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WHEN THE FAMILY OF FUNCTIONS VANISHING
AT INFINITY IS AN IDEAL OF C(X)

F. AZARPANAH AND T. SOUNDARARAJAN

ABSTRACT. We prove that C∞(X) is an ideal in C(X)
if and only if every open locally compact subset of X is
bounded. In particular, if X is a locally compact Hausdorff
space, C∞(X) is an ideal of C(X) if and only if X is a
pseudocompact space. It is shown that the existence of some
special functions in C∞(X) causes C∞(X) not to be an ideal
of C(X). Finally we will characterize the spaces X for which
C∞(X) and CK(X), or Cψ(X), coincide.

Introduction. Throughout this paper X stands for a completely
regular Hausdorff space and C(X)(C∗(X)) for the ring of all (bounded)
continuous real valued functions on X. In [1], Azarpanah considered
essential ideals in C(X) and characterized those X for which the ideal
CK(X) of all functions in C(X) with compact support is an essential
ideal in C(X). He considered also the subset C∞(X) of all those
functions in C(X) which vanish at infinity. It gives an impression there
that C∞(X) might always be an ideal of C(X). This, however, is not
always true, e.g., X = R.

We prove that C∞(X) will be an ideal of C(X) if and only if every
open locally compact subset of X is bounded. In particular, for a
locally compact Hausdorff space X, C∞(X) is an ideal in C(X) if and
only if X is a pseudocompact space. We note that Y ⊆ X is said to
be bounded if for every f ∈ C(X), f(Y ) is a bounded set in R. We
will show that the existence of a function f ∈ C∞(X) \ CK(X) whose
zero-set Z(f) is an open set, causes C∞(X) not to be an ideal of C(X).
We also observe that the existence of a function h in C∞(X) with Z(h)
a Lindelöf and bounded set causes C∞(X) not to be an ideal of C(X),
unless X is a compact space.
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Topological spaces X for which CK(X), or C∞(X), and the socle
CF (X) of C(X) coincide are characterized in [1]. In [6] it is shown
that CF (X) = {f ∈ C(X) : X \ Z(f) is finite}. It is also well known
[4, 7G.2], that if X is a locally compact noncompact Hausdorff space,
then C∞(X) = CK(X) if and only if every σ-compact subset of X is
contained in a compact subset of X. We will generalize this result
for completely regular Hausdorff spaces. CK(X) = {f ∈ C(X) :
cl (X \ Z(f)) is compact} is easily seen to be an ideal of C(X), but
C∞(X) = {f ∈ C(X) : {x ∈ X : |f(x)| ≥ (1/n)} is compact, for
all n ∈ N} is a subring of C(x), [4, 7G.2], and not always an ideal
of C(X). For example C∞(R) is not an ideal of C(R). To see this,
we consider the function f : R → R defined by f(x) = 1/(1 + x2)
which is in C∞(R). Now the function g defined by g(x) = 1 + x2 is in
C(R) but fg /∈ C∞(R). C∞(X) may sometimes be an ideal of C(X),
for example, C∞(Q) = (0) is an ideal in C(Q), [4, 7F]. Whenever
X is a locally compact Hausdorff space and every σ-compact subset
of X is contained in a compact subset of X, then C∞(X) = CK(X)
and hence is an ideal of C(X). We also see in [1, Theorem 4.5] that
C∞(X) = CF (X) if and only if X is a pseudo-discrete space (every
compact subset has finite interior), with only a finite number of isolated
points. Since CF (X) is an ideal of C(X), then in this case C∞(X) is
an ideal of C(X).

We note that X is a locally compact σ-compact space if and only
if X = ∪∞

n=1An such that An is compact and An ⊆ intAn+1 for all
n ∈ N [3, p. 250]. The reader is referred to [4] for undefined terms and
notations.

1. When is C∞(X) an ideal in C(X)? To prove the main result
of this section, we need the following lemma.

Lemma 1.1. Let A be an open subset of X. Then A = X \ Z(f)
for some f ∈ C∞(X) if and only if A is a σ-compact locally compact
subset of X.

Proof. Let A = X \ Z(f) for some f ∈ C∞(X). Then A = ∪∞
n=1An

where An = {x ∈ X : |f(x)| ≥ (1/n)}. An is compact and hence A
is σ-compact. If x ∈ A, there exists n0 ∈ N such that x ∈ {y ∈ X :
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|f(y)| > (1/n0)} ⊆ An0 . Thus we get A is a locally compact subset
of X. This proves the necessity. For sufficiency, let A be a σ-compact
locally compact subset of X. Then A = ∪∞

n=1An with An compact and
An ⊆ intAn+1. Now for each n ∈ N, there exists fn ∈ C(X) such
that fn(X) ⊆ [0, 1], fn(An) = {1}, fn(X \ intAn+1) = {0}. Then
f =

∑∞
n=1 fn/2

n is an element of C(X) by the Weierstrass M -test.
Clearly, A = X \ Z(f). We claim that f ∈ C∞(X). Let x0 /∈ An+1.
Then f1(x0) = · · · = fn(x0) = 0 and so f(x0) ≤ (1/2n+1) + · · · ≤
(1/2n) < (1/n). So x0 /∈ {x ∈ X : |f(x)| ≥ (1/n)}, and hence
{x ∈ X : |f(x)| ≥ (1/n)} ⊆ An+1 and so we get f ∈ C∞(X).

The lemma above gives a new representation for Z[C∞(X)]. If F is
the collection of all closed subsets of X, then

Z[C∞(X)] = {H ∈ F : X \H is a locally compact σ-compact}.

Corollary 1.2. C∞(X) contains a unit of C(X) if and only if X is
a locally compact σ-compact space.

Next we prove the main result of this section.

Theorem 1.3. Let X be a completely regular Hausdorff space. The
following conditions are equivalent:

(a) C∞(X) is an ideal in C(X).

(b) Every open locally compact subset of X is bounded.

(c) Every open locally compact σ-compact subset of X is bounded.

Proof. (a) ⇒ (b). Let Y be an open locally compact subset of
X. Suppose that Y is not bounded. Then g ∈ C(X), g ≥ 0 and
points an ∈ Y exist such that g(an) ≥ 2n for all n ∈ N. We can
also assume that g(an+1) > g(an) + 1, for every n ∈ N. Since Y is
locally compact and open in X, for each n ∈ N, there exists an open
set An in X such that an ∈ An, clAn is compact and clAn ⊆ Y . Put
Un = g−1{(g(an) − (1/4), g(an) + (1/4))} ∩ An. Since clUn ⊆ clAn,
therefore clUn is compact. If m �= n, clUm ∩ clUn = ∅. For every
n ∈ N, choose an open set Vn in X such that an ∈ Vn ⊆ clVn ⊆
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Un. Now for every n ∈ N we define fn ∈ C(X), 0 ≤ fn ≤ 1,
fn(clVn) = {1} and fn(X \ Un) = {0}. Let f =

∑∞
n=1 fn/2

n, then
by the Weierstrass M -test, f ∈ C(X). To show that f ∈ C∞(X),
let n0 ∈ N and K = clU1 ∪ · · · ∪ clUn0 . Clearly K is compact
and if x ∈ X \ K, then f(x) =

∑
n>n0

fn(x)/2n < (1/n0). Thus
{x ∈ X : |f(x)| ≥ (1/n0)} ⊆ K and so is compact. Hence f ∈ C∞(X).
Now we claim that fg /∈ C∞(X). Let C = {x ∈ X : (fg)(x) ≥ 1},
since (fg)(an) = f(an)g(an) ≥ 1, for all n ∈ N, then {an} ⊆ C. But
g ∈ C(X) is not bounded on {an} implies that C cannot be compact,
i.e., fg /∈ C∞(X). Thus C∞(X) is not an ideal in C(X) which is a
contradiction. Hence Y is bounded and then (b) follows.

(b) ⇒ (c). Easy.

(c) ⇒ (a). Since C∞(X) is a subring of C(X), it is enough to
prove that fg ∈ C∞(X) for every f ∈ C(X) and any g ∈ C∞(X).
By Lemma 1.1, X \ Z(g) = Y is an open locally compact σ-compact
subset of X and hence, by (c), f(Y ) is a bounded subset of R. Now
it is easy to see that g1/3 ∈ C∞(X), since g ∈ C∞(X). Moreover,
Z(g1/3) = Z(g) implies that (fg1/3)(X) = (fg1/3)(Y ) ∪ {0}. Since
f(Y ) is a bounded set in R and g1/3 ∈ C∞(X) is a bounded function
on X, we get (fg1/3)(Y ) is a bounded set in R implies that fg1/3

is bounded on X and so belongs to C∗(X). Since C∞(X) is a ring,
g2/3 ∈ C∞(X). However, if h ∈ C∗(X) and k ∈ C∞(X), it is easy to
check that hk ∈ C∞(X). Therefore fg = (fg1/3)g2/3 ∈ C∞(X), thus
(a) holds.

Corollary 1.4. Let X be a locally compact Hausdorff space. Then
C∞(X) is an ideal in C(X) if and only if X is a pseudocompact space.

Proof. Suppose X is a pseudocompact space. If g ∈ C∞(X) and
f ∈ C(X), then f is a bounded function and so fg ∈ C∞(X) easily.
Thus it follows that C∞(X) is an ideal of C(X). Conversely, if C∞(X)
is an ideal of C(X), X itself is an open locally compact subset and so
by Theorem 1.3, X is bounded, i.e., X is a pseudocompact space.

We note by [4, Theorem 8.2] that a Lindelöf space is realcompact
and by [4, 5H.2], a realcompact pseudocompact space is a compact



FAMILY OF FUNCTIONS 1137

space. Hence, if X is a Lindelöf pseudocompact space, then X is a
compact space.

Corollary 1.5. Suppose that there exists h ∈ C∞(X) with Z(h)
Lindelöf and bounded. If C∞(X) is an ideal in C(X), then X is a
compact space.

Proof. By Lemma 1.1, X\Z(h) is an open locally compact σ-compact
subset of X. Hence by Theorem 1.3, X \ Z(h) is bounded. Now if
f ∈ C(X), then f |X\Z(h) is bounded and also f |Z(h) is bounded. Thus
f is a bounded function and hence we get X a pseudocompact space.
X = (X \ Z(h)) ∪ Z(h) yields X is a Lindelöf space. Since X is now
both Lindelöf and pseudocompact, we get that X is a compact space.

Remark 1.6. A compact set is both Lindelöf and bounded. In the
Tychonoff plank T , the right edge is both Lindelöf and bounded (since
T itself is pseudocompact) but is not compact.

To prove the last result of this section, we need the following:

Lemma 1.7. Suppose X = Y ⊕ Z, i.e., Y and Z are disjoint open
subsets of X such that X = Y ∪ Z. C∞(X) is an ideal of C(X) if and
only if C∞(Y ) is an ideal of C(Y ) and C∞(Z) is an ideal of C(Z).

Proposition 1.8. Suppose there exists f ∈ C∞(X) \ CK(X) with
Z(f) an open set. Then C∞(X) is not an ideal of C(X).

Proof. Since Z(f) is open and already it is closed, X = Y ⊕ Z(f),
where Y = X \ Z(f). Suppose C∞(X) is an ideal of C(X). Then, by
Lemma 1.7, C∞(Y ) is an ideal of C(Y ). Now f |Y ∈ C∞(Y ) and f does
not vanish on Y . Hence 1/f is defined on Y and belong to C(Y ). Now
1Y = (f |Y )1/f ∈ C∞(Y ) implies that Y = {y ∈ Y : 1Y (y) ≥ (1/2)}
is compact. This yields that f ∈ CK(X) since Y = X \ Z(f) and Y
is closed so that Y is support of f . This is a contradiction and hence
C∞(X) is not an ideal of C(X).
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2. C∞(X) and related ideals in C(X). Topological spaces X
for which CK(X) = CF (X) and C∞(X) = CF (X) are characterized in
[1]. Locally compact Hausdorff spaces X for which C∞(X) = CK(X)
are also characterized in [4, 7G.2]. Another related ideal which is
denoted by Cψ(X) in [5] is the set of all functions in C(X) with
pseudocompact support. Mandelker in [7, Theorem 2.1] has shown that
in any topological spaceX, any bounded support is pseudocompact and
this fact implies that Cψ(X) is an ideal in C(X), see [7, Corollary 2]. In
the case of a completely regular Hausdorff space, it is well known that
if the closure of any open set is bounded, then it is pseudocompact, see
[2, Theorem 4.1]. It is easy to see that CK(X) ⊆ Cψ(X) and whenever
CK(X) = Cψ(X), then the space X is called ψ-compact, see [5] and
[7] for more details.

In this section we will prove that for a completely regular Hausdorff
space X, C∞(X) = CK(X) if and only if every open locally compact
and σ-compact subset of X is contained in a compact subset of X. We
also show that C∞(X) ⊆ Cψ(X) if and only if C∞(X) is an ideal of
C(X) and, for a locally compact Hausdorff space X, C∞(X) = Cψ(X)
implies that X is compact.

Proposition 2.1. Let X be a completely regular Hausdorff space.
C∞(X) = CK(X) if and only if every open locally compact σ-compact
subset of X is contained in a compact set in X.

Proof. Suppose the condition holds. It is enough to prove that
C∞(X) ⊆ CK(X). Let f ∈ C∞(X). Then by Lemma 1.1, X \ Z(f) is
an open locally compact and σ-compact subset of X. Hence, X \Z(f)
is contained in a compact set C. Thus Supp (f) = cl (X \ Z(f)) ⊆ C
and hence Supp (f) is compact, i.e., f ∈ CK(X). Conversely, suppose
C∞(X) = CK(X). Let A be an open locally compact and σ-compact
subset of X. By Lemma 1.1, there exists f ∈ C∞(X) such that
A = X \ Z(f). Now f ∈ CK(X) implies that A = X \ Z(f) ⊆
cl (X \ Z(f)) = Supp (f). Since Supp (f) is compact, then A is
contained in a compact set and hence the proposition holds.

Remark 2.2. IfX is a locally compact Hausdorff space, any σ-compact
set is contained in an open locally compact σ-compact set and hence
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Proposition 2.1 yields the characterization mentioned in [4, 7G.2].

Remark 2.3. IfX is a space such that C∞(X) = CK(X), since CK(X)
is always an ideal in C(X), we get C∞(X) is an ideal of C(X) and
hence X satisfies the conditions of Theorem 1.3. For another example
of a space with conditions of Theorem 1.3, let p ∈ βN \ N, and let
X = βN \ {p}. Then X is a locally compact countably compact space
and hence is pseudocompact also. Thus, by Corollary 1.4, C∞(X) is
an ideal of C(X). Now N is an open locally compact and σ-compact
subset of X and, since N is dense in βN, it is not contained in any
compact subset of X. Hence C∞(X) �= CK(X).

By Theorem 1.3, the following proposition implies that C∞(X) ⊆
Cψ(X) if and only if C∞(X) is an ideal of C(X).

Proposition 2.4. C∞(X) ⊆ Cψ(X) if and only if every open locally
compact subset of X is bounded.

Proof. Let C∞(X) ⊆ Cψ(X). By Theorem 1.3, it is enough to
show that every open locally compact σ-compact subset A of X is
bounded. By Lemma 1.1, A = X \ Z(f) for some f ∈ C∞(X). Now,
by our hypothesis, f ∈ Cψ(X), i.e., cl (X \Z(f)) is pseudocompact and
hence A = X \ Z(f) is bounded. Conversely, let every open locally
compact subset of X be bounded and f ∈ C∞(X). Then X \ Z(f)
is an open locally compact set by Lemma 1.1, hence X \ Z(f) is
bounded. Therefore, cl (X \ Z(f)) is bounded and by Theorem 4.1
in [2], cl (X \ Z(f)) is pseudocompact, i.e., f ∈ Cψ(X).

We conclude the article with the following proposition which is clear
by our Corollary 1.4 and Corollary 2 in [7].

Corollary 2.5. Let X be a locally compact Hausdorff space. Then
C∞(X) = Cψ(X) if and only if X is compact.
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