\left\{A_{m, n}^{\mu}, B_{m, n}^{\mu}\right\}_{m, n \in \mathbf{N}}$ of semi-norms generates the topology of $\mathcal{H}_{\mu}(w)$.

Proof. Proposition 2.1 (ii) and (iii) imply that the topology defined on $\mathcal{H}_{\mu}(w)$ by $\left\{\alpha_{m, n}, \beta_{m, n}^{\mu}\right\}_{m, n \in \mathbf{N}}$ is stronger than the one induced on it by $\left\{A_{m, n}^{\mu}, B_{m, n}^{\mu}\right\}_{m, n \in \mathbf{N}}$.

We now are going to see that $\left\{A_{m, n}^{\mu}, B_{m, n}^{\mu}\right\}_{m, n \in \mathbf{N}}$ generates on $\mathcal{H}_{\mu}(w)$ a topology finer than the one defined on it by $\left\{\alpha_{m, n}, \beta_{m, n}^{\mu}\right\}_{m, n \in \mathbf{N}}$.

For every $k \in \mathbf{N}$ and $\phi \in \mathcal{H}_{\mu}(w)$, we have that

$$
\begin{align*}
\left(\frac{1}{x} D\right)^{k} \phi(x)= & x^{-2 \mu-2 k} \int_{0}^{x} x_{k} \int_{0}^{x_{k}} x_{k-1} \\
& \ldots \int_{0}^{x_{2}} x_{1}^{2 \mu+1} \Delta_{\mu}^{k} \phi\left(x_{1}\right) d x_{1} \ldots d x_{k}, \quad x \in(0, \infty) \tag{2.1}
\end{align*}
$$

and

$$
\begin{align*}
\left(\frac{1}{x} D\right)^{k} \phi(x)= & (-1)^{k} x^{-2 \mu-2 k} \int_{x}^{\infty} x_{k} \int_{x_{k}}^{\infty} x_{k-1} \\
& \ldots \int_{x_{2}}^{\infty} x_{1}^{2 \mu+1} \Delta_{\mu}^{k} \phi\left(x_{1}\right) d x_{1} \ldots d x_{k}, \quad x \in(0, \infty) \tag{2.2}
\end{align*}
$$

To prove (2.1) and (2.2), we must proceed inductively. We are going to show (2.1). To see (2.2), we can argue in a similar way.

Formula (2.1) holds when $k=1$. Indeed, according to Proposition 2.1 (i) and by [1, Lemma 8 b)], it has, for every $\phi \in \mathcal{H}_{\mu}(w)$

$$
\begin{equation*}
h_{\mu+1}\left(\left(\frac{1}{x} D\right) \phi\right)=-h_{\mu}(\phi) \tag{2.3}
\end{equation*}
$$

Moreover, by partial integration and by [20 (7), Chapter 5], since the function $z^{1 / 2} J_{\mu}(z)$ is bounded on $(0, \infty)$, it has, for every $y \in(0, \infty)$ and $\phi \in \mathcal{H}_{\mu}(w)$,

$$
\begin{align*}
h_{\mu+1}(& \left.x^{-2 \mu-2} \int_{0}^{x} x_{1}^{2 \mu+1} \Delta_{\mu} \phi\left(x_{1}\right) d x_{1}\right)(y) \tag{2.4}\\
& =-y^{-2} \int_{0}^{\infty} \frac{d}{d x}\left((x y)^{-\mu} J_{\mu}(x y)\right) \int_{0}^{x} x_{1}^{2 \mu+1} \Delta_{\mu} \phi\left(x_{1}\right) d x_{1} d x \\
& =y^{-2} h_{\mu}\left(\Delta_{\mu} \phi\right)(y) \\
& =-h_{\mu}(\phi)(y)
\end{align*}
$$

From (2.3) and (2.4) we deduce that (2.1) is true for every $\phi \in \mathcal{H}_{\mu}(w)$ when $k=1$.

We now suppose that $l \in \mathbf{N}$ and that, for every $\phi \in \mathcal{H}_{\mu}(w)$, we have

$$
\begin{align*}
\left(\frac{1}{x} D\right)^{l} \phi(x)= & x^{-2 \mu-2 l} \int_{0}^{x} x_{l} \int_{0}^{x_{l}} x_{l-1} \tag{2.5}\\
& \ldots \int_{0}^{x_{2}} x_{1}^{2 \mu+1} \Delta_{\mu}^{l} \phi\left(x_{1}\right) d x_{l} \ldots d x_{1}, \quad x \in(0, \infty)
\end{align*}
$$

We have to see that (2.5) holds when l is replaced by $l+1$ for every $\phi \in \mathcal{H}_{\mu}(w)$. Let $\phi \in \mathcal{H}_{\mu}(w)$. According to [1, Lemma 8], we can write

$$
\left(\frac{1}{x} D\right)^{l+1} \phi=(-1)^{l+1} h_{\mu+l+1}\left(h_{\mu} \phi\right) .
$$

On the other hand, it is easy to see that from the induction hypothesis (2.5) it deduces that, since $\Delta_{\mu} \phi \in \mathcal{H}_{\mu}(w)$, Proposition 2.1,

$$
\begin{align*}
x^{-2 \mu-2(l+1)} \int_{0}^{x} x_{l+1} \int_{0}^{x_{l+1}} x_{l} & \cdots \int_{0}^{x_{2}} x_{1}^{2 \mu+1} \Delta_{\mu}^{l+1} \phi\left(x_{1}\right) d x_{1} \ldots d x_{l+1} \tag{2.6}\\
& =\Lambda_{\mu+l}\left(\left(\frac{1}{x} D\right)^{l} \Delta_{\mu} \phi\right)(x), \quad x \in(0, \infty)
\end{align*}
$$

where Λ_{μ} denotes the operator defined by

$$
\left(\Lambda_{\mu} \psi\right)(x)=x^{-2 \mu-2} \int_{0}^{x} t^{2 \mu+1} \psi(t) d t, \quad x \in(0, \infty)
$$

for every $\psi \in \mathcal{H}_{\mu}(w)$.
Moreover, from (2.3), it follows that

$$
\begin{equation*}
\left(\frac{1}{x} D\right)^{l} \Delta_{\mu} \phi=\Delta_{\mu+l}\left(\frac{1}{x} D\right)^{l} \phi \tag{2.7}
\end{equation*}
$$

On the other hand, by partial integration and by [1, Lemma 8 b)], we obtain that, for every $\psi \in \mathcal{H}_{-1 / 2}$,

$$
\begin{aligned}
h_{\mu+l+1} & \left(\Lambda_{\mu+l} \Delta_{\mu+l} \psi\right)(y) \\
& =-y^{-2} \int_{0}^{\infty} \frac{d}{d x}\left((x y)^{-\mu-l} J_{\mu+l}(x y)\right) \int_{0}^{x} t^{2 \mu+2 l+1} \Delta_{\mu+l} \psi(t) d t d x \\
& =-h_{\mu+l}(\psi)(y), \quad y \in(0, \infty)
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\Lambda_{\mu+l} \Delta_{\mu+l} \psi=\left(\frac{1}{x} D\right) \psi, \quad \psi \in \mathcal{H}_{-1 / 2} \tag{2.8}
\end{equation*}
$$

From (2.6), (2.7) and (2.8), according to Proposition 2.1 (i), it implies that

$$
\begin{aligned}
\left(\frac{1}{x} D\right)^{l+1} \phi(x)= & x^{-2 \mu-2(l+1)} \int_{0}^{x} x_{l+1} \int_{0}^{x_{l+1}} x \\
& \ldots \int_{0}^{x_{2}} x_{1}^{2 \mu+1} \Delta_{\mu}^{l+1} \phi\left(x_{1}\right) d x_{1} \ldots d x_{l+1}, \quad x \in(0, \infty)
\end{aligned}
$$

Thus (2.1) is proved.
Now let $m, n \in \mathbf{N}$. Assume that $\phi \in \mathcal{H}_{\mu}(w)$. From (2.1) it follows that

$$
\begin{aligned}
& e^{m w(x)}\left|\left(\frac{1}{x} D\right)^{n} \phi(x)\right| \\
& \quad \leq C \sup _{z \in(0, \infty)}\left|\Delta_{\mu}^{n} \phi(z)\right| x^{-2 \mu-2 n} \int_{0}^{x} x_{n} \int_{0}^{x_{n}} x_{n-1} \cdots \int_{0}^{x_{2}} x_{1}^{2 \mu+1} d x_{1} \ldots d x_{n} \\
& \quad \leq C \sup _{z \in(0, \infty)}\left|\Delta_{\mu}^{n} \phi(z)\right|, \quad x \in(0,1)
\end{aligned}
$$

Also, by using (2.2), since w is increasing and it satisfies the (γ) property, we obtain for $l \in \mathbf{N}$ large enough,

$$
\begin{aligned}
e^{m w(x)}\left|\left(\frac{1}{x} D\right)^{n} \phi(x)\right| \leq & x^{-2 \mu-2 n} \int_{x}^{\infty} x_{n} \int_{x_{n}}^{\infty} x_{n-1} \\
& \ldots \int_{x_{2}}^{\infty} x_{1}^{2 \mu+1} e^{m w\left(x_{1}\right)}\left|\Delta_{\mu}^{n} \phi\left(x_{1}\right)\right| d x_{1} \ldots d x_{n} \\
\leq & C \sup _{z \in(0, \infty)} e^{(m+l) w(z)}\left|\Delta_{\mu}^{n} \phi(z)\right|, \quad x \geq 1
\end{aligned}
$$

Hence, it concludes that, for a certain $l \in \mathbf{N}$,

$$
\alpha_{m, n}(\phi) \leq C A_{m+l, n}^{\mu}(\phi)
$$

According to Proposition 2.1 (ii) $h_{\mu}(\phi)$ is also in $\mathcal{H}_{\mu}(w)$ and then the following inequality also holds

$$
\beta_{m, n}^{\mu}(\phi) \leq C B_{m+l, n}^{\mu}(\phi)
$$

Thus we prove that the topology generated by $\left\{A_{m, n}^{\mu}, B_{m, n}^{\mu}\right\}_{m, n \in \mathbf{N}}$ on $\mathcal{H}_{\mu}(w)$ is finer than the one induced on it by $\left\{\alpha_{m, n}, \beta_{m, n}^{\mu}\right\}_{m, n \in \mathbf{N}}$ and the proof is completed.

Through the proof of Proposition 2.2 we also show the following characterizations of the space $\mathcal{H}_{\mu}(w)$.

Proposition 2.3. A function $\phi \in \mathcal{H}_{\mu}(w)$ if and only if $\phi \in \mathcal{H}_{-1 / 2}$ and ϕ satisfies one of the three following conditions:
(i) For every $m, n \in \mathbf{N}, A_{m, n}^{\mu}(\phi)<\infty$ and $B_{m, n}^{\mu}(\phi)<\infty$,
(ii) For every $m, n \in \mathbf{N}, A_{m, n}^{\mu}(\phi)<\infty$ and $\beta_{m, n}^{\mu}(\phi)<\infty$,
(iii) For every $m, n \in \mathbf{N}, \alpha_{m, n}(\phi)<\infty$ and $B_{m, n}^{\mu}(\phi)<\infty$.

Moreover, the families of semi-norms $\left\{A_{m, n}^{\mu}, B_{m, n}^{\mu}\right\}_{m, n \in \mathbf{N}},\left\{A_{m, n}^{\mu}\right.$, $\left.\beta_{m, n}^{\mu}\right\}_{m, n \in \mathbf{N}}$ and $\left\{\alpha_{m, n}, B_{m, n}^{\mu}\right\}_{m, n \in \mathbf{N}}$ generates the topology of $\mathcal{H}_{\mu}(w)$.
-

We now analyze the behavior of Hankel translation operator on $\mathcal{H}_{\mu}(w)$.

Proposition 2.4. (i) Let $x \in(0, \infty)$. The Hankel translation operator τ_{x} defines a continuous linear mapping from $\mathcal{H}_{\mu}(w)$ into itself.
(ii) Let $\phi \in \mathcal{H}_{\mu}(w)$. The (nonlinear) mapping F_{ϕ} defined by $F_{\phi}(x)=$ $\tau_{x} \phi, x \in[0, \infty)$, is continuous from $[0, \infty)$ into $\mathcal{H}_{\mu}(w)$.

Proof. (i) Let $\phi \in \mathcal{H}_{\mu}(w)$ and $m, n \in \mathbf{N}$. Since $\Delta_{\mu} \tau_{x} \phi=\tau_{x} \Delta_{\mu} \phi$ ([14, Proposition 2.1]) and since w is increasing and it satisfies the (α)-property, we can write

$$
\begin{aligned}
e^{m w(y)} \mid & \Delta_{\mu}^{n}\left(\tau_{x} \phi\right)(y) \mid \\
& \leq e^{m w(y)} \tau_{x}\left(\left|\Delta_{\mu}^{n} \phi\right|\right)(y) \\
& \leq e^{m(w(y)-w(|x-y|))} \int_{|x-y|}^{x+y} D(x, y, z) e^{m w(z)}\left|\Delta_{\mu}^{n} \phi(z)\right| \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z \\
& \leq e^{m w(x)} \sup _{z \in(0, \infty)} e^{m w(z)}\left|\Delta_{\mu}^{n} \phi(z)\right| \int_{0}^{\infty} D(x, y, z) \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z
\end{aligned}
$$

for each $y \in(0, \infty)$.
Hence, by [13, (2)], it concludes

$$
\begin{equation*}
A_{m, n}^{\mu}\left(\tau_{x} \phi\right) \leq e^{m w(x)} A_{m, n}^{\mu}(\phi) \tag{2.9}
\end{equation*}
$$

On the other hand, by $[\mathbf{3},(3.1)]$ and $[\mathbf{2 0}(7)$, Chapter 5], since the
function $z^{-\mu} J_{\mu}(z)$ is bounded on $(0, \infty)$, it follows

$$
\begin{aligned}
e^{m w(y)} \left\lvert\,\left(\frac{1}{y} D\right)^{n}\right. & h_{\mu}\left(\tau_{x} \phi\right)(y) \mid \\
& =e^{m w(y)}\left|\left(\frac{1}{y} D\right)^{n}\left(2^{\mu} \Gamma(\mu+1)(x y)^{-\mu} J_{\mu}(x y) h_{\mu}(\phi)(y)\right)\right| \\
& \leq C \sum_{j=0}^{n} e^{m w(y)}\left|\left(\frac{1}{y} D\right)^{n-j} h_{\mu}(\phi)(y)\right| x^{2 j}, \quad y \in(0, \infty) .
\end{aligned}
$$

Then

$$
\begin{equation*}
\beta_{m, n}^{\mu}\left(\tau_{x} \phi\right) \leq C\left(1+x^{2 n}\right) \sum_{j=0}^{n} \beta_{m, j}^{\mu}(\phi) \tag{2.10}
\end{equation*}
$$

From (2.9) and (2.10) we deduce that τ_{x} is continuous from $\mathcal{H}_{\mu}(w)$ into itself.
(ii) Let $\phi \in \mathcal{H}_{\mu}(w)$. Assume that $x_{0} \in(0, \infty)$ and $m, n \in \mathbf{N}$. We can write for every $x \in\left[\left(x_{0} / 2\right),\left(3 x_{0} / 2\right)\right]$ and $y \geq 2 x_{0}$,

$$
\begin{aligned}
& e^{m w(y)}\left|\Delta_{\mu}^{n}\left(\left(\tau_{x} \phi\right)-\left(\tau_{x_{0}} \phi\right)\right)(y)\right| \\
& \leq e^{(m+1)\left[w(y)-w\left(y-\left(3 x_{0} / 2\right)\right)\right]-w(y)} \sup _{z \in(0, \infty)} e^{(m+1) w(z)}\left|\Delta_{\mu}^{n} \phi(z)\right| \\
& \cdot \int_{y-\left(3 x_{0} / 2\right)}^{y+\left(3 x_{0} / 2\right)}\left|D(x, y, z)-D\left(x_{0}, y, z\right)\right| \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z \\
& \leq 2 e^{(m+1) w\left(3 x_{0} / 2\right)-w(y)} \sup _{z \in(0, \infty)} e^{(m+1) w(z)}\left|\Delta_{\mu}^{n} \phi(z)\right| .
\end{aligned}
$$

Hence, if $\varepsilon>0$, then there exists $y_{1} \geq 2 x_{0}$ such that, for every $x \in\left[\left(x_{0} / 2\right),\left(3 x_{0} / 2\right)\right]$ and $y \geq y_{1}$,

$$
e^{m w(y)}\left|\Delta_{\mu}^{n}\left(\left(\tau_{x} \phi\right)-\left(\tau_{x_{0}} \phi\right)\right)(y)\right|<\varepsilon
$$

On the other hand, since w is increasing on $[0, \infty)$, it has

$$
\begin{aligned}
\sup _{y \in\left(0, y_{1}\right)} e^{m w(y)} \mid \Delta_{\mu}^{n}\left(\left(\tau_{x} \phi\right)\right. & \left.-\left(\tau_{x_{0}} \phi\right)\right)(y) \mid \\
& \leq e^{m w\left(y_{1}\right)} \sup _{y \in\left(0, y_{1}\right)}\left|\Delta_{\mu}^{n}\left(\left(\tau_{x} \phi\right)-\left(\tau_{x_{0}} \phi\right)\right)(y)\right|
\end{aligned}
$$

Therefore, according to [14, p. 359], since Δ_{μ} is a continuous operator from $\mathcal{H}_{-1 / 2}$ into itself, we deduce that if $\varepsilon>0$, then

$$
\sup _{y \in\left(0, y_{1}\right)} e^{m w(y)}\left|\Delta_{\mu}^{n}\left(\left(\tau_{x} \phi\right)-\left(\tau_{x_{0}} \phi\right)\right)(y)\right|<\varepsilon
$$

provided that $x \in(0, \infty)$ and $\left|x-x_{0}\right|<\delta$, for some $\delta>0$.
Thus we conclude that, for every $\varepsilon>0$, there exists $\delta>0$ for which

$$
A_{m, n}^{\mu}\left(\tau_{x} \phi-\tau_{x_{0}} \phi\right)<\varepsilon
$$

when $x \in(0, \infty)$ and $\left|x-x_{0}\right|<\delta$.
Moreover, the Leibniz rule and again $[\mathbf{3},(3.1)]$ and $[20(7)$, Chapter 5] lead to

$$
\begin{aligned}
& \left(\frac{1}{y} \frac{d}{d y}\right)^{n}\left(h_{\mu}\left(\tau_{x} \phi-\tau_{x_{0}} \phi\right)(y)\right) \\
& =2^{\mu} \Gamma(\mu+1) \sum_{j=0}^{n}\binom{n}{j}(-1)^{j}\left(\frac{1}{y} \frac{d}{d y}\right)^{n-j} h_{\mu}(\phi)(y) \\
& \quad \cdot\left(x^{2 j}(x y)^{-\mu-j} J_{\mu+j}(x y)-x_{0}^{2 j}\left(x_{0} y\right)^{-\mu-j} J_{\mu+j}\left(x_{0} y\right)\right) \\
& x, y \in(0, \infty)
\end{aligned}
$$

Hence, the boundedness of the function $z^{-\mu} J_{\mu}(z), z \in(0, \infty)$, implies that if $\varepsilon>0$,

$$
\begin{aligned}
& e^{m w(y)}\left|\left(\frac{1}{y} \frac{d}{d y}\right)^{n}\left(h_{\mu}\left(\tau_{x} \phi-\tau_{x_{0}} \phi\right)(y)\right)\right| \\
& \quad \leq C e^{-w(y)} \sum_{j=0}^{n}\left(x^{2 j}+x_{0}^{2 j}\right) \beta_{m+1, n-j}^{\mu}(\phi) \\
& \quad<\varepsilon
\end{aligned}
$$

for each $x \in\left(0,2 x_{0}\right)$ and $y \geq y_{1}$, where y_{1} is a large enough positive number.

On the other hand, since the function $f_{j}(x, y)=x^{2 j}(x y)^{-\mu-j} J_{\mu+j}(x y)$, $x, y \in[0, \infty)$, is continuous (and hence uniformly continuous in each compact subset of $[0, \infty) \times[0, \infty)$), for every $j \in \mathbf{N}$, if $\varepsilon>0$ we can
find $\delta>0$ such that $\left|f_{j}(x, y)-f_{j}\left(x_{0}, y\right)\right|<\varepsilon$, for every $y \in\left[0, y_{1}\right]$, $x \in[0, \infty),\left|x-x_{0}\right|<\delta$ and $j=0, \ldots, n$. Then

$$
\sup _{y \in\left(0, y_{1}\right)} e^{m w(y)}\left|\left(\frac{1}{y} \frac{d}{d y}\right)^{n}\left(h_{\mu}\left(\tau_{x} \phi-\tau_{x_{0}} \phi\right)(y)\right)\right| \leq C \varepsilon \sum_{j=0}^{n} \alpha_{m, j}^{\mu}(\phi),
$$

for every $x \in(0, \infty)$ and $\left|x-x_{0}\right|<\delta$.
Thus, it is concluded that, for every $\varepsilon>0$, there exists $\delta>0$ such that

$$
\alpha_{m, n}^{\mu}\left(\tau_{x} \phi-\tau_{x_{0}} \phi\right)<\varepsilon
$$

provided that $x \in(0, \infty)$ and $\left|x-x_{0}\right|<\delta$.
Hence F_{ϕ} is a continuous function on x_{0}.
To see that F_{ϕ} is continuous in $x=0$, we can proceed in a similar way.

Next we study the pointwise multiplication and the Hankel convolution on $\mathcal{H}_{\mu}(w)$.

Proposition 2.5. The bilinear mappings defined by

$$
(\phi, \psi) \longrightarrow \phi \psi
$$

and

$$
(\phi, \psi) \longrightarrow \phi \# \psi
$$

are continuous from $\mathcal{H}_{\mu}(w) \times \mathcal{H}_{\mu}(w)$ into $\mathcal{H}_{\mu}(w)$.

Proof. By virtue of the interchange formula [14, Theorem 2.d]

$$
h_{\mu}(\phi \# \psi)=h_{\mu}(\phi) h_{\mu}(\psi), \quad \phi, \psi \in \mathcal{H}_{\mu}(w)
$$

the continuity of the pointwise multiplication mapping is equivalent to the one of the Hankel convolution mapping.

Let $m, n \in \mathbf{N}$. Assume that $\phi, \psi \in \mathcal{H}_{\mu}(w)$. We can write, from the Leibniz rule, that

$$
\alpha_{m, n}(\phi \psi) \leq C \sum_{j=0}^{n} \alpha_{m, n-j}(\phi) \alpha_{0, j}(\psi)
$$

On the other hand, since $\Delta_{\mu}(\phi \# \psi)=\left(\Delta_{\mu} \phi\right) \# \psi[\mathbf{1 4}$, Proposition 2.2] and since w is increasing on $[0, \infty)$ and it satisfies the (α)-property, it has

$$
\begin{aligned}
& e^{m w(x)}\left|\Delta_{\mu}^{n} h_{\mu}(\phi \psi)(x)\right| \\
& \quad= e^{m w(x)}\left|\left(\left(\Delta_{\mu}^{n} h_{\mu}(\phi)\right) \# h_{\mu}(\psi)\right)(x)\right| \\
& \leq e^{m w(x)} \int_{0}^{\infty}\left|\Delta_{\mu}^{n}\left(h_{\mu} \phi\right)(y)\right| e^{-m w(|x-y|)} \\
& \cdot \int_{|x-y|}^{x+y} D(x, y, z)\left|h_{\mu}(\psi)(z)\right| e^{m w(z)} \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \\
& \leq \int_{0}^{\infty}\left|\Delta_{\mu}^{n}\left(h_{\mu} \phi\right)(y)\right| e^{m w(y)} \int_{|x-y|}^{x+y} D(x, y, z)\left|h_{\mu}(\psi)(z)\right| e^{m w(z)} \\
& \cdot \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y, \quad x \in(0, \infty)
\end{aligned}
$$

Hence, since w verifies the (γ)-property and by taking into account [13], we can conclude

$$
B_{m, n}^{\mu}(\phi \psi) \leq C B_{m+l, n}^{\mu}(\phi) B_{m, 0}^{\mu}(\psi)
$$

for some $l \in \mathbf{N}$.
By virtue of Proposition 2.3, we have proved that the pointwise multiplication defines a continuous mapping from $\mathcal{H}_{\mu}(w) \times \mathcal{H}_{\mu}(w)$ into $\mathcal{H}_{\mu}(w)$.
Thus the proof of this proposition is complete.

Remark 1. The last proposition shows that each function in $\mathcal{H}_{\mu}(w)$ defines a multiplier in $\mathcal{H}_{\mu}(w)$. Also, in the proof of Proposition 2.4, it was established that for every $x \in(0, \infty)$ the function f_{x} defined by

$$
f_{x}(y)=(x y)^{-\mu} J_{\mu}(x y), \quad y \in(0, \infty)
$$

is a multiplier of $\mathcal{H}_{\mu}(w)$. It is an open problem to give a complete description of the space of multipliers of $\mathcal{H}_{\mu}(w)$.

In [2] we introduced the space $\mathcal{B}_{\mu}(w)$ (see Section 1 for definitions). $\mathcal{B}_{\mu}(w)$ can be considered a Beurling type function space for the Hankel
h_{μ} transformation. In the following we establish that $\mathcal{B}_{\mu}(w)$ is a dense subset of $\mathcal{H}_{\mu}(w)$.

Proposition 2.6. The space $\mathcal{B}_{\mu}(w)$ is continuously contained in $\mathcal{H}_{\mu}(w)$. Moreover, $\mathcal{B}_{\mu}(w)$ is a dense subspace of $\mathcal{H}_{\mu}(w)$.

Proof. Let $\phi \in \mathcal{B}_{\mu}^{a}(w)$, where $a>0$. Since ϕ and $h_{\mu}(\phi) \in L_{\mu, 1}$, according to [13, Corollary 2], it has

$$
\phi(x)=\int_{0}^{\infty}(x y)^{-\mu} J_{\mu}(x y) h_{\mu}(\phi)(y) y^{2 \mu+1} d y, \quad x \in(0, \infty)
$$

Hence, by invoking [20(7), Chapter 5], since $z^{-\mu} J_{\mu}(z)$ is a bounded function on $(0, \infty)$ and w satisfies the (γ)-property for every $m, n \in \mathbf{N}$, we can find $l \in \mathbf{N}$ for which

$$
\begin{equation*}
\alpha_{m, n}(\phi) \leq C \sup _{x \in(0, a)} e^{m w(x)} \int_{0}^{\infty} y^{2 n+2 \mu+1}\left|h_{\mu}(\phi)(y)\right| d y \leq C \delta_{l}^{\mu}(\phi) \tag{2.11}
\end{equation*}
$$

Here C is a positive constant that is not dependent on ϕ.
By virtue of the Paley-Wiener type theorem for the Hankel transform on $\mathcal{B}_{\mu}^{a}(w)\left([\mathbf{2}\right.$, Proposition 2.6] $), h_{\mu}(\phi)$ is an even entire function and, for every $m \in \mathbf{N}$, there exists $C_{m}>0$ for which

$$
\begin{equation*}
\left|h_{\mu}(\phi)(x+i y)\right| \leq C_{m} e^{-m w(x)+(a+1)|y|}, \quad x, y \in \mathbf{R} \tag{2.12}
\end{equation*}
$$

According to the well-known Cauchy integral formula, we can write

$$
\begin{equation*}
\frac{d^{l}}{d x^{l}} h_{\mu}(\phi)(x)=\frac{l!}{2 \pi i} \int_{\mathcal{C}_{x}} \frac{h_{\mu}(\phi)(z)}{(z-x)^{l+1}} d z, \quad l \in \mathbf{N} \text { and } x \in \mathbf{R} \tag{2.13}
\end{equation*}
$$

where \mathcal{C}_{x} represents the circled path having by parametric representation $z=x+e^{i \theta}, \theta \in[0,2 \pi)$.
Let $m, n \in \mathbf{N}$. From (2.12) and (2.13), it follows, since w satisfies the (α)-property, that

$$
\begin{gathered}
\left|\frac{d^{n}}{d x^{n}} h_{\mu}(\phi)(x)\right| \leq C \int_{0}^{2 \pi} e^{-m w(x+\cos \theta)+(a+1)|\sin \theta|} d \theta \leq C e^{-m w(x)} \\
x \geq 1
\end{gathered}
$$

Hence it follows

$$
\left|\left(\frac{1}{x} \frac{d}{d x}\right)^{n} h_{\mu}(\phi)(x)\right| \leq C e^{-m w(x)}, \quad x \geq 1
$$

Moreover, by using again the above-mentioned properties of the Bessel functions, we have

$$
\left|\left(\frac{1}{x} \frac{d}{d x}\right)^{n} h_{\mu}(\phi)(x)\right| \leq C \int_{0}^{a} y^{2 n+2 \mu+1}|\phi(y)| d y \leq C \alpha_{0,0}(\phi), \quad x \in(0,1)
$$

Thus we conclude that $\beta_{m, n}^{\mu}(\phi)<\infty$.
We have proved that $\mathcal{B}_{\mu}^{a}(w)$ is contained in $\mathcal{H}_{\mu}(w)$.
To see that $\mathcal{B}_{\mu}^{a}(w)$ is continuously contained in $\mathcal{H}_{\mu}(w)$ we will use the closed graph theorem. Assume that $\left\{\phi_{\nu}\right\}_{\nu \in \mathbf{N}}$ is a sequence in $\mathcal{B}_{\mu}^{a}(w)$ such that $\phi_{\nu} \rightarrow \phi$ as $\nu \rightarrow \infty$, in $\mathcal{B}_{\mu}^{a}(w)$ and $\phi_{\nu} \rightarrow \psi$ as $\nu \rightarrow \infty$ in $\mathcal{H}_{\mu}(w)$. It is clear that $\phi_{\nu}(x) \rightarrow \psi(x)$ as $\nu \rightarrow \infty$ for every $x \in(0, \infty)$. Moreover, from (2.11) we deduce that $\phi_{\nu}(x) \rightarrow \phi(x)$ as $\nu \rightarrow \infty$ for each $x \in(0, \infty)$. Hence $\phi=\psi$. Thus we show that $\mathcal{B}_{\mu}^{a}(w)$ is continuously contained in $\mathcal{H}_{\mu}(w)$ for every $a>0$. Then the inclusion $\mathcal{B}_{\mu}(w) \subset \mathcal{H}_{\mu}(w)$ is continuous.

We now see that $\mathcal{B}_{\mu}(w)$ is a dense subset of $\mathcal{H}_{\mu}(w)$. According to [2, Proposition 2.18] we choose $\psi \in \mathcal{B}_{\mu}^{2}(w)$ such that $0 \leq \psi \leq 1$ and $\psi(x)=1, x \in(0,1)$. Assume that $\phi \in \mathcal{H}_{\mu}(w)$. We define for every $l \in \mathbf{N} \backslash\{0\}, \psi_{l}(x)=\psi(x / l), x \in(0, \infty)$ and $\phi_{l}=\psi_{l} \phi$.

Let $m, n \in \mathbf{N}$. The Leibniz rule leads to, for every $l \in \mathbf{N} \backslash\{0\}$,

$$
e^{m w(x)}\left|\left(\frac{1}{x} D\right)^{n}\left(\phi_{l}(x)-\phi(x)\right)\right| \leq S_{l}^{1}(x)+S_{l}^{2}(x), \quad x \in(0, \infty)
$$

where

$$
S_{l}^{1}(x)=\sum_{j=0}^{n-1}\binom{n}{j} e^{m w(x)}\left|\left(\frac{1}{x} D\right)^{j} \phi(x)\right|\left|\left(\frac{1}{x} D\right)^{n-j} \psi\left(\frac{x}{l}\right)\right|, \quad x \in(0, \infty)
$$

and

$$
S_{l}^{2}(x)=e^{m w(x)}\left|\left(\frac{1}{x} D\right)^{l} \phi(x)\right|\left|\psi\left(\frac{x}{l}\right)-1\right|, \quad x \in(0, \infty)
$$

Standard arguments allow us now to conclude that

$$
\alpha_{m, n}\left(\phi_{l}-\phi\right) \longrightarrow 0, \quad \text { as } l \rightarrow \infty
$$

On the other hand, by $\left[\mathbf{1 3}\right.$, Theorem 2d], since $\psi_{l}(0)=1, l \in \mathbf{N} \backslash\{0\}$, we can write

$$
\begin{aligned}
\Delta_{\mu}^{n} h_{\mu} & \left(\phi_{l}-\phi\right)(x) \\
& =\left(h_{\mu}\left(\psi_{l}\right) \# \Delta_{\mu}^{n} h_{\mu}(\phi)\right)(x)-\Delta_{\mu}^{n} h_{\mu}(\phi)(x) \\
& =\int_{0}^{\infty} h_{\mu}\left(\psi_{l}\right)(y)\left(\tau_{x}\left(\Delta_{\mu}^{n} h_{\mu}(\phi)\right)(y)-\Delta_{\mu}^{n} h_{\mu}(\phi)(x)\right) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y
\end{aligned}
$$

for each $x \in(0, \infty)$ and $l \in \mathbf{N} \backslash\{0\}$.
Fix $l \in \mathbf{N} \backslash\{0\}$. To simplify we denote by $\Phi=\Delta_{\mu}^{n} h_{\mu}(\phi)$. It is not hard to see that $h_{\mu}\left(\psi_{l}\right)(y)=l^{2(\mu+1)} h_{\mu}(\psi)(y l), y \in(0, \infty)$. Then

$$
\begin{aligned}
& \Delta_{\mu}^{n} h_{\mu}\left(\phi_{l}-\phi\right)(x) \\
& \quad=\int_{0}^{\infty} h_{\mu}(\psi)(y)\left(\tau_{x}(\Phi)\left(\frac{y}{l}\right)-\Phi(x)\right) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y, \quad x \in(0, \infty)
\end{aligned}
$$

We now consider $\alpha \in(0,1)$ that will be specified later. We divide the last integral into two parts.

According to $[\mathbf{1 3},(2)]$, since w is an increasing function on $[0, \infty)$, we have that

$$
\begin{aligned}
& \left\lvert\, \int_{x+l^{\alpha}}^{\infty} h_{\mu}(\psi)(y) \int_{|x-y / l|}^{x+y / l} D\left(x, \frac{y}{l}, z\right)\right. \\
& \left.\cdot(\Phi(z)-\Phi(x)) \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \right\rvert\, \\
& \leq C \sup _{z \in(0, \infty)}|\Phi(z)| \int_{x+l^{\alpha}}^{\infty}\left|h_{\mu}(\psi)(y)\right| y^{2 \mu+1} d y \\
& \leq C \int_{x+l^{\alpha}}^{\infty} e^{-(m+k) w(y)} y^{2 \mu+1} d y \\
& \cdot \sup _{z \in(0, \infty)}|\Phi(z)| \sup _{z \in(0, \infty)}\left|h_{\mu}(\psi)(z)\right| e^{(m+k) w(z)} \\
& \leq C e^{-m w(x)} \int_{l^{\alpha}}^{\infty} e^{-k w(y)} y^{2 \mu+1} d y \\
& \cdot \sup _{z \in(0, \infty)}|\Phi(z)| \sup _{z \in(0, \infty)}\left|h_{\mu}(\psi)(z)\right| e^{(m+k) w(z)}
\end{aligned}
$$

for every $x \in(0, \infty)$ and $k \in \mathbf{N}$.
Hence, since w satisfies the (γ)-property, by choosing $k \in \mathbf{N}$ large enough it follows that

$$
\begin{aligned}
& \sup _{x \in(0, \infty)} \left\lvert\, e^{m w(x)} \int_{x+l^{\alpha}}^{\infty} h_{\mu}(\psi)(y) \int_{|x-y / l|}^{x+y / l} D\left(x, \frac{y}{l}, z\right)(\Phi(z)-\Phi(x))\right. \\
& \left.\cdot \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \right\rvert\, \\
& \leq C \int_{l^{\alpha}}^{\infty} e^{-k w(y)} y^{2 \mu+1} d y \sup _{z \in(0, \infty)}|\Phi(z)| \sup _{z \in(0, \infty)}\left|h_{\mu}(\psi)(z)\right| e^{(m+k) w(z)} \\
& \rightarrow 0, \quad \text { as } l \rightarrow \infty .
\end{aligned}
$$

On the other hand, by again using [13, (2)], one obtains, for every $x \in(0, \infty)$,

$$
\begin{aligned}
& \begin{array}{|l}
\left\lvert\, e^{m w(x)} \int_{0}^{x+l^{\alpha}} h_{\mu}(\psi)(y) \int_{|x-y / l|}^{x+y / l} D\left(x, \frac{y}{l}, z\right)(\Phi(z)-\Phi(x))\right. \\
\left.\cdot \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \right\rvert\, \\
\leq C \sup _{z \in(0, \infty)}\left|h_{\mu}(\phi)(z)\right| e^{m w(x)}\left(x+l^{\alpha}\right)^{2 \mu+2} \sup _{\substack{|x-y / l| \leq z \leq x+y / l \\
0<y<x+l^{\alpha}}}|\Phi(z)-\Phi(x)| .
\end{array} .
\end{aligned}
$$

Moreover, we have that, for each $\eta \in\left(0, x+l^{\alpha}\right)$ and $x \in(0, \infty)$,

$$
\begin{aligned}
\left|\Phi\left(x+\frac{\eta}{l}\right)-\Phi(x)\right| & \leq \int_{x}^{x+(\eta / l)}\left|\frac{d}{d t} \Phi(t)\right| d t \\
& \leq \frac{1}{l}\left(x+l^{\alpha}\right) \sup _{-x-l^{\alpha} \leq \xi \leq x+l^{\alpha}}\left|\left(\frac{d}{d t} \Phi\right)\left(x+\frac{\xi}{l}\right)\right|
\end{aligned}
$$

Also, we can write

$$
\left|\Phi\left(x+\frac{\eta}{l}\right)-\Phi(x)\right| \leq \frac{1}{l}\left(x+l^{\alpha}\right) \sup _{-x-l^{\alpha} \leq \xi \leq x+l^{\alpha}}\left|\left(\frac{d}{d t} \Phi\right)\left(x+\frac{\xi}{l}\right)\right|
$$

for each $x \in(0, \infty)$ and $\eta \in\left(-x-l^{\alpha}, 0\right)$.

If it is necessary above we consider the even and smooth extension of Φ to R. Hence, it has

$$
\begin{aligned}
& \left\lvert\, e^{m w(x)} \int_{0}^{x+l^{\alpha}} h_{\mu}(\psi)(y) \int_{|x-y / l|}^{x+y / l} D\left(x, \frac{y}{l}, z\right)(\Phi(z)-\Phi(x))\right. \\
& \left.\cdot \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \right\rvert\, \\
& \leq C \sup _{z \in(0, \infty)}\left|h_{\mu}(\psi)(z)\right| e^{m w(x)} \frac{1}{l}\left(x+l^{\alpha}\right)^{2 \mu+4} \\
& \quad \cdot \sup _{-x-l^{\alpha} \leq \xi \leq x+l^{\alpha}}\left|\left(\frac{1}{t} \frac{d}{d t} \Phi\right)\left(x+\frac{\xi}{l}\right)\right| \\
& \leq C \sup _{z \in(0, \infty)}\left|h_{\mu}(\psi)(z)\right| e^{m w(x)-k w\left(x-(x / l)-l^{\alpha-1}\right)} \frac{1}{l}\left(x+l^{\alpha}\right)^{2 \mu+4} \\
& \quad \cdot \sup _{z \in(0, \infty)}\left|\frac{1}{z} \frac{d}{d z} \Phi(z)\right| e^{k w(z)},
\end{aligned}
$$

provided that $x \geq 2, k, l \in \mathbf{N}$ and $l \geq 2$. Note that if $x, l \geq 2$, $x \geq\left(l^{\alpha} /(l-1)\right)$. Then

$$
\begin{array}{r}
\left\lvert\, e^{m w(x)} \int_{0}^{x+l^{\alpha}} h_{\mu}(\psi)(y) \int_{|x-y / l|}^{x+y / l} D\left(x, \frac{y}{l}, z\right)(\Phi(z)-\Phi(x))\right. \\
\left.\cdot \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \right\rvert\, \\
\leq C l^{\alpha(2 \mu+4)-1}(x+1)^{2 \mu+4} e^{m w(x)-k w\left[x-(x / l)-l^{\alpha-1}\right]}
\end{array}
$$

when $x \geq 2, l, k \in \mathbf{N}$ and $l \geq 2$.
Since w is increasing on $[0, \infty)$ and w verifies the (α)-property, we have that

$$
w\left(x-\frac{x}{l}-l^{\alpha-1}\right) \geq \frac{1}{2} w(x)-w(1), \quad x \geq 2, \quad l, k \in \mathbf{N} \text { and } l \geq 2 .
$$

hence, by choosing k large enough, since w satisfies the (γ)-property, it follows

$$
\begin{aligned}
& \left\lvert\, e^{m w(x)} \int_{0}^{x+l^{\alpha}} h_{\mu}(\psi)(y) \int_{|x-y / l|}^{x+y / l} D\left(x, \frac{y}{l}, z\right)(\Phi(z)-\Phi(x))\right. \\
& \left.\cdot \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \right\rvert\, \\
& \leq C l^{\alpha(2 \mu+4)-1}, x \geq 2, \quad l, k \in \mathbf{N} \text { and } l \geq 2
\end{aligned}
$$

Assume now that $0<\alpha<1 /(2 \mu+4)$. Then we conclude that

$$
\begin{aligned}
\sup _{x \geq 2} \mid e^{m w(x)} \int_{0}^{x+l^{\alpha}} h_{\mu}(\psi)(y) & \int_{|x-y / l|}^{x+y / l} D\left(x, \frac{y}{l}, z\right)(\Phi(z)-\Phi(x)) \\
& \left.\cdot \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \right\rvert\, \rightarrow 0
\end{aligned}
$$

as $l \rightarrow \infty$.
By proceeding in a similar way we obtain that

$$
\begin{array}{r}
\sup _{0 \leq x \leq 2} \left\lvert\, e^{m w(x)} \int_{0}^{x+l^{\alpha}} h_{\mu}(\psi)(y) \int_{|x-y / l|}^{x+y / l} D\left(x, \frac{y}{l}, z\right)(\Phi(z)-\Phi(x))\right. \\
\left.\cdot \frac{z^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d z \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \right\rvert\, \\
\leq C \sup _{z \in(0, \infty)}\left|h_{\mu}(\psi)(z)\right| \frac{1}{l}\left(2+l^{\alpha}\right)^{2 \mu+4} \sup _{z \in(0, \infty)}\left|\frac{1}{z} \frac{d}{d z} \Phi(z)\right| \rightarrow 0, \quad \text { as } l \rightarrow \infty
\end{array}
$$

provided that $0<\alpha<1 /\left(2^{\mu}+4\right)$.
Thus, we deduce that

$$
B_{m, n}^{\mu}\left(\phi_{l}-\phi\right) \longrightarrow 0, \quad \text { as } l \rightarrow \infty
$$

By taking into account Proposition 2.3, the proof is now complete.
\square

Remark 2. According to [2, Corollary 2.8], the (β)-property (for w) is essential to establish the nontriviality of the space $\mathcal{B}_{\mu}(w)$. However the space $\mathcal{H}_{\mu}(w)$ is nontrivial although w does not verify (β). Indeed, the function $\phi(x)=e^{-x^{2} / 2}, x \in[0, \infty)$, is in $\mathcal{H}_{\mu}(w)($ see $[\mathbf{1 0},(10)])$ provided that $w(x) \leq C x^{l}$, when x is large for some $l<2$.
Next we establish a result concerning approximated identity in $\mathcal{H}_{\mu}(w)$ involving Hankel convolution. This property, whose proof will be omitted, can be proved following a procedure similar to the one employed to prove [3, Proposition 3.5] and [6, Proposition 2.3].

Proposition 2.7. Assume that $\psi \in \mathcal{B}_{\mu}(w)$ and that $\int_{0}^{\infty} \psi(x) x^{2 \mu+1} d x$ $=2^{\mu} \Gamma(\mu+1)$. Then, for every $\phi \in \mathcal{H}_{\mu}(w), \phi \# \psi_{m} \rightarrow \phi$, as $m \rightarrow \infty$, in $\mathcal{H}_{\mu}(w)$ where, for each $m \in \mathbf{N}, \psi_{m}(x)=m^{2 \mu+2} \psi(m x), x \in(0, \infty)$.
3. Hankel transformation and Hankel convolution on the space $\mathcal{H}_{\mu}(w)^{\prime}$ dual of $\mathcal{H}_{\mu}(w)$. In this section we study the Hankel transformation and the Hankel convolution on $\mathcal{H}_{\mu}(w)^{\prime}$, the dual space of $\mathcal{H}_{\mu}(w)$. Our results can be seen as an extension of the ones presented in [5] and [14].

Suppose that f is a measurable function on $(0, \infty)$ such that, for some $k \in \mathbf{N}$,

$$
\int_{0}^{\infty} e^{-k w(x)}|f(x)| x^{2 \mu+1} d x<\infty
$$

then f defines an element $T_{f} \in \mathcal{H}_{\mu}(w)^{\prime}$ by

$$
\left\langle T_{f}, \phi\right\rangle=\int_{0}^{\infty} f(x) \phi(x) \frac{x^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d x, \quad \phi \in \mathcal{H}_{\mu}(w)
$$

Indeed, for every $\phi \in \mathcal{H}_{\mu}(w)$, it has

$$
\left|\left\langle T_{f}, \phi\right\rangle\right| \leq C \int_{0}^{\infty} e^{-k w(x)}|f(x)| x^{2 \mu+1} d x \alpha_{k, 0}(\phi)
$$

In particular the space $\mathcal{H}_{\mu}(w)$ can be identified with a subspace of $\mathcal{H}_{\mu}(w)^{\prime}$.

On the other hand, if $\phi \in \mathcal{H}_{\mu}(w)$ then $\phi \in \mathcal{E}_{\mu}(w)$, the space of pointwise multipliers of $\mathcal{B}_{\mu}(w)$. Indeed, let $\phi \in \mathcal{H}_{\mu}(w)$. Assume that $\psi \in \mathcal{B}_{\mu}^{a}(w)$ with $a>0$. Then $\phi(x) \psi(x)=0, x \geq a$. Moreover, for every $n \in \mathbf{N}$,

$$
\delta_{n}^{\mu}(\phi \psi)=\int_{0}^{\infty} e^{n w(x)}\left|h_{\mu}(\phi \psi)(x)\right| x^{2 \mu+1} d x \leq C \delta_{n}^{\mu}(\psi) \beta_{l, 0}^{\mu}(\phi)
$$

where $l \in \mathbf{N}$ is chosen large enough and it is not depending on ϕ.
Note that we also have proved that $\mathcal{H}_{\mu}(w)$ is continuously contained in $\mathcal{E}_{\mu}(w)$. Hence, the dual space $\mathcal{E}_{\mu}(w)^{\prime}$ of $\mathcal{E}_{\mu}(w)$ is contained in $\mathcal{H}_{\mu}(w)^{\prime}$.

We define the Hankel transformation on $\mathcal{H}_{\mu}(w)^{\prime}$ by transposition. That is, if $T \in \mathcal{H}_{\mu}(w)^{\prime}$, the Hankel transform $h_{\mu}^{\prime} T$ of T is the element of $\mathcal{H}_{\mu}(w)^{\prime}$ given through

$$
\left\langle h_{\mu}^{\prime} T, \phi\right\rangle=\left\langle T, h_{\mu} \phi\right\rangle, \quad \phi \in \mathcal{H}_{\mu}(w)
$$

The generalized Hankel transformation h_{μ}^{\prime} can be seen as an extension of the Hankel transformation h_{μ}. Let $\psi \in \mathcal{H}_{\mu}(w)$. Since $h_{\mu}(\psi) \in$ $\mathcal{H}_{\mu}(w), h_{\mu}(\psi)$ defines an element $T_{h_{\mu}(\phi)}$ of $\mathcal{H}_{\mu}(w)^{\prime}$ by

$$
\left\langle T_{h_{\mu}(\psi)}, \phi\right\rangle=\int_{0}^{\infty} h_{\mu}(\psi)(x) \phi(x) \frac{x^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d x, \quad \phi \in \mathcal{H}_{\mu}(w)
$$

Moreover, Parseval equality for Hankel transformations leads to

$$
\begin{aligned}
\left\langle T_{h_{\mu}}(\psi), \phi\right\rangle & =\int_{0}^{\infty} \psi(x) h_{\mu}(\phi)(x) \frac{x^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d x \\
& =\left\langle T_{\psi}, h_{\mu}(\phi)\right\rangle, \quad \phi \in \mathcal{H}_{\mu}(w)
\end{aligned}
$$

Thus we have shown that $T_{h_{\mu}(\psi)}=h_{\mu}^{\prime}\left(T_{\psi}\right)$.
We now determine the Hankel transform of the distributions in $\mathcal{E}_{\mu}(w)^{\prime}$.

Proposition 3.1. If $T \in \mathcal{E}_{\mu}(w)^{\prime}$, the Hankel transform $h_{\mu}^{\prime} T$ coincides with the functional defined by the function

$$
F(x)=2^{\mu} \Gamma(\mu+1)\left\langle T(y),(x y)^{-\mu} J_{\mu}(x y)\right\rangle, \quad x \in(0, \infty)
$$

Then $h_{\mu}^{\prime} T$ is a continuous function on $[0, \infty)$ and there exist $C>0$ and $r \in \mathbf{N}$ for which

$$
\left|h_{\mu}^{\prime}(T)(x)\right| \leq C e^{r w(x)}, \quad x \in(0, \infty)
$$

Proof. Let $T=\mathcal{E}_{\mu}(w)^{\prime}$. We have to see that

$$
\begin{equation*}
\left\langle h_{\mu}^{\prime}(T), \phi\right\rangle=\left\langle T, h_{\mu}(\phi)\right\rangle=\int_{0}^{\infty}\left\langle T(y),(x y)^{-\mu} J_{\mu}(x y)\right\rangle \phi(x) x^{2 \mu+1} d x \tag{3.1}
\end{equation*}
$$

for every $\phi \in \mathcal{H}_{\mu}(w)$.
In [2, Proposition 3.4] we proved that, for every $x \in(0, \infty)$, the function f_{x} defined by $f_{x}(y)=(x y)^{-\mu} J_{\mu}(x y), y \in(0, \infty)$ is in $\mathcal{E}_{\mu}(w)$. Hence, we can define the function

$$
F(x)=\left\langle T(y),(x y)^{-\mu} J_{\mu}(x y)\right\rangle, \quad x \in[0, \infty)
$$

Thus F is a continuous function on $[0, \infty)$. Indeed, let $x_{0} \in[0, \infty)$. To see that F is continuous in x_{0}, it is sufficient to show that, for every $n \in \mathbf{N}$ and $\phi \in \mathcal{B}_{\mu}(w)$,

$$
\delta_{n}^{\mu}\left(\phi(y)\left((x y)^{-\mu} J_{\mu}(x y)-\left(x_{0} y\right)^{-\mu} J_{\mu}\left(x_{0} y\right)\right)\right) \longrightarrow 0, \quad \text { as } x \rightarrow x_{0} .
$$

Assume that $n \in \mathbf{N}$ and $\phi \in \mathcal{B}_{\mu}(w)$. By virtue of [3, (3.4)], it follows for every $x, z \in[0, \infty)$,

$$
\begin{aligned}
h_{\mu}\left(\phi (y) \left((x y)^{-\mu} J_{\mu}(x y)-\right.\right. & \left.\left.\left(x_{0} y\right)^{-\mu} J_{\mu}\left(x_{0} y\right)\right)\right)(z) \\
& =\frac{1}{2^{\mu} \Gamma(\mu+1)}\left(\tau_{x}\left(h_{\mu} \phi\right)(z)-\tau_{x_{0}}\left(h_{\mu} \phi\right)(z)\right) .
\end{aligned}
$$

According to Proposition 2.4 (ii) and Proposition 2.6, the mapping G defined by

$$
G(x)=\tau_{x}\left(h_{\mu} \phi\right), \quad x \in[0, \infty)
$$

is continuous from $[0, \infty)$ into $\mathcal{H}_{\mu}(w)$. Moreover, since w satisfies the (γ)-property, there exists $l \in \mathbf{N}$ such that

$$
\begin{aligned}
& \delta_{n}^{\mu}\left(\phi\left((x .)^{-\mu} J_{\mu}(x .)-\left(x_{0} \cdot\right)^{-\mu} J_{\mu}\left(x_{0} .\right)\right)\right) \\
& \quad=\frac{1}{2^{\mu} \Gamma(\mu+1)} \int_{0}^{\infty} e^{n w(z)}\left|\tau_{x}\left(h_{\mu} \phi\right)(z)-\tau_{x_{0}}\left(h_{\mu} \phi\right)(z)\right| z^{2 \mu+1} d z \\
& \quad \leq C \alpha_{n+l, 0}\left(\tau_{x}\left(h_{\mu} \phi\right)-\tau_{x_{0}}\left(h_{\mu} \phi\right)\right), \quad x \in[0, \infty)
\end{aligned}
$$

Hence,

$$
\delta_{n}^{\mu}\left(\phi(y)\left((x y)^{-\mu} J_{\mu}(x y)-\left(x_{0} y\right)^{-\mu} J_{\mu}\left(x_{0} y\right)\right)\right) \longrightarrow 0, \quad \text { as } x \rightarrow x_{0}
$$

Moreover, since $T \in \mathcal{E}_{\mu}(w)^{\prime}$, there exist $C>0, r \in \mathbf{N}$ and $\phi_{1}, \ldots, \phi_{r} \in$ $\mathcal{B}_{\mu}(w)$,

$$
|\langle T, \Phi\rangle| \leq C \max _{j=1, \ldots, r} \delta_{r}^{\mu}\left(\phi_{j} \Phi\right), \quad \Phi \in \mathcal{E}_{\mu}(w)
$$

In particular, since w has the (γ)-property for every $x \in(0, \infty)$,

$$
\begin{aligned}
\left|\left\langle T(y),(x y)^{-\mu} J_{\mu}(x y)\right\rangle\right| & \leq C \max _{j=1, \ldots, r} \int_{0}^{\infty} e^{r w(x)}\left|\tau_{x}\left(h_{\mu} \phi_{j}\right)(y)\right| y^{2 \mu+1} d y \\
& \leq C \max _{j=1, \ldots, r} \alpha_{r+l, 0}\left(\tau_{x}\left(h_{\mu} \phi_{j}\right)\right)
\end{aligned}
$$

for some $l \in \mathbf{N}$. Then by (2.9), it follows that
(3.2) $\left|\left\langle T(y),(x y)^{-\mu} J_{\mu}(x y)\right\rangle\right|$

$$
\leq C e^{(r+l) w(x)} \max _{j=1, \ldots, r} \beta_{r+l, 0}^{\mu}\left(\phi_{j}\right), \quad x \in[0, \infty)
$$

From (3.2) we infer that the integral in (3.1) is absolutely convergent for every $\phi \in \mathcal{H}_{\mu}(w)$.

Assume that $\phi \in \mathcal{H}_{\mu}(w)$. It is clear that

$$
\lim _{b \rightarrow \infty} \int_{b}^{\infty}\left\langle T(y),(x y)^{-\mu} J_{\mu}(x y)\right\rangle \phi(x) x^{2 \mu+1} d x=0
$$

Let $b>0$. We can write

$$
\begin{align*}
& \int_{0}^{b}\left\langle T(y),(x y)^{-\mu} J_{\mu}(x y)\right\rangle \phi(x) x^{2 \mu+1} d x \tag{3.3}\\
& \quad=\lim _{n \rightarrow \infty}\left\langle T(y), \frac{b}{n} \sum_{j=1}^{n}\left(\frac{j b}{n} y\right)^{-\mu} J_{\mu}\left(\frac{j b}{n} y\right) \phi\left(\frac{j b}{n}\right)\left(\frac{j b}{n}\right)^{2 \mu+1}\right\rangle
\end{align*}
$$

We are going to see that

$$
\begin{align*}
& \int_{0}^{b}(x y)^{-\mu} J_{\mu}(x y) \phi(x) x^{2 \mu+1} d x \tag{3.4}\\
& =\lim _{n \rightarrow \infty} \frac{b}{n} \sum_{j=1}^{n}\left(\frac{j b}{n} y\right)^{-\mu} J_{\mu}\left(\frac{j b}{n} y\right) \phi\left(\frac{j b}{n}\right)\left(\frac{j b}{n}\right)^{2 \mu+1}
\end{align*}
$$

in the sense of convergence of $\mathcal{E}_{\mu}(w)$.

Indeed, let $\psi \in \mathcal{B}_{\mu}(w)$ and $m \in \mathbf{N}$. It has, for some $l \in \mathbf{N}$,

$$
\begin{aligned}
& \delta_{m}^{\mu}\left(\psi (y) \left(\int_{0}^{b}(x y)^{-\mu} J_{\mu}(x y) \phi(x) x^{2 \mu+1} d x\right.\right. \\
&\left.\left.-\frac{b}{n} \sum_{j=1}^{n}\left(\frac{j b}{n} y\right)^{-\mu} J_{\mu}\left(\frac{j b}{n} y\right) \phi\left(\frac{j b}{n}\right)\left(\frac{j b}{n}\right)^{2 \mu+1}\right)\right) \\
& \leq C \alpha_{l, 0}\left(h _ { \mu } \left(\psi (y) \left(\int_{0}^{b}(x y)^{-\mu} J_{\mu}(x y) \phi(x) x^{2 \mu+1} d x\right.\right.\right. \\
&\left.\left.\left.-\frac{b}{n} \sum_{j=1}^{n}\left(\frac{j b}{n} y\right)^{-\mu} J_{\mu}\left(\frac{j b}{n} y\right) \phi\left(\frac{j b}{n}\right)\left(\frac{j b}{n}\right)^{2 \mu+1}\right)\right)\right) \\
& \leq C \alpha_{l, 0}\left(\int_{0}^{b} \phi(x) x^{2 \mu+1} \tau_{x}\left(h_{\mu} \psi\right)(z) d x\right. \\
&\left.-\frac{b}{n} \sum_{j=1}^{n} \phi\left(\frac{j b}{n}\right)\left(\frac{j b}{n}\right)^{2 \mu+1} \tau_{j b / n}\left(h_{\mu} \psi\right)(z)\right)
\end{aligned}
$$

Note that from (2.9), it follows that

$$
\begin{aligned}
& e^{l w(z)} \mid \int_{0}^{b} \phi(x) x^{2 \mu+1} \tau_{x}\left(h_{\mu} \psi\right)(z) d x \\
& \left.-\frac{b}{n} \sum_{j=1}^{n} \phi\left(\frac{j b}{n}\right)\left(\frac{j b}{n}\right)^{2 \mu+1} \tau_{j b / n}\left(h_{\mu} \psi\right)(z) \right\rvert\, \\
& \leq C e^{-w(z)}(\int_{0}^{b}|\phi(x)| x^{2 \mu+1} e^{(l+1) w(x)} d x \\
&\left.+\frac{b}{n} \sum_{j=1}^{n}\left|\phi\left(\frac{j b}{n}\right)\right|\left(\frac{j b}{n}\right)^{2 \mu+1} e^{(l+1) w(j b / n)}\right) \\
& \leq C e^{-w(z)}, \quad z \in(0, \infty)
\end{aligned}
$$

Hence, if $\varepsilon>0$ then there exists $z_{0} \in(0, \infty)$ such that

$$
\begin{aligned}
& \sup _{z \geq z_{0}} e^{l w(z)} \mid \int_{0}^{b} \phi(x) x^{2 \mu+1} \tau_{x}\left(h_{\mu} \psi\right)(z) d x \\
& \left.-\frac{b}{n} \sum_{j=1}^{n} \phi\left(\frac{j b}{n}\right)\left(\frac{j b}{n}\right)^{2 \mu+1} \tau_{j b / n}\left(h_{\mu} \psi\right)(z) \right\rvert\,<\varepsilon
\end{aligned}
$$

On the other hand, since the function H defined by

$$
H(x, z)=\phi(x) x^{2 \mu+1} \tau_{x}\left(h_{\mu} \psi\right)(z), \quad x, z \in[0, \infty)
$$

is uniformly continuous in $(x, z) \in[0, b] \times\left[0, z_{0}\right]$, it has

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{b}{n} \sum_{j=1}^{n} \phi\left(\frac{j b}{n}\right)\left(\frac{j b}{n}\right)^{2 \mu+1} \tau_{z}\left(h_{\mu} \psi\right)\left(\frac{j b}{n}\right) \\
&=\int_{0}^{b} \phi(x) x^{2 \mu+1} \tau_{z}\left(h_{\mu} \psi\right)(x) d x
\end{aligned}
$$

uniformly in $\left[0, x_{0}\right]$.
From the above arguments we conclude (3.4) in the sense of convergence in $\mathcal{E}_{\mu}(w)$. Hence it has that

$$
\begin{aligned}
\int_{0}^{b}\left\langle T(y),(x y)^{-\mu} J_{\mu}(x y)\right\rangle & \phi(x) x^{2 \mu+1} d x \\
& =\left\langle T(y), \int_{0}^{b}(x y)^{-\mu} J_{\mu}(x y) \phi(x) x^{2 \mu+1} d x\right\rangle
\end{aligned}
$$

Also,

$$
\lim _{b \rightarrow \infty} \int_{b}^{\infty}(x y)^{-\mu} J_{\mu}(x y) \phi(x) x^{2 \mu+1} d x=0
$$

in the sense of convergence in $\mathcal{E}_{\mu}(w)$.
Indeed, assume that $b>0, \psi \in \mathcal{B}_{\mu}(w)$ and $m \in \mathbf{N}$. For a certain $l \in \mathbf{N}$ we have that

$$
\begin{aligned}
\delta_{m}^{\mu}\left(\psi(y) \int_{b}^{\infty}\right. & \left.(x y)^{-\mu} J_{\mu}(x y) \phi(x) x^{2 \mu+1} d x\right) \\
& \leq C \alpha_{l, 0}\left(h_{\mu}\left(\psi(y) \int_{b}^{\infty}(x y)^{-\mu} J_{\mu}(x y) \phi(x) x^{2 \mu+1} d x\right)\right) \\
& \leq C \sup _{z \in(0, \infty)} e^{l w(z)}\left|\int_{b}^{\infty} \phi(x) \tau_{z}\left(h_{\mu} \psi\right)(x) x^{2 \mu+1} d x\right| \\
& \leq C \int_{b}^{\infty}|\phi(x)| e^{l w(x)} x^{2 \mu+1} d x \beta_{l, 0}^{\mu}(\psi)
\end{aligned}
$$

Hence,

$$
\lim _{b \rightarrow \infty} \delta_{m}^{\mu}\left(\psi(y) \int_{b}^{\infty}(x y)^{-\mu} J_{\mu}(x y) \phi(x) x^{2 \mu+1} d x\right)=0
$$

Standard arguments allow us now to show that (3.1) holds.

Proposition 2.4 (i) allows us to define the Hankel convolution $T \# \phi$ of $T \in \mathcal{H}_{\mu}(w)^{\prime}$ and $\phi \in \mathcal{H}_{\mu}(w)$ as follows

$$
(T \# \phi)(x)=\left\langle T, \tau_{x} \phi\right\rangle, \quad x \in[0, \infty)
$$

Note that the last definition extends the Hankel convolution from $\mathcal{H}_{\mu}(w) \times \mathcal{H}_{\mu}(w)$ to $\mathcal{H}_{\mu}(w)^{\prime} \times H_{\mu}(w)$. Indeed, let $\phi, \psi \in \mathcal{H}_{\mu}(w)$. We can write

$$
\begin{aligned}
\left(T_{\phi} \# \psi\right)(x) & =\left\langle T_{\phi}, \tau_{x} \psi\right\rangle=\int_{0}^{\infty} \phi(y)\left(\tau_{x} \psi\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \\
& =(\phi \# \psi)(x), \quad x \in[0, \infty)
\end{aligned}
$$

We now prove that $T \# \phi \in \mathcal{H}_{\mu}(w)^{\prime}$ for every $T \in \mathcal{H}_{\mu}(w)^{\prime}$ and $\phi \in \mathcal{H}_{\mu}(w)$.

Proposition 3.2. Let $T \in \mathcal{H}_{\mu}(w)^{\prime}$ and $\phi \in \mathcal{H}_{\mu}(w)$. Then $T \# \phi$ is a continuous function on $[0, \infty)$. Moreover, there exist $C>0$ and $r \in \mathbf{N}$ such that

$$
|(T \# \phi)(x)| \leq C e^{r w(x)}, \quad x \in[0, \infty)
$$

Hence, $T \# \phi$ defines an element of $\mathcal{H}_{\mu}(w)^{\prime}$.

Proof. According to Proposition 2.4 (ii), $T \# \phi$ is a continuous function on $[0, \infty)$. Moreover, since $T \in \mathcal{H}_{\mu}(w)^{\prime}$, from Proposition 2.3 it implies that there exist $C>0$ and $r \in \mathbf{N}$ such that

$$
|\langle T, \psi\rangle| \leq C \max _{0 \leq n \leq r}\left\{A_{r, n}^{\mu}(\psi), \beta_{r, n}^{\mu}(\psi)\right\}, \quad \psi \in \mathcal{H}_{\mu}(w)
$$

In particular, we have that

$$
|(T \# \phi)(x)| \leq C \max _{0 \leq n \leq r}\left\{A_{r, n}^{\mu}\left(\tau_{x} \phi\right), \beta_{r, n}^{\mu}\left(\tau_{x} \phi\right)\right\}, \quad x \in[0, \infty)
$$

From (2.9), it is deduced that

$$
A_{r, n}^{\mu}\left(\tau_{x} \phi\right) \leq e^{r w(x)} A_{r, n}^{\mu}(\phi), \quad x \in[0, \infty) \text { and } n \in \mathbf{N} .
$$

Also (2.10) implies, since w satisfies the (γ)-property, that

$$
\begin{aligned}
\beta_{r, n}^{\mu}\left(\tau_{x} \phi\right) & \leq C\left(1+x^{2 n}\right) \sum_{j=0}^{n} \beta_{r, j}^{\mu}(\phi) \\
& \leq C e^{l w(x)} \sum_{j=0}^{n} \beta_{r, j}^{\mu}(\phi), \quad x \in[0, \infty) \quad \text { and } n \in \mathbf{N}
\end{aligned}
$$

for some $l \in \mathbf{N}$.
Hence, for a certain $m \in \mathbf{N}$,

$$
|(T \# \phi)(x)| \leq C e^{m w(x)}, \quad x \in[0, \infty)
$$

We now introduce, for every $m \in \mathbf{N}$, the space $\mathcal{A}_{m}(w)$ constituted by all those functions f defined on $(0, \infty)$ such that

$$
\sup _{x \in(0, \infty)} e^{-m w(x)}|f(x)|<\infty
$$

A careful reading of the proof of Proposition 3.2 allows us to deduce that if $T \in \mathcal{H}_{\mu}(w)^{\prime}$, there exists $r \in \mathbf{N}$ such that $T \# \phi \in \mathcal{A}_{r}(w)$ for every $\phi \in \mathcal{H}_{\mu}(w)$.

Next we establish an associative property for the distributional convolution.

Proposition 3.3. Let $T \in \mathcal{H}_{\mu}(w)^{\prime}$ and $\phi, \psi \in \mathcal{H}_{\mu}(w)$. Then

$$
\begin{equation*}
(T \# \phi) \# \psi=T \#(\phi \# \psi) \tag{3.5}
\end{equation*}
$$

Proof. As it was shown in Proposition 3.2, $T \# \phi$ defines an element of $\mathcal{H}_{\mu}(w)^{\prime}$ and we have

$$
\begin{aligned}
((T \# \phi) \# \psi)(x) & =\int_{0}^{\infty}(T \# \phi)(y)\left(\tau_{x} \psi\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \\
& =\int_{0}^{\infty}\left\langle T, \tau_{y} \phi\right\rangle\left(\tau_{x} \psi\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y, \quad x \in(0, \infty)
\end{aligned}
$$

Equality (3.5) will be proved when we see that, for every $x \in(0, \infty)$,

$$
\begin{align*}
& \int_{0}^{\infty}\left\langle T, \tau_{y} \phi\right\rangle\left(\tau_{x} \psi\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \tag{3.6}\\
&=\left\langle T(z), \int_{0}^{\infty}\left(\tau_{y} \phi\right)(z)\left(\tau_{x} \psi\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y\right\rangle
\end{align*}
$$

Indeed, we have

$$
\begin{aligned}
\int_{0}^{\infty}\left(\tau_{y} \phi\right)(z) & \left(\tau_{x} \psi\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \\
& =\int_{0}^{\infty}\left(\tau_{z} \phi\right)(y)\left(\tau_{x} \psi\right)(y) \frac{y^{2 \mu+1}}{2 \mu \Gamma(\mu+1)} d y \\
& =\left(\tau_{z} \phi \# \psi\right)(x)=\tau_{x}(\phi \# \psi)(z), \quad x, z \in[0, \infty)
\end{aligned}
$$

Our objective is to prove (3.6). We will use a procedure similar to the one employed in the proof of Proposition 3.1.

Let $x \in[0, \infty)$. By virtue of Proposition 3.2, it follows that

$$
\begin{equation*}
\lim _{b \rightarrow \infty} \int_{b}^{\infty}\left\langle T, \tau_{y} \phi\right\rangle\left(\tau_{x} \psi\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y=0 \tag{3.7}
\end{equation*}
$$

Assume that $m, n \in \mathbf{N}$. According to (2.9), we can write

$$
\begin{aligned}
& A_{m, n}^{\mu}\left(\int_{b}^{\infty}\left(\tau_{z} \phi\right)(y)\left(\tau_{x} \psi\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y\right) \\
& \quad \leq \int_{b}^{\infty} e^{m w(y)}\left|\left(\tau_{x} \psi\right)(y)\right| \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y A_{m, n}^{\mu}(\phi), \quad b>0
\end{aligned}
$$

Hence, from Proposition 2.4 (i) it is inferred that

$$
\lim _{b \rightarrow \infty} A_{m, n}^{\mu}\left(\int_{b}^{\infty}\left(\tau_{z} \phi\right)(y)\left(\tau_{x} \psi\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y\right)=0
$$

On the other hand, for every $b>0$,

$$
\begin{aligned}
& \left(\frac{1}{t} D\right)^{n} h_{\mu}\left(\int_{b}^{\infty}\left(\tau_{z} \phi\right)(y)\left(\tau_{x} \psi\right)(y) \frac{y^{2 \mu+1}}{2 \mu \Gamma(\mu+1)} d y\right)(t) \\
& =\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \int_{b}^{\infty}\left(\tau_{x} \psi\right)(y) y^{2 j}(y t)^{-\mu-j} J_{\mu+j}(y t) y^{2 \mu+1} d y \\
& \cdot\left(\frac{1}{t} D\right)^{n-j} h_{\mu}(\phi)(t), \quad t \in(0, \infty)
\end{aligned}
$$

Therefore, by Proposition 2.4 (i) and taking into account the boundedness of the function $z^{-\mu} J_{\mu}(z)$ on $(0, \infty)$, we have

$$
\begin{aligned}
& \beta_{m, n}^{\mu}\left(\int_{b}^{\infty}\left(\tau_{z} \phi\right)(y)\left(\tau_{x} \psi\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y\right) \\
& \quad \leq C \sum_{j=0}^{n} \beta_{m, n-j}^{\mu}(\phi) \int_{b}^{\infty}\left|\left(\tau_{x} \psi\right)(y)\right| y^{2 j+2 \mu+1} d y \longrightarrow 0, \quad \text { as } b \rightarrow \infty
\end{aligned}
$$

Thus we see that

$$
\begin{equation*}
\int_{b}^{\infty}\left(\tau_{z} \phi\right)(y)\left(\tau_{x} \psi\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \longrightarrow 0, \quad \text { as } b \rightarrow \infty \tag{3.8}
\end{equation*}
$$

in the sense of convergence in $\mathcal{H}_{\mu}(w)$.
Now let $b>0$. By using, as in the proof of Proposition 3.1, Riemann sums, we can prove that

$$
\begin{align*}
& \int_{0}^{b}\left\langle T, \tau_{y} \phi\right\rangle\left(\tau_{x} \psi\right)(y) y^{2 \mu+1} d y \tag{3.9}\\
&=\left\langle T(z), \int_{0}^{b}\left(\tau_{y} \phi\right)(z)\left(\tau_{x} \psi\right)(y) y^{2 \mu+1} d y\right\rangle
\end{align*}
$$

By combining (3.7), (3.8) and (3.9) we deduce (3.6) and thus the proof of (3.5) is complete.

A useful special case of Proposition 3.3 follows.

Corollary 3.4. Let $T \in \mathcal{H}_{\mu}(w)^{\prime}$ and $\phi, \psi \in \mathcal{H}_{\mu}(w)$. Then

$$
\begin{equation*}
\langle T \# \phi, \psi\rangle=\langle T, \phi \# \psi\rangle \tag{3.10}
\end{equation*}
$$

Proof. To see (3.10), it is sufficient to take $x=0$ in (3.5).

Remark 3. Note that the property in Corollary 3.4 is equivalent to the one in Proposition 3.3. Indeed, let $T \in \mathcal{H}_{\mu}(w)^{\prime}$ and $\phi, \psi \in \mathcal{H}_{\mu}(w)$.

If $x \in[0, \infty), \tau_{x} \psi \in \mathcal{H}_{\mu}(w)$ (Proposition 2.4 (i)). Then from Corollary 3.4 we deduce

$$
\begin{aligned}
((T \# \phi) \# \psi)(x) & =\left\langle T, \phi \#\left(\tau_{x} \psi\right)\right\rangle \\
& =\left\langle T, \tau_{x}(\phi \# \psi)\right\rangle \\
& =(T \#(\phi \# \psi))(x), \quad x \in[0, \infty)
\end{aligned}
$$

Thus Proposition 3.3 is established.

We now obtain a distributional version of the interchange formula.

Proposition 3.5. Let $T \in \mathcal{H}_{\mu}(w)^{\prime}$ and $\phi \in \mathcal{H}_{\mu}(w)$. Then

$$
h_{\mu}^{\prime}(T \# \phi)=h_{\mu}^{\prime}(T) h_{\mu}(\phi)
$$

Proof. Assume that $\psi \in \mathcal{H}_{\mu}(w)$. According to Corollary 3.4, we can write

$$
\begin{aligned}
\left\langle h_{\mu}^{\prime}(T \# \phi), \psi\right\rangle & =\left\langle T \# \phi, h_{\mu}(\psi)\right\rangle=\left\langle T, \phi \# h_{\mu}(\psi)\right\rangle \\
& =\left\langle T, h_{\mu}\left(h_{\mu}(\phi) \psi\right)\right\rangle=\left\langle h_{\mu}^{\prime}(T) h_{\mu}(\phi), \psi\right\rangle
\end{aligned}
$$

Another consequence of Corollary 3.4 is the following.

Proposition 3.6. The space $\mathcal{A}(w)=\cup_{m \in \mathbb{N}} \mathcal{A}_{m}(w)$ is a weak $*$ dense subspace of $\mathcal{H}_{\mu}(w)^{\prime}$.

Proof. To see this property it is sufficient to take into account the remark after Proposition 3.2 and to use Proposition 2.7 and Corollary 3.4.

We now introduce the space $\mathcal{F}_{\mu}(w)$ that consists of all those $T \in$ $\mathcal{B}_{\mu}(w)^{\prime}$ for which there exists a function G_{T} belonging to $\mathcal{A}_{m}(w)$ for some $m \in \mathbf{N}$, such that

$$
\begin{equation*}
\langle T, \phi\rangle=\int_{0}^{\infty} G_{T}(y) h_{\mu}(\phi)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y, \quad \phi \in \mathcal{B}_{\mu}(w) \tag{3.11}
\end{equation*}
$$

Note that the righthand side of (3.11) defines a continuous functional on $\mathcal{H}_{\mu}(w)$. Hence, T can be extended to $\mathcal{H}_{\mu}(w)$ as an element of $\mathcal{H}_{\mu}(w)^{\prime}$. We continue denoting by T that extension to $\mathcal{H}_{\mu}(w)$. Moreover, for every $\phi \in \mathcal{H}_{\mu}(w)$, it has

$$
\begin{aligned}
\left\langle h_{\mu}^{\prime} T, \phi\right\rangle & =\left\langle T, h_{\mu}(\phi)\right\rangle \\
& =\int_{0}^{\infty} G_{T}(y) h_{\mu}\left(h_{\mu}(\phi)\right)(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y \\
& =\int_{0}^{\infty} G_{T}(y) \phi(y) \frac{y^{2 \mu+1}}{2^{\mu} \Gamma(\mu+1)} d y
\end{aligned}
$$

Hence, $h_{\mu}^{\prime} T$ coincides with the functional generated by G_{T} on $\mathcal{H}_{\mu}(w)^{\prime}$.
We also can prove that if $T \in \mathcal{F}_{\mu}(w)$ and $\phi \in \mathcal{H}_{\mu}(w)$, then $T \# \phi$ and $T . \phi$ are in $\mathcal{F}_{\mu}(w)$.

Remark 4. In a forthcoming paper we will continue the study of the tempered Beurling-type distributions and the Hankel transformation following the ideas of von Grudzinski [11].

REFERENCES

1. G. Altenburg, Bessel transformationen in Raumen von Grundfunktionenuber dem Intervall $\Omega=(0, \infty)$ un derem Dualraumen, Math. Nachr. 108 (1982), 197-218.
2. M. Belhadj and J.J. Betancor, Beurling distributions and Hankel transforms, Math. Nachr. 233-234 (2002), 19-45.
3. J.J. Betancor and I. Marrero, The Hankel convolution and the Zemanian spaces B_{μ} and B_{μ}^{\prime}, Math. Nachr. 160 (1993), 277-298.
4. - Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japonica 38 (1993), 1141-1155.
5. J.J. Betancor and L. Rodríguez-Mesa, Hankel convolution on distribution spaces with exponential growth, Studia Math. 121 (1996), 35-52.
6. - On Hankel convolution equations in distribution spaces, Rocky Mountain J. Math. 29 (1999), 93-114.
7. A. Beurling, Quasi-analyticity and general distributions, Lectures 4 and 5, Amer. Math. Soc. Summer Institute, Stanford, CA, 1961.
8. G. Björck, Linear partial differential operators and generalized distributions, Ark. Math. 6 (1966), 351-407.
9. F.M. Cholewinski, A Hankel convolution complex inversion theory, Mem. Amer. Math. Soc. 58, 1965.
10. A. Erdelyi, Tables of integral transforms, II, McGraw-Hill, New York, 1953.
11. O. von Grudzinski, Temperierte Beurling-Distributionen, Math. Nachr. 91 (1979), 297-320.
12. D.T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc. 116 (1965), 330-375.
13. I.I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Analyse Math. 8 (1960/61), 307-336.
14. I. Marrero and J.J. Betancor, Hankel convolution of generalized functions, Rend. Mat. 15 (1995), 351-380.
15. J. de Sousa-Pinto, A generalized Hankel convolution, SIAM J. Math. Anal. 16 (1985), 1335-1346.
16. K. Stempak, La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel, C.R. Acad. Sci. Paris Sér. I Math. 303 (1986), 15-19.
17. G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1959.
18. A.H. Zemanian, A distributional Hankel transformation, SIAM J. Appl. Math. 14 (1966), 561-576.
19. -, The Hankel transformation of certain distribution of rapid growth, SIAM J. Appl. Math. 14 (1966), 678-690.
20. Generalized integral transformations, Interscience Publishers, New York, 1968.

Departamento de Análisis Matemático, Universidad de La Laguna, 38271 - La Laguna, Tenerife, Islas Canarias, España

Departamento de Análisis Matemático, Universidad de La Laguna, 38271

- La Laguna, Tenerife, Islas Canarias, España

E-mail address: jbetanco@ull.es

[^0]: AMS Mathematics Subject Classification. 46F12.
 Key words and phrases. Beurling distributions, Hankel transformation, convolution.

 Research partially supported by DGICYT grant PB 97-1489 (Spain).
 Received by the editors on November 16, 1999, and in revised form on November 27, 2000.

